第一篇:关于转发省教育学院《关于在全省开展高中初中小学数学优质课,优秀教学设计,优秀教学案例
大兴安岭地区教师进修学院
大教院函〔2010〕46号
关于转发省教育学院《关于在全省开展高中初中小学数学优质课、优秀教学设计、优秀教学案例(教学叙事和教学反思)和优秀教学论文
征集评选活动的通知》的通知
各县(区、局)教师进修学校、教科研中心、教研室,地直中小学:
现将省教育学院《关于在全省开展高中初中小学数学优质课、优秀教学设计、优秀教学案例(教学叙事和教学反思)和优秀教学论文征集评选活动的通知》转发给你们,请各地、各学校按要求抓好落实。并务于7月5日前将优质课(以光盘形式)、教学设计、教学案例、论文(以文本形式)邮至地区教师进修学院初教部隋桂芝处;评审费汇至张扬处;参评表以电子稿形式发至: sgz4691@163.com 联系电话:2130409 联系人:隋桂芝
附:省教育学院《关于在全省开展高中初中小学数学优质课、优秀教学设计、优秀教学案例(教学叙事和教学反思)和优秀教学论文征集评选活动的通知》
大兴安岭地区教师进修学院
二〇一〇年六月十五日 附件
关于在全省开展高中初中小学数学优质课、优秀教学设计、优秀教学案例(教学叙事和 教学反思)和优秀教学论文征集评选活动的通知
各市(地、企)教育学院(教研院、教师进修学院):
为了总结、展示、反思和推广我省中小学课堂教学改革新进展和新成果,促进教师的专业发展,提升教学水平,推动新课程改革,黑龙江省教育学院数学教育研培部决定在全省开展高中初中小学数学优质课、优秀教学设计、优秀教学案例(教学叙事和教学反思)和优秀教学论文征集评选活动。现将有关具体事宜通知如下:
一、评选目的
开展全省基础教育新课程高中、初中、小学数学学科优质课和优秀教学设计征集评选活动的根本目的是促使我省广大中小学数学教师自觉投身于课堂教学的改革,以学生发展为本,着眼于学生的全面成长与和谐发展;引导广大教师立足教育教学实际问题的解决,以积极的态度改革课堂教学,提高教师实施新课程的能力和水平。
二、评选要求
参评优质课、优秀教学设计、优秀教学案例(教学叙事和教学反思)和优秀教学论文,必须以先进教育思想和新课程理念为指导,以教师教学实践为基础,关注教师发展与学生成长,注重教师在实施新课程中的反思与提升。
三、评选类型及上报材料
(一)优质课
上报的优质课应在2009年5月—2010年5月不同层面的数学学科教研活动中(包括县、乡、校本教研活动)或新课程培训中展示过,并取得良好效果。申报优质课需上报教学设计、教学纪实与点评及填写优质课推荐表。
①教学设计
依据课程改革的理念,贯穿相应学段课程标准的要求;阐释如何关注学生,开发和利用各种课程资源,设计教学的思路,促进学生主动地、个性化地学习; 阐释为提高小组合作学习的有效性、合理安排教学环节而采取的行之有效的方法和策略;阐释如何在课堂教学中实施发展性评价的策略和方式。
②教学纪实与点评
教学纪实应完整描述教学的全过程;教学点评应聚焦精彩教学片段和典型问题进行点评与剖析、思考。有间评,最后有总评。
③优质课推荐表(见附表)
推荐的优质课要认真填写《全省高中初中小学数学新课程优质课评选推荐表》,推荐表可以在黑龙江小学教研网下载。(网址:http://www.xiexiebang.com)
(二)优秀教学设计(含优秀课件设计)
教学设计依托日常课堂教学,体现教师教学研究及教学实施的水平和能力。重点聚焦转变学生学生方式、发挥评价促进发展的功能、设计互动、开放的充满生命力的课堂等理念。参加此项评选需上报教学设计一份。
教学设计的具体要求: ——三维教学目标的确立; ——教材与学情分析;
——教学具体过程(教学策略的预设和教学手段的选择及师生角色转变); ——课堂教学实施的基本策略; ——课程资源的挖掘和运用。
课件设计基于课堂教学,在坚持原创性的同时应富有创新性和实用性,充分体现教师运用多媒体技术辅助日常教学的能力与水平。
(三)优秀教学案例
优秀教学案例为结合教学实际,对教学实践情境中的事件、现象和问题进行的叙述和探讨。优秀教学案例包括教学叙事与教学反思。形式为一节课的纪实点评或一次活动、一件事、一个人的案例研究。
教学反思与教学叙事:以文本形式对学科教学、校本课程、课外活动中的一节课、一次活动的教育教学理念的理解与思考、教学策略的设计与实施、教学结果的自我评价等。参加此项评选需上报教学案例(教学叙事和教学反思)一份。
(四)教学论文
教学论文可以参照以下主题,也可以依据新课程的理念自己选择主题。1.数学课堂教学评价研究;
2.数学新课程教学模式的构建与运用; 3.数学学习方式的转变途径、方法策略研究; 4.数学教学组织策略与技术; 5.信息技术支持下的数学协同教学; 6.数学教学中的研究性学习; 7.数学教学中的德育研究; 8.数学教师专业发展。
参加此项评选需上报教学论文一份。
三、评选办法及时间
本次活动征集范围包括高中、初中、小学数学教师。
1.推荐:2010年5月—2010年6月末为评选推荐时间,各县区于2010年6月中旬将推荐材料及评审费上报各地市相关数学教研室。教学设计、教学案例及教学论文每人限报一篇,每位教师只能申报一节优质课或指导一节优质课。
2.初评:7月上旬地市组织初评,为保证质量各地市必须严格把关,认真审核。经初评后于2010年7月中旬将优质课、教学设计、教学案例及教学论文各种材料和评选登记表上报省教育学院数学教育研培部(登记表以学段为单位,用word文档、A4页面统一打印,并发往指定邮箱)。联系人:胡立娟 联系地址:黑龙江省教育学院数学教育研培部(哈市南岗区和兴路133号)
邮政编码:150080 E-mail:hulijuan128@sina.com 联系电话:0451—82456292 3.终评:7月末,省院数学教育研培部组织终评。
4.评选等级设置:优质课的评选按照50%比例分设一、二等奖,同时颁发相应的指导证书。优质课执教证书与优质课指导证书不能兼得;优秀教学设计、优秀教学案例(教学叙事与教学反思)按照50%比例分设一、二等奖;优秀教学论文按照30%和60%的比例分设一、二等奖,淘汰率为10%。
5.证书发放办法:优质课、优秀教学设计、优秀教学案例(教学叙事和教学反思)由黑龙江省教育学院教育教学研究中心和数学教育研培部颁发证书;优秀教学论文由黑龙江省教育学院数学教育研培部和黑龙江省教育学会高中、初中 或小学教学专业委员会颁发证书。
四、收费办法
优质课收评审费100元,指导教师证书、优秀教学设计、优秀课件设计、优秀教学案例(教学叙事和反思)、优秀教学论文收评审费50元。
五、评选活动注意事项
1.各市(地、企)、县(区)应以此次活动为契机,把此活动与新课程培训及各种形式的教研活动结合起来,让更多的教师参与到活动中来,用新课程的理念指导教学。各地要通过开展新课程培训、研讨等活动,发现、培养更多新教师,促进教师的专业成长。
2.全省将在各地市评选的基础上,发现和培养一批骨干教师。此项活动也将作为今后高中、初中、小学数学教学能手候选人的业绩考核主要项目之一。因此,各县区及地市要严把质量观,评选出各地高质量的优质课和优秀教学设计,推动新课程课堂教学的改革。
附件1:优质课推荐表
附件2:优质课、优秀教学设计、优秀课件设计、优秀教学案例和优秀教学论文推荐登记表
黑龙江省教育学院
2010年5月28日
第二篇:初中数学优秀教学设计
初中数学优秀教学设计
初中数学优秀教学设计1
一、教学目标:
1、知识目标:
①能准确理解绝对值的几何意义和代数意义。
②能准确熟练地求一个有理数的绝对值。
③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。
2、能力目标:
①初步培养学生观察、分析、归纳和概括的思维能力。
②初步培养学生由抽象到具体再到抽象的思维能力。
3、情感目标:
①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。
②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。
二、教学重点和难点
教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。
三、教学方法
启发引导式、讨论式和谈话法
四、教学过程
(一)复习提问
问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?
(二)新授
1、引入
结合教材P63图2-11和复习问题,讲解6与-6的绝对值的`意义。
2、数a的绝对值的意义
①几何意义
一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作|a|.
举例说明数a的绝对值的几何意义。(按教材P63的倒数第二段进行讲解。)
强调:表示0的点与原点的距离是0,所以|0|=0.
指出:表示“距离”的数是非负数,所以绝对值是一个非负数。
②代数意义
把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.
用字母a表示数,则绝对值的代数意义可以表示为:
指出:绝对值的代数定义可以作为求一个数的绝对值的方法。
3、例题精讲
例1.求8,-8的绝对值。
按教材方法讲解。
例2.计算:|2.5|+|-3|-|-3|.
解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3
例3.已知一个数的绝对值等于2,求这个数。
解:∵|2|=2,|-2|=2
∴这个数是2或-2.
五、巩固练习
练习一:教材P641、2,P66习题2.4A组1、2.
练习二:
1、绝对值小于4的整数是____.
2、绝对值最小的数是____.
已知|2x-1|+|y-2|=0,求代数式3x2y的值。
六、归纳小结
本节课从几何与代数两个方面说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数。绝对值的代数意义可以作为求一个数的绝对值的方法。
七、布置作业
教材P66习题2.4A组3、4、5.
初中数学优秀教学设计2
一、内容简介
本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。
关键信息:
1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。
2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。
二、学习者分析:
1、在学习本课之前应具备的基本知识和技能:
①同类项的定义。
②合并同类项法则
③多项式乘以多项式法则。
2、学习者对即将学习的内容已经具备的.水平:
在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。
三、教学/学习目标及其对应的课程标准:
(一)教学目标:
1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理
数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。
(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同
角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。
(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难
和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。
四、教育理念和教学方式:
1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。
教学是师生交往、积极互动、共同发展的过程。当学生迷路的时
候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。
2、采用“问题情景—探究交流—得出结论—强化训练”的模式
展开教学。
3、教学评价方式:
(1) 通过课堂观察,关注学生在观察、总结、训练等活动中的主
动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。
(2) 通过判断和举例,给学生更多机会,在自然放松的状态下,
揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。
(3) 通过课后访谈和作业分析,及时查漏补缺,确保达到预期的
教学效果。
五、教学媒体 :多媒体
六、教学和活动过程:
教学过程设计如下:
〈一〉、提出问题
[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析问题
1、[学生回答] 分组交流、讨论
(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,
(2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。
(1)原式的特点。
(2)结果的项数特点。
(3)三项系数的特点(特别是符号的特点)。
(4)三项与原多项式中两个单项式的关系。
2、[学生回答] 总结完全平方公式的语言描述:
两数和的平方,等于它们平方的和,加上它们乘积的两倍;
两数差的平方,等于它们平方的和,减去它们乘积的两倍。
3、[学生回答] 完全平方公式的数学表达式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、运用公式,解决问题
1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)
(m+n)2=____________, (m-n)2=_______________,
(-m+n)2=____________, (-m-n)2=______________,
(a+3)2=______________, (-c+5)2=______________,
(-7-a)2=______________, (0.5-a)2=______________.
2、判断:
( )① (a-2b)2= a2-2ab+b2
( )② (2m+n)2= 2m2+4mn+n2
( )③ (-n-3m)2= n2-6mn+9m2
( )④ (5a+0.2b)2= 25a2+5ab+0.4b2
( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2
( )⑥ (-a-2b)2=(a+2b)2
( )⑦ (2a-4b)2=(4a-2b)2
( )⑧ (-5m+n)2=(-n+5m)2
3、小试牛刀
① (x+y)2 =______________;② (-y-x)2 =_______________;
③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;
⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;
⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.
〈四〉、[学生小结]
你认为完全平方公式在应用过程中,需要注意那些问题?
(1) 公式右边共有3项。
(2) 两个平方项符号永远为正。
(3)中间项的符号由等号左边的两项符号是否相同决定。
(4)中间项是等号左边两项乘积的2倍。
〈五〉、冒险岛:
(1)(-3a+2b)2=________________________________
(2)(-7-2m) 2 =__________________________________
(3)(-0.5m+2n) 2=_______________________________
(4)(3/5a-1/2b) 2=________________________________
(5)(mn+3) 2=__________________________________
(6)(a2b-0.2) 2=_________________________________
(7)(2xy2-3x2y) 2=_______________________________
(8)(2n3-3m3) 2=________________________________
〈六〉、学生自我评价
[小结] 通过本节课的学习,你有什么收获和感悟?
本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。
〈七〉[作业] P34 随堂练习P36习题
七、课后反思
本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用。为完全平方公式第二节课的实际应用和提高应用做好充分的准备
初中数学优秀教学设计3
教学目的:
1、在解决实际问题的过程中,进一步巩固形如ax+b=c、ax-b=c的方程的解法,同时理解并掌握形如ax÷b=c的方程的解法,会列上述方程解决两步计算的实际问题。
2、提高分析数量关系的能力,培养学生思维的灵活性。
3、在积极参与数学活动的过程中,树立学好数学的信心。
教学重点、难点:
引导学生独立分析问题,找出题目中的等量关系。
教学对策:
在积极参与数学活动的过程中,树立学好数学的信心。
教学准备:
教学光盘
教学过程:
一、复习准备
1、解方程(练习一第6题的第1、3小题)
4x+12=502.3x-1.02=0.36
学生独立完成,再指名学生板演并讲评,集体订正。
二、尝试练习
师:刚才的两道题同学们完成得很好,这道题你们还能自己解决吗?试试看。
出示:30x÷2=360
学生独立尝试完成,全班交流。
指名学生说一说,解这个方程是第一步需要做什么?这样做依据了等式的什么性质?
三、巩固练习
1、出示练习一第7题。
(1)分析数量关系
提问:谁来说说三角形的面积公式是怎样的?根据学生回答板书:S=ah÷2。联系这个公式你能找出数量之间的相等关系吗?(生独立思考后在小组内交流)指名口答。你觉得在这些数量关系中,哪一个等量关系适合列方程?根据这个数量关系我们可以列出怎样的方程?板书:1.3x÷2=0.39。
第⑵题生独立思考并列出方程,在小组内说说自己的思考过程后全班交流。板书:3x+18=19.8。
(2)学生独立计算,并检验答案是否正确,全班核对。
小结:在一个实际问题中,可能会有几个不同的等量关系,我们应该选择合适的等量关系来列方程。
2、练习一第8题。
学生读题后可用自己喜欢的方法将与杨树和松树有关的信息分别列表整理(如列表,作标记等)
学生独立解决后再说说数量之间有怎样的数量关系,是根据什么样的数量关系列出的方程,最后核对解方程的过程。(提示学生可从得数的合理性来初步检验)
3、练习一第9题。
学生独立思考,指名分析数量关系,教师结合学生回答画出线段图帮助学生理解题意。
学生独立解方程再集体订正。
4、练习一第10题。
教师简单介绍相关天文知识后,学生独立解答,然后及时交流,教师及时讲评。
5、练习一第11题。
学生读题后教师提问:在本题中出现了两个问题,那么我们在写设句时要注意什么?(提示学生用不同的字母分别表示小亮出生时的身高和体重)
学生独立解决,集体核对。结合学生板演情况进行讲评,进一步规范学生的.书写格式。
6、练习一第12题。
提问:你能看懂这张发票上所提供的信息吗?数量间有怎样的等量关系呢
学生独立列方程解答,同桌同学互相检查,再集体订正。
7、练习一第13题。
学生阅读第13题,理解后独立解决问题,再交流。
教师再补充几题,如:98.6、212华氏度相当于多少摄氏度等。
四、全课小结
说一说你这一节课的学习收获及还有什么问题。
五、布置作业
完成配套习题。
教后反思:
本课时是一节练习课,练习目标有两个,一是通过练习让学生掌握形如ax+b=c和ax-b=c的方程的解法,会列方程解决两步计算的实际问题;二是借助一些对比练习,让学生感受方程的思想方法和价值。课前,我学习了高教导的“课前思考”,在今天的练习课中补充了两组题目,让学生进行对比练习。题目是这样的:
(1)果园里有桃树60棵,比梨树的3倍少6棵,梨树有多少棵?
(2)果园里有梨树60棵,比桃树的3倍少6棵,桃树有多少棵?课堂上,我先请学生分析每一题的数量关系,然后选择合适的方法来解答。学生们经过分析、比较,发现类似第1小题这样的题目适合用方程解,类似第2小题这样的题目适合用算术方法解。另一组补充的题目是:
(1)王老师买了3个足球,付了200元,找回8元。每个足球多少元?
(2)水果店运进5箱苹果,卖出56千克,还剩34千克。每箱苹果多少千克?对于这两题,我请学生认真分析数量关系后用自己喜欢的方法来解答,而且如果是列方程的话,试着列出不同的方程;如果是用算术方法解的可以列出不同的算式。课堂上学生思维活跃,在正确分析数量关系后列出了不同的方程或算式。
通过本节练习课,我想教师在教学中要更多地指导学生关注怎样从一个个具体的问题情境中分析数量之间的相等关系,关注怎样根据数量关系列出方程,从而在经历实际问题数学化的过程中,获得对用方程解决实际问题策略的体验,进一步丰富学生解决问题的策略,加深学生对方程作为一种重要的数学思想方法的理解。
初中数学优秀教学设计4
一、教学目标
1、知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
二、教学重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的`理解。
三、教学过程
1、创设问题情景,激发学生的求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?
学生:26米。
教师:能写出算式吗?学生:……
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题
2、小组探索、归纳法则
(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
① 2 ×3
2看作向东运动2米,×3看作向原方向运动3次。
结果:向 运动 米
2 ×3=
② -2 ×3
-2看作向西运动2米,×3看作向原方向运动3次。
结果:向 运动 米
-2 ×3=
③ 2 ×(-3)
2看作向东运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
2 ×(-3)=
④ (-2) ×(-3)
-2看作向西运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
(-2) ×(-3)=
(2)学生归纳法则
①符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)=( ) 同号得
(-)×(+)=( ) 异号得
(+)×(-)=( ) 异号得
(-)×(-)=( ) 同号得
②积的绝对值等于 。
③任何数与零相乘,积仍为 。
(3)师生共同用文字叙述有理数乘法法则。
3、运用法则计算,巩固法则。
(1)教师按课本P75 例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为 。
(3)学生做练习,教师评析。
(4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。
初中数学优秀教学设计5
一、教学目标:
1.理解二元一次方程及二元一次方程的解的概念;
2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;
3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;
4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育.
二、教学重点、难点:
重点:二元一次方程的意义及二元一次方程的解的概念.
难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程.
三、教学方法与教学手段:
通过与一元一次方程的比较,加强学生的类比的思想方法; 通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点.
四、教学过程:
1.情景导入:
新闻链接:桐乡70岁以上老人可领取生活补助,
得到方程:80a+150b=902 880.
2.新课教学:
引导学生观察方程80a+150b=902 880与一元一次方程有异同?
得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程.
做一做:
(1)根据题意列出方程:
①小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价.设苹果的单价x元/kg , 梨的单价y元/kg ;
②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程: .
(2)课本P80练习2. 判定哪些式子是二元一次方程方程.
合作学习:
活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动.
问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人.
团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行? 为什么? 把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等? 由学生检验得出代入方程后,能使方程两边相等. 得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解.
并提出注意二元一次方程解的书写方法.
3.合作学习:
给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值; 接下来男女同学互换.(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法.提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?
出示例题:已知二元一次方程 x+2y=8.
(1)用关于y的代数式表示x;
(2)用关于x的代数式表示y;
(3)求当x= 2,0,-3时,对应的.y的值,并写出方程x+2y=8的三个解.
(当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)
4.课堂练习:
(1)已知:5xm-2yn=4是二元一次方程,则m+n=;
(2)二元一次方程2x-y=3中,方程可变形为y= 当x=2时,y= ;
5.你能解决吗?
小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角.小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案.
6.课堂小结:
(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);
(2)二元一次方程解的不定性和相关性;
(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.
7.布置作业:(1)教材P82; (2)作业本.
教学设计意图:
依照课程标准,通过分析教材中教学情境设计和例习题安排的意图,在此基础上依据学生实际,制订了本堂课的教学目标,教学重点和难点,课堂教学的设计始终围绕这教学重点和难点展开.
在充分理解教材编写意图、教学要求和教学理念的基础上,根据学生实际,从学生的已有经验出发,创设了教学情境:关心老人,突出情感主线,并贯穿整个教学. 并对教学
内容进行适当的重组、补充和加工等,创造性地使用了教材. 所选择的例习题都体现实际问题数学化的思想,让学生感受到数学的魅力. 这两个方面的设计贯穿整堂课,把知识内容和情感体验自然连贯起来.
其次,在教学过程设计中,体现了让学生展示解决问题的思维过程,通过几个合作学习,激发学生主动去接触问题,从而达到解决问题的目的. 重视学生学习过程中的自我评价和生生间的相互评价,关注学生对解题思路回顾能力的培养.
二元一次方程概念的教学中,通过与一元一次方程的类比的方法,使得学生加深印象. 在突破难点的设计上,通过游戏的形式激发学生的学习兴趣,并在选题时,通过降低例题的难度,使学生迅速掌握用关于一个未知数的代数式表示另一个字母的方法,体会运用这种方法的可使求二元一次方程求解更简便.
初中数学优秀教学设计6
一、学情分析
学生通过上节课的学习,已经掌握了如何用没有刻度的直尺和圆规作一条线段等于已知线段。同时在学习中学生已经初步理解了作图的步骤,具备了基本的作图能力,并能简单的表达作图过程,为本节课的学习奠定了良好的知识基础。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学目标分析
教科书基于学生在上节课学习了如何作一条线段等于已知线段,并积累了一定的活动经验,提出本节课的主要教学任务是:会用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。为此,本节课的教学目标是:
1、能按照作图语言来完成作图动作,能用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。
2、能利用尺规作角的和、差、倍。
3、能够通过尺规设计并绘制简单的.图案。
4、在尺规作图过程当中,积累数学活动经验,培养动手能力和逻辑分析能力。
三、教学设计分析
1、回顾与思考
活动内容:
(1)怎样利用没有刻度的直尺和圆规作一条线段等于已知线段?
(2)练习:已知线段a,b,c,作一条线段m,使得m=a+b—c
活动目的:
通过回顾上节课学习的用尺规作线段,既达到了复习巩固,反馈落实的目的,同时熟练尺规的使用,积累活动经验,也为后面学习用尺规作角起到了铺垫的作用。
2、情境引入,探索发现
活动内容:如图2
初中数学优秀教学设计7
一、教材分析
本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。
二、设计思想
本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。
八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。
三、教学目标:
(一)知识技能目标:
1、理解同类项的含义,并能辨别同类项。
2、掌握合并同类项的方法,熟练的合并同类项。
3、掌握整式加减运算的方法,熟练进行运算。
(二)过程方法目标:
1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。
2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。
3、通过研究引例、探究例1的`活动,发展学生的形象思维,初步培养学生的符号感。
(三)情感价值目标:
1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。
2、通过学习活动培养学生科学、严谨的学习态度。
四、教学重、难点:
合并同类项
五、教学关键:
同类项的概念
六、教学准备:
教师:
1、筛选数学题目,精心设置问题情境。
2、制作大小不等的两个长方体纸盒实物模型,并能展开。
3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)
学生:
1、复习有关单项式的概念、有理数四则运算及去括号的法则)
2、每小组制作大小不等的两个长方体纸盒模型。
初中数学优秀教学设计8
课型:新授课
学习目标:
1.能根据具体问题中的数量关系列出一元二次方程并利用它解决具体问题.
2.学会运用数学知识分析解决实际问题,体会数学的价值。
重点:列一元二次方程解应用题
难点:学会分析问题中的等量关系
一、知识回顾
列方程解应用题的一般步骤是①②③④⑤⑥
二、自学教材、合作探究
1、自学教材45页,学习分析“探究一”中的数量关系
设每轮传染中平均一个人传染了x个人。开始有一人患了流感,第一轮的传染源就是这个人,他传染了x个人,那么,用代数式表示,第一轮后共有( )人患了流感;第二轮传染中,这些人中的每个人又传染了x个人,用代数式表示,第二轮后共有( )人患了流感。则可列方程为:
2、解这个方程,得
3、想一想:三轮传染后有多少人患流感?四轮呢?
三、检查自学效果
1.(xxxx年毕节地区)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的'人数为( )
A.8人B.9人C.10人D.11人
2.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件;全组共互赠了182件.如果全组有x名学生,则根据题意列出的方程是( )
A. B. C. D.
四、指导学生应用
某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(xxxx广东中考9分)
解:设每轮感染中平均每一台电脑会感染台电脑,1分
4分
解之得6分
8分
答:每轮平均每一台电脑会感染台电脑,3轮感染后,被感染的电脑超过700台。
五、巩固训练:
1.一个多边形的对角线有9条,则这个多边形的边数是( ).
A.6 B.7 C.8 D.9
2.元旦期间,一个小组有若干人,新年互送贺卡一张,已知全组共送贺卡132张,则这个小组共有( )人
A.11 B.12 C.13 D.14
3.九年级(3)班文学小组在举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组共互赠了240本图书,如果设全组共有x名同学,依题意,可列出的方程是( )
A.x(x+1)=240 B.x(x-1)=240
C.2x(x+1)=240 D.x(x+1)=240
4.参加中秋晚会的每两个人都握了一次手,所有人共握手10次,则有( )人参加聚会。
5.学校组织了一次篮球单循环比赛,共进行了15场比赛,那么有个球队参加了这次比赛。
6.甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?
反思:2题和4题列方程时为何不一样呢?
六、归纳小结:
1.本节课我们学习了列一元一次方程解应用题,要注意解题步骤,特别地,要检验解的结果是否正确与符合题意,并注意题型的积累。
2.(方法归纳)解应用题地步骤是:审、设、列、解、检、答,关键是寻找等量关系,可以采用列式法,线段图示法,列表法等来帮助寻找,并注重检验。
七、效果测评:
1.解下列方程。(1)+10x+21=0(2)-x=1
2.两个相邻的偶数的积是240,求这两个偶数。
3.参加一次足球联赛的每两个队之间都进行两场比赛,共要比赛90场,共有多少个队参加比赛?
初中数学优秀教学设计9
一、教学目标
1、了解二次根式的意义;
2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;
3、掌握二次根式的性质和,并能灵活应用;
4、通过二次根式的计算培养学生的逻辑思维能力;
5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。
二、教学重点和难点
重点:
(1)二次根的意义;
(2)二次根式中字母的`取值范围。
难点:确定二次根式中字母的取值范围。
三、教学方法
启发式、讲练结合。
四、教学过程
(一)复习提问
1、什么叫平方根、算术平方根?
2、说出下列各式的意义,并计算
(二)引入新课
新课:二次根式
定义:式子叫做二次根式。
对于请同学们讨论论应注意的问题,引导学生总结:
(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?
若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。
(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次
根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。
例1当a为实数时,下列各式中哪些是二次根式?
例2 x是怎样的实数时,式子在实数范围有意义?
解:略。
说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。
例3当字母取何值时,下列各式为二次根式:
分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。
解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。
(2)—3x≥0,x≤0,即x≤0时,是二次根式。
(3),且x≠0,∴x>0,当x>0时,是二次根式。
(4),即,故x—2≥0且x—2≠0,∴x>2。当x>2时,是二次根式。
例4下列各式是二次根式,求式子中的字母所满足的条件:
分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
(3)由于x取任何实数时都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。
(4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。
第三篇:小学数学教学优秀案例集锦
《平均数》教学案例
师:你们喜欢什么球类运动? 生1:我喜欢足球。生2:篮球。生3:乒乓球。
师:由于受到场地的限制,我们只能在这里进行一次拍
球比赛,你们看怎么样? 生:好。
师:那我们以这里为界,一分为二,这边算一队,那边算一队。第一件事,先给自己的队起一个自己喜欢的名字,然后派一个代表把名字写在黑板上。第二件事,咱们得商量商量,这么多小朋友参加比赛怎么个比法,你们得出点儿主意。听懂了吗?(学生七嘴八舌商量开了,一分钟后,一个同学在黑板上写了“胜利队”。另一对也写了“凯旋队”)
师:行行行。队名产生了,那咱们怎么比呢? 生:选出每个队最厉害的一位参加比赛。
师:那你们选吧,再挑一个裁判,每队再请一个小朋友 记录。
预备,开始!20秒后,老师喊停,然后统计:“凯旋队”: 30,“胜利队”:29。
下面我宣布,本次比赛胜利者为“凯旋队”。“胜利队”服 不服气? “胜利队”:不服气!师:为什么?
生:就一个人能代表我们吗?应该每队再选几个。师:我建议每队再选三个人,好吗?
(每队三人继续比赛,老师把每个人的拍球数写在黑板上。)师:下面用最快的速度算出“胜利队”和“凯旋队”的总数 各是多少,报数。生;118,124.师:现在胜利者是“凯旋队”,可以吗? 生:不可以。
(这时,老师走到胜利队同学面前。)
师:别急,虽然现在咱们落后,但老师决定加入“胜利 队”,欢迎吗? 胜利队:欢迎!
师:现在把老师拍的22个加进来,算一算一共多少个? 生;140个。
师;下面我宣布,今天的胜利者是“胜利队”。生:不同意!师:为什么?
生;胜利队有5次拍球机会,我们只有4次,不公平。师;哦,在人数不等的情况下,我们还用总数这个统计量来比较,显然不公平,那么,在人数不等的情况下,我们不能比出两个队总体的拍球水平呢?(学生开始思考,相互交流。)
(终于有一个声音出现了:在人数不等的情况下,可以先求平均数。)
生;就是用拍球的总数,除以拍球的人数。案例分析:
本节课是学生理论与实践相结合的一节课,是把数学知识与生活紧密联系起来,让学生去感受数学、学习数学、应用数学的一课。在课堂上,学生兴趣浓厚,学得积极主动。
反思整个教学过程,本人有以下几点认识:
一、数学教学要联系生活,要充分调动学生的生活经验。众所周知,现实世界是数学的丰富源泉,小学生学习的数学应是生活中的数学,是学生“自己的数学”。联系了生活实际,学生平时喜欢的体育活动为例子,进行分析解决有关数学问题,让学生从课本走进生活,会使他们真正体验到数学的应用和价值,体验到数学学习的乐趣和成就感。本案例中,让学生自己提出求平均数的问题,并引导他们从中发现问题,产生提出问题的需求和解决问题的欲望。这些都是学生生活里有的,学生熟悉的事物,学生讨论、争论起来就更有兴趣。
二、是在学习活动中,让学生去经历去体验数学知识的形成过程。学习活动中,学生更愿意自己去经历,去实践。学生或许相信你告诉他的,但他更愿意相信自己看到的、经历过的事,这就是一种体验。让学生经历学习的体验非常重要,因为它直接影响到学生对知识的主动建构的质量。比如这节课,重要的不是平均数的含义和作为代数公式的运算程序,而是它所包含的统计过程。让学生经历了统计的过程,而不是一来就出示一组数据,让学生求平均数。在上课时创设情景,让学生不知不觉地进入课堂,然后通过解决 “在人数不等的情况下,能不能比出两个队的排球水平呢”让学生去去发现,在比较时学生认识到必须求出平均数才能比较出谁最好,从而引出怎样求平均数
小学数学教学案例
《平均数》教学案例
南阳市宛城区黄台岗镇王营小学 陈晓丽
第四篇:小学数学教学优秀案例范文
数与代数的学习不仅要使学生掌握必要的知识和技能,更重要的是要使学生在学习过程中体验、感受、理解这些知识的来源、现实背景和本质,形成数感和符号感,认识数学与生活的密切联系,了解数学的价值,提高提出问题、分析问题和解决问题的能力。通过学习小学数学-----“数与代数”教学案例与评析,我认识到:这些新的教学模式给学生更加自由的空间,体现了以学生为本的理念,老师要自觉地把新的教学模式引入课堂,改变课堂的面貌,使课堂气氛活跃;
为了打造有效课堂,提高课堂教学实效性,我校结合学校实际,开展了“快乐情境教学、自主探索学习”的课堂教学模式改革。此次教学模式改革主旨是:创设快乐情境,让学生在情境中“自主学习—合作交流—获得新知—运用实践”的教学模式,进一步打造学生自主学习的高效课堂。现结合几天来的学习,浅谈一下我们是如何开展有效教学的。
一、联系生活,激发符号意识 , 现实生活是数学的源泉。在现实生活中,各种各样的符号处处可见。大街、小巷、剧院、会场、家庭、学校、医院„„只要学生生活过的地方,都能随处见到各式各样的符号。招牌上的“m”,表示麦当劳;;某场所有标志“P”,表示可以停车场等等。从某种意义上说,我们生活在一个“符号化”的世界。教学中,教师可以充分激发符号意识,利用学生生活中潜藏的“符号意识”,给学生提供机会,让学生经历“从具体事物→学生个性化的符号表示→学会数学地表示”这一逐步符号化的过程。
在日常生活中,学生已经初步具有了符号意识,感受到生活中的符号所体现出简约的特质。这种符号意识对数学符号感的形成起着积极的促进作用。
二、实践体验,发展符号意识 解决数学符号的抽象性和小学生思维的形象性之间的矛盾,就要为学生多创设一些应用数学知识的情境,以帮助学生体验数学符号的价值。
比如:教学“四年级加法运算定律”时,教师出示教材情景图,学生思考后列出算式60+54=114(千米),教师引导学生发现60+54和54+60可以用等号连接。
师:你能再举几个这样的例子吗?
生:120+48=48+120
生:26+91=91+26
„„
师:你发现了什么?
生:两个加数交换位置,和不变。
师:对!两个加数交换位置,和不变,这就是今天学习的加法交换律。同学们,能用自己喜欢的方式表示加法交换律吗?
生1:我这样表示,甲数+乙数=乙数+甲数。
生2:我用图形表示△+○=○+△。
生3:我也用图形表示,☆+□=□+☆。
生4:我用字母表示,a+b=b+a。
„„
这样的教学,使学生经历从具体到抽象的认知过程,逐步体会字母的现实意义,感受数学符号的简洁美。学生先是有了初步的感知、体验后,教师引导学生先用自己喜欢的方式来表示加法交换律,再统一成通用的字母符号,不仅体现了由具体到抽象的过程,而且让学生领略了符号的通用性,进一步发展了学生的符号意识
三、综合运用,巩固符号意识
数学符号是在发展中不断完善的,除了既有的符号系统外,还有一类符号也不容忽视,那就是个人对符号的创造。学生在体验、分析、理解等教学活动基础上,根据自己的感悟按需要创新出的符号,是学生对概念、定理等数学知识更深层次理解后的成果,是难能可贵的。在综合应用自己的符号时,学生最能体会符号对自己思维的帮助,也最能积累使用符号的经验,形成符号意识。比如,教学三年级上册“找规律”时,课件出示:路边的盆花是按照蓝色、红色、蓝色、红色„„这样的规律排列的。提问:我们能不能想办法把这些盆花的规律表示出来呢?由于盆花是较难画出来的,这就容易引发学生利用已有的符号经验,自主思考。结果同学们用了不同的符号表示了盆花的摆放规律:●★●★●★„„;□■□■□■„„;△□△□△□„„;有的学生用数字表示:121212„„;010101„„;有的学生用字母ABABAB„„这些富有个性的符号正是已有的符号意识在起作用,学生惊喜地发现自己也是一个研究者、探索者和发现者!进而在此基础上比较,优化解决问题的策略,同时也巩固了学生的符号意识。
教学活动中,只要我们能给学生提供机会激发符号意识,不断实践体验,学生的符号意识就能真正得到培养和发展。
第五篇:初中数学优秀教学案例相反数
初中数学优秀教学案例:《相反数》课堂教学实录及反思 [复制链接]
──《相反数》课堂教学实录及反思 课堂实录:
一、发散思维,引出课题
师:请同学们自己找出一条理由,将-4,+3,+4,-3分成两组.
生1:我将-
4、-3分在一组,将+
4、+3分为另一组,就是将负数分为一组,正数分为另一组.
师:简单地说,就是将符号相同的放在一组.
生2:我将-4,+4分在一组,将-3,+3分为另一组,就是把数是否相同作为分组的依据. 师:你的意思是-4与+4相同,所以把它们放在一组?
生2:不是那个意思,我指的是-4与+4中都有4这个数,也就是符号后面的数相同,所以把它们放在一组.
师:什么数相同一定要说明,否则容易引起误会.(板书:符号后面的数)
生3:我把-4与+3分在一组,把+4与-3分在另一组.理由是两个数的符号不同,符号后面的数也不相同.
二、比较概括,提炼定义
师:一般地,一个数由两部分构成,即符号和刚才提到的“符号后面的数”,考虑这两个方面,大家也就采用了三种不同的分法.两个方面都不相同是一种分法,把“符号”是否相同作为分组的依据,得到的是已经学过的一组正数和一组负数;把“符号后面的数”是否相同作为分组的依据,得到了-4与+
4、+3与-3这样成对的数,那么它们又应该叫什么数呢? 生4:相反数.
师:你是怎样想到把它们叫相反数的呢? 生4:看书知道的.(众笑)
师:你先预习了今天的内容,知道了像+4与-4这样一对数是相反数(板书课题),不知是否想过,为什么叫相反数而不叫别的数呢? 生4:没有想过.
师:现在请大家思考一下.
生5:一个正数,一个负数,表示的意义相反,所以叫相反数.
师:说出了最重要原因.不过照这种说法,-4与+3也是相反数,是吗? 生(众):不是,它们符号后面的数不同.
师:分析的有道理.现在请大家用尽可能简单的一句话说明什么样的两个数叫相反数. 生6:符号不同、符号后面的数相同的两个数叫相反数.(板书)生7:一个数前面添上不同的符号后得到的两个数叫相反数.(板书)师:请你举例说明.
生7:如5前面添上“+”“-”得到的+5和-5是相反数.
师:说的都很好,用简洁的语言把数的两个部分的关系都讲清楚了,课本上说“只有符号不同的两个数叫做互为相反数”(板书),这与刚才两个同学的说法一致吗?
生(众):是一致的.“只有符号不同”说明其它的都相同,包含了“符号后面的数相同”的意思. 师:很好,挖掘出了言外之义.关于什么叫相反数,谁还有新的说法? 生8:只有符号后面的数相同的两个数叫做互为相反数.(板书)
师:反应很快,“只有符号后面的数相同”的言外之意是“符号不同”,与课本上的说法是一致的.由此可见,同样的意思,可以用不同的语言来表达,在数学学习中,对此我们应该多加注意.需要说明的是,课本用“只有符号不同”包含“符号后面的数相同”的意思,好处是使相反数的概念更精炼,同时也避免了使用“符号后面的数”这一说法容易引起的误会,关于这一点,以后我们还将看到.
关于相反数,谁有什么疑问,请提出来. 生9:为什么说“互为相反数”?
师:“互”就是“相互”的意思,如+4是-4的相反数,也可以说-4是+4的相反数,即+4与-4互为相反数.请大家一起把“+3与-3互为相反数”的意思说具体一点. 生(众):+3是-3的相反数,-3是+3的相反数. 师:谁还有问题吗?
生10:我的问题是零有没有相反数? 师:你怎么想起了这样一个问题呢?
生10:前面提到的相反数总是一正一负,我就想到是否遗漏了零.
师:老师真为你高兴,你想到了一个不能遗漏的重要问题.关于零有没有相反数,请大家不要急于看课本,先思考一会,然后相互交流各自的看法. 生:(思考,讨论).
师:先请一个认为零没有相反数的同学说明理由.
生11:因为相反数总是一正一负符号不同,而零既不是正数也不是负数,所以零没有相反数. 师:有道理.那么认为零有相反数的理由又是什么呢?
生12:0也可以写成+0和-0.比如说某人做生意不赚也不亏,也可以说赚了0元,或说亏了0元,即可记作+0元和-0元,所以+0=-0=0,+0的相反数-0,0的相反数就是0. 师:也有道理.从表面上看,0与0互为相反数好象不符合符号不同这个要求,但是象生12举的例子中提到+0和-0,并且+0=-0=0,也是可以的,所以,关于特殊的零,课本上特别指出(板书):0的相反数是0.
口答练习:说出下列各数的相反数:-7,-0.5,0,6,+1.5 例 请在数轴上标出表示+4的相反数的点.(老师有意隐藏了三角板、圆规,板演学生凭眼估计画出了表示-4的点)师:请大家判断,表示-4的点位置是否正确? 生(众):好象偏右了一点,应该还在左边一些. 师:正确的点应该在什么样的位置?
生13:-4到原点的距离与+4到原点的距离相等. 师:还补充几个字就好了.
生14:表示-4的点到原点的距离与表示+4的点到原点的距离相等.
师:非常准确.不是数到原点的距离,而是点到点的距离,表示数的点到原点的距离.谁到黑板上来检验表示-4的点的位置是否正确?
(一名学生利用三角板测量出了表示-4的点的正确位置,老师用圆规又检验了一次)练习:把-6,5,0,-2.5和它们的相反数都表示在数轴上.
师:练习中,我们发现:除零外,在数轴上表示相反数的点分别位于原点的左右两边.为什么除零外表示相反数的点一定会分别位于原点的左右两边呢?
生15:因为除零外,两个相反数总是一负一正,所以表示相反数的点分别位于原点的左右两边. 师:分析得对.谁能用相反数的概念中的某些词语来说明这个问题? 生16:就是“符号不同”.
师:很好,因为“符号不同”,所以表示相反数的点分别位于原点的左右两边.当我们用眼观察图形,看出了相反数的一个特点后,一定要进一步开动大脑思考为什么会有这样的特点,而往往从概念中就能找到原因.从数轴上看,相反数的另外一个特点是:表示每一对相反数的点到原点的距离相等(板书).为什么表示相反数的两点到原点的距离相等?
生17:相反数的概念中“只有符号不同”包含着其它的相同,就是“符号后面的数相同”,在数轴上就是距离相等.
师:很好,很快就掌握了老师提到的分析问题的方法.关于相反数,我们是从“符号”和“符号后面的数”两个方面去研究的,这两方面的特点既包含在相反数的概念中,又体现在数轴上,将二者结合起来考虑将有助于以后的数学学习.
师:在前面的分析中,我们总是将特殊的的零排除在外.请大家回顾一下,到现在为止,关于零的特殊性,表现在哪些方面?
生众:零既不是正数,也不是负数;零的相反数还是零;零不能作除数. 师:前面提到的三个方面中,有哪两个方面是联系在一起的?
生18:前面两个方面是联系在一起的.因为零既不是正数,也不是负数,所以零的相反数还是零.
师:说的好,希望大家以后能向今天一样开动脑筋思考问题.请看练习. 练习及解答(略)
教学反思:本节课是一节概念及概念应用课.教科书以现两个思考形式呈现本节的内容. 为了顺利完成教学任务,我先以发散思维的形式,让学生感受数字的变化,一下子把学生的注意力全集中在课堂上.带有激励性的语言,使数学积极参与到对问题的思考之中,符合七年级学生的年龄特点,带着好奇心和求知欲,学生很快进入学习状态.
在对相反数概念的提炼及应用的过程中,学生通过探究、合作、交流,以及师生有目的的对话,使学生对相反数有了更深的理解,培养了学生良好的思维品质,并用数学知识进行了检验,学生参与积极,思维活跃,兴趣高.通过对0有没有相反思的讨论,我又设计了一个开放问题,让学生自己解释有没有的原因,它具有思维的跨度,目的是让学生经历从发现、推理、验证到判断这一重要数学探究过程,同时这一问题也是相反数概念的外延,达到巩固新知的目的.
本节课我感到不足的地方是,学生参与面不够大,部分学生在活动中没有积极思考,不够大胆主动地发表自己的观点,担心自己说错了会让老师和同学们笑自己. 通过本节课我得到这样一个启示:
(一)导入新课要结合实例.良好的开端是成功的一半,引入阶段正处在一堂课的起始阶段,处理的是否恰当,直接影响到学生学习的情绪,以及思维的活跃程度.结合学生身边的实例导入新课,不但可提高学生的学习兴趣,激发求知的内驱力,而且可使所要学习的数学问题具体化,形象化.
(二)加深理解新知要联系生活实际.在新知的教学时,如果能结合学生的日常生活,创设学生熟悉与感兴趣的具体生活活动情况,就能引导学生通过联想、类比,沟通从具体的感性实践到抽象概括的道路,加深对新知的理解.
(三)巩固新知要在生活实践应用中.数学来源于实践,又服务于实践,为此在数学教学中,我们要创设运用数学知识的条件给学生以实际活动的机会,使学生在实践活动中加深对新学知识的巩固.
今后我要善于从学生已有的生活经验出发,创设生活中生动、有趣的的情境,强化感性认识,引导学生在情境中观察、操作、交流,使学生体验数学与日常生活的密切联系,感受数学在生活中的作用;加深对数学的理解,并运用数学知识解决现实问题.同时,鼓励学生多角度思考问题,优化解题策略.