案例分析_现实数学观与生活数学观_电大_小学数学教学研究

时间:2019-05-12 18:07:44下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《案例分析_现实数学观与生活数学观_电大_小学数学教学研究》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《案例分析_现实数学观与生活数学观_电大_小学数学教学研究》。

第一篇:案例分析_现实数学观与生活数学观_电大_小学数学教学研究

案例分析:现实数学观与生活数学观

生活数学观,书上的概念如是说:“作为生活的数学,往往是一种经验符号的数学,更多运用的是语言和直觉。作为生活的数学,就是指存在于生活实践中的那些非形式的数学,是人们在社会生活的实践活动中获得交流和理解的数学。”可是,我更多地将它理解为孩子们原本已获取的与数学相关的生活经验,这正是将儿童日常的生活或经验与书本上的数学结合起来的最好的桥梁,也正是张兴华老师等数学特级教师理论中所提倡的“关注学生对相关知识的掌握程度,对已有的经验进行迁移。”这里的“迁移”的“已有的经验”,就是将孩子们已经获得的生活数学。“迁移”,就是对生活数学进行理论化和系统化,使之成为书本上数学知识。

比如,在这个案例中,孩子们虽然没有学过平均数,但是依照他们原有的生活经验,他们同样可以将积木用“发牌”的方式平均分配好(也可以每一次先等量地分发给每一个人,然后再这样轮发);同样可以将长短不一的线先接起来然后平均分成一样长的几份„„这些,都是孩子们生活中积累起来的经验,是生活数学。儿童更多的是利用生活中直观材料的操作来解决问题,只有当任务较大,要分的物品或者对象数额比较大时,才开始尝试获得另一种方法,最终形成了用“除法”的概念和算法。

现实数学观,书上的概念如是说:“现实数学是依靠‘局部组织’来支撑的,它往往是依赖于人的经验的,是存在于我们的现实之中的。对于大多数的人来说,是他们加强与外部世界进行沟通和交互,从而获得高质量生存并推进社会进步的一些必要的知识,因为每一个人的经历不同,他们对现实数学的理解也会有差异。”

比如,一年级学生计算26+9,有的学生说,“把26看成20和6,先用6+9等于15,再用15+20=35,有的学生说,“把9看成4和5,先用26+4等于30,再用30+5等于35。有的学生说,“把26看成25和1,先用1+9等于10,再用10+25等于35„„同样的题目,每个人的理解都会有所不同。当然,不可避免,有时还会出现自己的理解有偏差甚至错误,但这种从自己经验出发的数学,就是现实数学。

在小学数学学习的组织过程中,如果想要体现出现实数学观与生活数学观这样的学科性质特征,我们就一定要正视学生作为主体的重要性和必要性,一切从学生的实际出发,让我们的数学课与学生的生活实际接轨,让我们的数学课考虑儿童需要直观操作的心理特征,让我们的数学课考虑到每个学生经验的不同进行有针对性的现实引导。具体来说,可以这样操作:

首先,创设源于生活的情境,回归儿童生活。我们既然已经关注到,儿童诗从自己的生活实践开始认识数学的,我们就应当让儿童的数学学习真正地回归到儿童的生活中去。创设情境时首先考虑,儿童经历了什么?对什么感兴趣?在生活中发现了什么?将学习纳入他们的生活背景之中,再让他们自己去寻找、发现、探究、认识和掌握数学。比如,在《解决问题的策略——替换》一课中,可以先播放《曹冲称象》的故事,让学生说说曹冲是将大象替换成了什么解决了难题?这样替换有什么好处?这样,从学生喜闻乐见的故事中迅速唤起了学生经验中关于替换的已有认知。

其次,关注个体认识差异,正确引导现实数学。小学数学课程的一个重要特点就是沟通抽象的数学与现实实践的联系,强化数学的产生与运用真正回归儿童的生活现实。

再次,提供可供操作的素材,经历完整思考过程。儿童在小学数学学习中,主要是通过直观方式获得数学的,因此,不应简单地将这个直观过程理解为就是教师的呈现和演示过程,在大多数的情况下,应将这个过程理解为就是学生自己的尝试操作的探究过程。

这两点我想用一个例子来说明——在教学《搭配规律》时,“商店里有两种帽子和三个不同的木偶娃娃,小明想买一个木偶娃娃配一顶帽子,有多少种不同的搭配方法?”学生依据实际经验利用实物进行搭配,从而发现有序搭配是不重复也不遗漏的关键,可以用第一顶帽子配三种木偶娃娃,有三种搭配方法;再用第二顶帽子配三种木偶娃娃,又有三种搭配方法。还有的学生先选木偶,用第一种木偶配两种帽子,有两种搭配方法;再用第二种木偶,第三种木偶„„这样的过程,就是充分考虑了小学生的特点,让学生充分地操作。

然而,教师还可以引导学生用符号、数字、字母代替木偶和帽子,进行简化的搭配。甚至最终学生总结出,不论是先选帽子,还是先选木偶,都可以用一个 2 乘法算式来计算出所有的搭配方法:2×3=6或3×2=6。让学生由实物操作,甚至是从个人经验出发不同的操作,进而寻求抽象的符号的搭配,最终归纳出乘法计算方法,这便是在学生经历了思维过程的基础上,对现实数学的“图式化”,将现实数学引导成为理论数学,沟通了抽象数学与现实实践之间的关系,学生在这样的过程中学习数学,才会更加易于接受、易于理解呢!

生活数观学是指存在于生活实践活动中的那些非形式的数学,是人们在社会生活的实践活动中获得经验交流和理解的数学。研究表明儿童的数学活动不是从观察符号开始的,用逻辑推理进行的,而是从观察现象开始,用特征归纳来进行的。现实数学观实际上是由不同个体在不同的环境中的不同生活经历所形成的,用一支持自己在社会生活中的行为决策和行为方式的。因为每个人的经历不同他们对现实数学的理解也会有差异,所以小学数学学科的任务,通过教师有效的教学组织,引导儿童将自己的经验不断地“数学化”从而构建一些基础的、必要的和现实的数学。

从大量的教学临床观察中可以发现,在引导儿童学习“平均数”这个知识点时,长期的教学活动已经使我们逐渐地形成一种固有模式或者说经验,这个经验就是如果知道了“将多的补到少”的过程,就会理解平均数的意义。而这种经验又帮助我们逐渐地形成了一种比较固定的组织程式,即先选取某些多少不同的物品——引导学生进行去夺多补少的活动——将这个活动过渡到运用计算的方式(等分除法)——总结出平均数本质特点——用一条线段表示平均数在平面上的位置来帮助学生进一步理解,平均数这个值一定是在最大的位置与最小的位置之间。

在平均数这一概念教学中,概念是思维的基本形式之一,是事物的本质属性在人脑中的反映。概念是一切科学知识和科学思维的基础,也是人类思维的基本要素。概念是对两中以上对象的共同特征的概括;概念主要以词的形式来标志;概念是抽象与概括的结果同时也是对经验的加工。概念有内涵和外延,它们具有反向对应的关系,当内涵扩大了,外延会缩小;反之外延扩大了,内涵会缩小。比如:“等腰三角形”,增加了“有一个角是直角”这样的本质属性,就使外延缩小到所有的“直角等腰三角形”。若减少“两腰相等”这样的本质属性,就使外延扩大到所有的“三角形”。

在概念教学中,数学概念的呈现方式有不定义方式(直接应用、语言描述、图形描述、枚举)和定义方式(集合定义、发生定义、外延定义、关系定义、公理化定义)。在整个小学数学学习阶段中,儿童的抽象思维能力是随着年龄的增长逐步得到发展的。因此,一般来说,在数学教学中,小学低年级的概念大多才用描述性的,中高年级逐步采用定义性概念,但有些定义也仅是初步的,还有待发展。

对儿童来说形成概念是一种特殊的认识过程,要进行多种复杂的心理活动,其形成基本途径是概念形成和概念同化。概念形成由初步感知具体对象—尝试建立表象—抽象本质属性—符号表征—概念应用等过程;概念同化由唤起认知结构中的相关概念—进一步抽象形成新概念—分离新概念的关键属性,也就是把原有知识和新知识的相互结合。同时儿童学习概念的基本过程是感知阶段、表象阶段、概念阶段。首先,儿童面对大量直观材料,经过感知,再经过分析、综合获得表象,最后抽象、概括形成概念。所以在“平均数”教学中,教师要尽量符合儿童的发展过程,为儿童的概念形成提供必要的帮助。

当我们将数学的学习尽可能地变为学生主动操作、探究和问题解决的时候,支持学生理解数学的价值是比较大的。而且,这种探究性的操作是以儿童自己的反思为基础的。它表现在活动过程往往就是一个儿童自主的假设——验证——反思——修正的过程。

当我们引导学生在现实的情境中去发现和探究知识,并引导他们不断地将知识运用到现实情境中的时候,支持学生发展数学素养的作用是比较大的。因为这种探究性的操作是儿童自己的活动。它表现在儿童是以自己的认知与经验来构建活动过程的,是他们面对问题情境,自己作出假设,并自己设计活动来检验这些假设,然后通过自己的反思来修正自己的活动,最终获得结论。

儿童的生活经验是指小学生在生活中通过亲身经历、体验而获得的对事物的认识和反映,具有自然性、生成性、发展性等特点。自然性是指学生生活在瞬息万变的社会中,各种各样的生活现象都会毫无阻拦地进入他们的认知领域,从而形成他们“自己的经验”。当然这种经验很大程度上是原始的、粗浅的、局部的、零散的,甚至是不准确的、不科学的,但却是十分难得和可贵的。生成性是指学生在生活和学习的过程中,存在着对自己已有的经验进行调用、调整、提升或者 4 重新确立的过程,也存在着对活动中新的认识不断接受、理解和内化的过程。这些过程实质上就是新的经验建立和生成的过程。发展性是指经验的建立和运用是一个动态的、不断积累、丰富发展的过程,这也是人的内在素质和能力提高的过程。任何学习都是在先前经验基础上的主动建构,这种建构的结果又会导致经验系统的变化,在这种螺旋上升的发展过程中,学生的经验得以进一步丰富和发展,学习的质量进一步提高。

小学数学学习应是儿童自己的实践活动,要让数学学习与儿童自己的生活充分融合起来,将学习纳入他们的生活背景之中,再让他们自己寻找、发现、探究、认识和掌握数学。儿童的数学学习的组织,应源于他们的数学先生,即数学学习活动存在于儿童与外部世界的沟通与交流的过程中。数学学习应当成为让学生亲身体验数学问题解决的一种活动,让学生通过自己去仔细地观察,粗略地发现和简单地证明。

在本例中,教师设计了实际的生活化情境,让学生从已有的经验出发,观察、辨析并实验、操作,使数学概念的形成过程变为在问题情境的尝试操作下的思考和分析过程,这种融生活化策略和操作性策略为一体的教学设计,充分考虑了儿童数学学习的特点,体现了现实数学观和生活数学观。但是,数学概念的学习和表示数学概念的语言学习上不同的。“平均数”作为表示数学概念的语言,指的是一种词汇的认识;“平均数”作为一个数学概念,是对一组数的集中和离散程度的本质认识。掌握了单个词汇并不一定就是理解了概念。本例中,在采用“常规方法”来组织学习“平均数”知识的班级中,虽然在概念的形成过程中,设计了生活化情境,可在跟进活动中学生仍然不能将问题与习得知识建立联系甚至不能理解真实情境问题本身的意义,就是因为他们没有真正理解作为数学概念的“平均数”的本质意义。

小学生数学学习的实质是,用自己与世界相互作用的独特经验去建构有关数学学科知识和技能的过程。从这个意义上说,小学儿童的生活经验理所当然地成为他们数学学习的一个重要基础,进而成为我们构建小学数学教学模式和开发小学数学活动课程的庞大资源库。小学儿童的数学学习与生活经验是紧密相连的,他们的学习过程就是一个经验的激活、利用、调整、提升的过程,是“自己对生活现象的解读”,是“建立在经验基础上的一个主动建构的过程”。小学儿童的数 5 学学习活动与其说是“学习数学”,倒还不如说是生活经验的“数学化”。学生从现实出发,经过反思,达到“数学化”。在这一过程中,“数学现实”是十分重要的。对于小学生来说,“数学现实”也许就是他们的“生活经验”。一方面丰富的生活经验是小学生数学学习的前提、基础和重要资源,是保证数学学习质量的重要条件;另一方面,有效的数学学习也能促进经验的应用、提炼和积累。数学学习的过程其实就是一种经验积累的过程,就是一种新的“经历”和“体验”,这种“在生活中学习数学”的方法是数学思想的具体体现。因此孩子应更多地通过真实的问题情景,产生运用数学来解决问题的需要,并且亲自实践,在探索中发现数学和学习数学。

第二篇:现实数学观与生活数学观

案例分析:现实数学观与生活数学观

儿童的生活经验是指小学生在生活中通过亲身经历、体验而获得的对事物的认识和反映,具有自然性、生成性、发展性等特点。自然性是指学生生活在瞬息万变的社会中,各种各样的生活现象都会毫无阻拦地进入他们的认知领域,从而形成他们“自己的经验”。当然这种经验很大程度上是原始的、粗浅的、局部的、零散的,甚至是不准确的、不科学的,但却是十分难得和可贵的。生成性是指学生在生活和学习的过程中,存在着对自己已有的经验进行调用、调整、提升或者重新确立的过程,也存在着对活动中新的认识不断接受、理解和内化的过程。这些过程实质上就是新的经验建立和生成的过程。发展性是指经验的建立和运用是一个动态的、不断积累、丰富发展的过程,这也是人的内在素质和能力提高的过程。任何学习都是在先前经验基础上的主动建构,这种建构的结果又会导致经验系统的变化,在这种螺旋上升的发展过程中,学生的经验得以进一步丰富和发展,学习的质量进一步提高。

小学数学学习应是儿童自己的实践活动,要让数学学习与儿童自己的生活充分融合起来,将学习纳入他们的生活背景之中,再让他们自己寻找、发现、探究、认识和掌握数学。儿童的数学学习的组织,应源于他们的数学先生,即数学学习活动存在于儿童与外部世界的沟通与交流的过程中。数学学习应当成为让学生亲身体验数学问题解决的一种活动,让学生通过自己去仔细地观察,粗略地发现和简单地证明。

在本例中,教师设计了实际的生活化情境,让学生从已有的经验出发,观察、辨析并实验、操作,使数学概念的形成过程变为在问题情境的尝试操作下的思考和分析过程,这种融生活化策略和操作性策略为一体的教学设计,充分考虑了儿童数学学习的特点,体现了现实数学观和生活数学观。但是,数学概念的学习和表示数学概念的语言学习上不同的。“平均数”作为表示数学概念的语言,指的是一种词汇的认识;“平均数”作为一个数学概念,是对一组数的集中和离散程度的本质认识。掌握了单个词汇并不一定就是理解了概念。本例中,在采用“常规方法”来组织学习“平均数”知识的班级中,虽然在概念的形成过程中,设计了生活化情境,可在跟进活动中学生仍然不能将问题与习得知识建立联系甚至不能理解真实情境问题本身的意义,就是因为他们没有真正理解作为数学概念的“平均数”的本质意义。

小学生数学学习的实质是,用自己与世界相互作用的独特经验去建构有关数学学科知识和技能的过程。从这个意义上说,小学儿童的生活经验理所当然地成为他们数学学习的一个重要基础,进而成为我们构建小学数学教学模式和开发小学数学活动课程的庞大资源库。小学儿童的数学学习与生活经验是紧密相连的,他们的学习过程就是一个经验的激活、利用、调整、提升的过程,是“自己对生活现象的解读”,是“建立在经验基础上的一个主动建构的过程”。小学儿童的数学学习活动与其说是“学习数学”,倒还不如说是生活经验的“数学化”。学生从现实出发,经过反思,达到“数学化”。在这一过程中,“数学现实”是十分重要的。对于小学生来说,“数学现实”也许就是他们的“生活经验”。一方面丰富的生活经验是小学生数学学习的前提、基础和重要资源,是保证数学学习质量的重要条件;另一方面,有效的数学学习也能促进经验的应用、提炼和积累。数学学习的过程其实就是一种经验积累的过程,就是一种新的“经历”和“体验”,这种“在生活中学习数学”的方法是数学思想的具体体现。因此孩子应更多地通过真实的问题情景,产生运用数学来解决问题的需要,并且亲自实践,在探索中发现数学和学习数学。

请举例说明,影响小学数学课程目标的基本因素有哪些?

小学数学课程目标的设置受多方面因素的影响,主要有以下三个方面:

一、社会进步对数学课程目标的影响

首先,随着科学技术的发展,信息时代的到来,对人的数学素养提出了更高的要求。如对每天的天气预报中的“降水概率”等的理解问题。

其次,市场经济需要人们掌握更多有用的数学。如对股市中的各类“趋势统计图表”掌握与理解。最后,生活中需要面对越来越多的数学语言。如报纸、杂志中随处可见的统计图表、比例、分数、小数、百分数等符号的理解、识别与阅读。

二、数学自身发展对数学课程目标的影响

随着经典数学的繁荣和统一,许多数学应用方法的产生,特别是与计算机的结合,使得数学在研究领域、研究方式、应用范围等方面得到了空前的拓展。数学科学自身的发展必然对数学学科教育教学的课程目标提出了新的要求。一是课程目标的地位得到显著提高,二是学生可以通过做数学来学数学,体会观察、尝试、合情推理、猜想实验等科学研究方法,另外,随着计算机的发展,计算与解题技能的培养目标削弱,判断、优化的能力目标需要加强。

三、儿童的发展观对数学课程目标的影响

新的儿童发展观关注儿童的发展,从关注精英数学转向关注大众数学,强调学习适合每一个个体的数学,培养人的数学素养,提升公民的素质成为重要的课程目标。

第三篇:小学数学教学研究

小学数学教学研究第四次形成性考核 客观性网上自测: 单项选择题:(共20道题,每题4分,共80分。本大题机上批阅,可多次做)

在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。1.下列不属于数学性质特征的是(C)。

A 抽象性

B 严谨性

C 客观性

D 应用广泛性

2.下列不属于当今国际小学数学课程目标特征的是(C)。

A 注重问题解决

B 注重数学应用

C 注重解题能力

D 注重数学交流 3.新世纪我国数学课程内容从学习的目标切入可以分为“知识与技能”、“数学思考”、“解决问题”以及(D)等四个纬度。

A 数与代数

B统计与概率

C 空间观念

D 情感与态度 4.下列不属于儿童数学问题解决能力发展阶段的是(C)。A 语言表述阶段

B 理解结构阶段 C 学会解题阶段

D 符号运算阶段 5.问题的主观方面就是指(B)。

A问题的起始状态

B问题空间

C 问题的目标状态

D问题的中间状态 6.下列不属于小学数学学习评价价值的是(B)。

A 导向价值

B 甄别价值

C 反馈价值

D 诊断价值 7.从逻辑层面看,在小学数学运算规则学习中,主要包含“运算法则”、“运算性质”和(B)等一些内容。A 数的认识

B 运算方法

C 简便运算

D 理解算理

8.儿童形成空间观念的主要知觉的障碍主要表现在“空间识别障碍”和(C)等两个方面。

A 空间想象障碍

B 性质理解障碍

C视觉知觉障碍

D 空间描述障碍 9.数学问题解决的基本心理模式是“理解问题”、“设计方案”、(B)和“评价结果”。

A 填补认知空隙

B执行方案

C 反思修正

D调查资料 10.一般地看数学问题解决的过程,主要运用的策略有“算法化”、“顿悟”和(A)等。

A探究启发式

B 尝试错误法

C 逆推法

D 逼近法

11.皮亚杰的“前运算阶段为主向具体运算阶段过渡”阶段,相对于布鲁纳的分类来说,就是(B)阶段。A映象式阶段

B动作式阶段

C 符号式阶段

D 映象式阶段向符号式阶段过渡 12.下列不属于“客观性知识”的是(C)。

A 运算规则

B 数的概念

C 图形分解的思路

D 不同量之间的关系 13.传统的小学数学课程内容的呈现具有“螺旋递进式的体系组织”、“逻辑推理式的知识呈现”和(C)等这样三个特征。

A 论述体系的归纳式

B 以计算为主线

C 模仿例题式的练习配套

D 训练体系的网络式。14.儿童在数学能力的结构类型中所表现出来的差异主要有分析型、几何型和(C)三种。A 计算型

B 具体型

C 调和型

D 概括型

15.属于以学生面对新的问题,形成认知冲突为起点,通过在教师引导下的自学,并在集体质疑或小组讨论的基础上形成新的认知为特征的小学数学课堂学习的活动结构的是(D)。

A以问题解决为主线的课堂学习的活动结构

B以信息探索为主线的课堂教学的活动结构

C 以实验操作为主线的课堂教学的活动结构

D 以自学尝试为主线的课堂教学的活动结构 16.下列不属于常见教学手段的是(C)。

A 操作材料

B 辅助学具

C 音像资料

D 计算机技术 17.下列不属于在建立概念阶段的主要教学策略的是(B)。

A 多例比较策略

B 生活化策略

C 操作分类策略

D 表象过渡策略 18.在小学数学运算规则教学的规则的导入阶段中常见的策略有“情境导入”、“活动导入”和(B)等。A 练习导入

B 问题导入

C 经验导入

D 算理导入

19.在儿童的几何思维水平的发展阶段中,处于描述(分析)阶段被认为是(C)。A 水平0

B 水平1

C 水平2

D 水平3 20.儿童在解决数学问题过程中的理解问题阶段也称作(A)。

A 问题表征阶段

B明确条件阶段

C 感觉阶段

D 理解联想阶段

一、判断题:(判断题17道,每题2分,共34分。本大题机上阅卷,可多次做)。1.作为小学课程的数学是一种形式化的数学。(×)

2.重视问题解决是当今国际小学数学课程目标改革的一个显著特点。(√)3.探究教学是一种在单位时间内的学习效率最高的教学方式。

(×)4.以共同在完成任务的过程中的多种表现为参照的一种评价是表现性评价。(√)5.“再创造”学习理论的核心就是“数学化”理论。

(√)6.学生最基本的课堂参与形态是认知参与。

(×)7.不断增加概念的内涵而使其外延不断缩小的思维过程称之为强抽象。(√)8.所谓学业评价,就是指学生的学习成就的评价。(√)9.数学是一门直接处理现实对象的科学。

(×)

10.“叙述式讲解法”就是指教师将知识讲给学生听。(×)。11.所谓学业评价,就是指学生的学习成就的评价。(√)。

12.认识几何图形的性质特征是儿童形成空间观念的基础。

(√)13.小学数学知识包含“客观性知识” 和“主观性知识”。(√)14.教学方法是一个稳定不变的程序结构。(×)

15.学生已有的生活经验和数学概念是学生构建数学概念能力的要素之一。(√)16.概念是儿童空间几何知识学习的起点。(×)

17.认识几何图形的性质特征是儿童形成空间观念的基础。

(√)

二、填空题:(填空题15道,每空1分,共46分。)

1.发现教学模式的基本流程是创设情境、提出假设、检验假设以及总结运用等四个阶段。

2.发现教学模式在小学数学教学中的运用要注意(创设的)问题情境(须)有效、注重儿童发现知识的过程 以及(要)注意适时(的)指导 等三个问题。

3.现代小学数学课堂学习中教学组织策略具有(运用)情境的方式呈现学习任务、数学活动是以任务来驱动的以及探索是数学活动的重要形式等的特点。

4.小学数学统计教学的主要策略有 关注儿童对现实生活的经历、增强在数学活动中的体验 以及

强化将知识运用于现实情景等。

5.小学数学课堂学习中的认知建构的活动过程,是一种由 定向环节、行动环节、反馈环节

等三个基本环节组成的环状结构。

6.按评价的取向角度划分,学习评价主要可以分为目标取向的评价、过程取向的评价、主体取向的评价

等三类。

7.小学数学运算规则在学习方式上具有淡化严格证明,强化合情推理、重要规则逐步深化以及有些规则不给结语 等一些特点。

8.空间定位包括对物体的 空间方位、空间距离、以及 空间大小 等的识别。9.从数学知识的分类角度出发,可以将数学能力分为(认知能力)、(操作能力)、以及

(策略能力)等三类。

10.探究教学模式的基本流程是(设置)问题情景、提出假设、获得结论 以及反思评价等。11.课堂教学中的学生参与主要指(行为参与)(情感参与)以及(认知参与)等。12.儿童构建数学概念能力的要素主要包括(已有的生活经验和数学概念)、(数学思维能力)

以及(数学的语言能力)等。

13.按层次可以将思维分为 动作(思维)、形象(思维)、抽象(思维)等三类。

14.在儿童的运算规则学习的导入阶段中主要可以采用 情景(导入)、活动(导入)以及

问题(导入)等策略。

15.小学数学的运算技能的形成大致可以分为(认知)、(联结)以及(自动化)等三个阶段。文本论述:需要学生在学习完第十二章至第十三章之后完成。选择以下两个主题中的一个主题进行论述,其字数不得少于200字。

第十二章文本论述主题:举例解释数学问题解决过程的基本特征。

第十三章文本论述主题:请举例说明如何在小学统计教学中运用“游戏引导”的策略。喜欢游戏是儿童的天性。很多时候,儿童是在游戏中体验与建构数学知识的。因为游戏不仅能激发儿童的思维,游戏还能促进儿童策略性知识的形成。

如:教者在教义务教育课程标准实验教科书数学(苏教版)一年级下册第八单元《统计》时,通过游戏活动,激发学生的学习兴趣,使学生在活动过程中用自己的方法进行记录,经历简单的统计过程。然后通过择优选用简便科学的方法,为以后学习用画“正”字的方法收集数据打下基础。

在创设情境,回顾旧知。以旧引新,通过出示小动物的图片,让学生分一分、数一数,体会初步的统计思想,为下面探索统计的方法做好知识上和心理上的准备的基础上,继而进行:统计图形,探索统计方法:

1、设计问题,激发统计兴趣。

⑴“每组小朋友的桌子上有一个盒子,里面有什么呢?”教师引导学生从盒子里摸出一个来看看,并告诉大家盒子里有许多这样的图形。(有正方形、三角形和圆。)“现在小朋友想知道什么呢?”学生说出自己想知道的问题。

⑵师:大家想知道这么多的问题,我们怎样知道正方形、三角形和圆各有几个?可以用分一分、再数一数的统计方法。

2、参与游戏,探索统计方法。

⑴ 我们一起来做一个游戏----“你来说,我来记”,做完游戏,大家想知道的问题,就会得到答案了。

⑵ 老师对同学提出要求:以小组为单位,一个同学说图形名称,其他同学用自己喜欢的方法记录。

⑶ 学生分组活动搜集数据。

⑷ 小组汇报,教师按照学生回答的顺序分别将记录的结果编号,可能会出现以下几种情况: ① □○△△□□○○△△ ② □□□□□

△△△△△△△ ③ □ |||||

○ ||||

△ ||||||| ④ □ √√√√√

○ √√√√

△ √√√√√ ⑸ 比较择优,掌握方法。

教师引导学生比较记录的方法,得出哪种方法更清楚,更简便。学生可能会体会到第三种和第四种方法比较简便,愿意使用。

3、整理数据,学会应用。

我们把记录的结果整理有表格里(出示表格)

图形

正方形

三角形

一共

看图:你从这个表中知道什么?

学生把表格填完整,根据表格中的数据找到自己想知道问题的答案。.下列不属于数学性质特征的是(C)。

A.抽象性

B.严谨性

C.客观性

D.应用广泛性

2.下列不属于当今国际小学数学课程目标特征的是(C)。

A.注重问题解决

B.注重数学应用

C.注重解题能力

D.注重数学交流

3.新世纪我国数学课程内容从学习的目标切入可以分为“知识与技能”、“数学思考”、“解决问题”以及(D)等四个纬度。

A.数与代数

B.统计与概率

C.空间观念

D.情感与态度 4.下列不属于儿童数学问题解决能力发展阶段的是(C)。

A.语言表述阶段

B.理解结构阶段

C.学会解题阶段

D.符号运算阶段

5.问题的主观方面就是指(B)。

A.问题的起始状态

B.问题空间

C.问题的目标状态

D.问题的中间状态 6.下列不属于小学数学学习评价价值的是(B)。

A.导向价值

B.甄别价值

C.反馈价值

D.诊断价值 7.从逻辑层面看,在小学数学运算规则学习中,主要包含“运算法则”、“运算性质”和(B)等一些内容。A.数的认识B.运算方法C.简便运算D.理解算理 8.儿童形成空间观念的主要知觉的障碍主要表现在“空间识别障碍”和(C)等两个方面。

A.空间想象障碍

B.性质理解障碍

C.视觉知觉障碍

D.空间描述障碍

9.数学问题解决的基本心理模式是“理解问题”、“设计方案”、(B)和“评价结果”。

A.填补认知空隙

B.执行方案

C.反思修正

D.调查资料 10.一般地看数学问题解决的过程,主要运用的策略有“算法化”、“顿悟”和(A)等。

A.探究启发式

B.尝试错误法

C.逆推法

D.逼近法 11.皮亚杰的“前运算阶段为主向具体运算阶段过渡”阶段,相对于布鲁纳的分类来说,就是(B)阶段。

A.映象式阶段

B.动作式阶段 C.符号式阶段

D.映象式阶段向符号式阶段过渡

12.下列不属于“客观性知识”的是(C)。

A.运算规则

B.数的概念

C.图形分解的思路

D.不同量之间的关系

13.传统的小学数学课程内容的呈现具有“螺旋递进式的体系组织”、“逻辑推理式的知识呈现”和(C)等这样三个特征。

A.论述体系的归纳式 B.以计算为主线 C.模仿例题式的练习配套 D.训练体系的网络式

14.儿童在数学能力的结构类型中所表现出来的差异主要有分析型、几何型和(C)三种。

A.计算型

B.具体型

C.调和型

D.概括型

15.属于以学生面对新的问题,形成认知冲突为起点,通过在教师引导下的自学,并在集体质疑或小组讨论的基础上形成新的认知为特征的小学数学课堂学习的活动结构的是(D)。

A.以问题解决为主线的课堂学习的活动结构B.以信息探索为主线的课堂教学的活动构

C.以实验操作为主线的课堂教学的活动结构

D.以自学尝试为主线的课堂教学的活动结构

16.下列不属于常见教学手段的是(C)。

A.操作材料

B.辅助学具

C.音像资料

D.计算机技术 17.下列不属于在建立概念阶段的主要教学策略的是(B)。

A.多例比较策略

B.生活化策略

C.操作分类策略

D.表象过渡策略

18.在小学数学运算规则教学的规则的导入阶段中常见的策略有“情境导入”、“活动导入”和(B)等。A.练习导入

B.问题导入

C.经验导入

D.算理导入

19.在儿童的几何思维水平的发展阶段中,处于描述(分析)阶段被认为是(C)。A.水平0

B.水平1

C.水平2

D.水平

20.儿童在解决数学问题过程中的理解问题阶段也称作(A)。

A.问题表征阶段

B.明确条件阶段

C.感觉阶段

D.理解联想阶段

举例解释数学问题解决过程的基本特征

一、数学的性质

简单考察数学的历史,我们可以知道,他的发展存在两个起点:

1、以实际问题为起点,为了适应人类了解客观存在的内部性质并用以解决实践问题的需要。如人类在生产和生活中,需要对一些对象进行集合意义上的合并与分解于是四则运算就产生了„„

2、以理论问题为起点,即为了适应人类了解思想存在的内部性质,用以解决理论上的问题的需要。

当然,数学的最初起点还是现实世界,超越现实世界的数学的产生的最终目的还是未了获得对现实世界的更合理、更准确的最一般反映。

二、数学研究的对象

数学试图研究的对象是什么?数学是什么?数学除了寻在于客观的外部世界外,还存在于人类的头脑中。恩格斯曾对数学的属性作过如下描述:数学就是研究现实世界的空间形式和数量关系的一种科学。它有一整套理论知识体系以及与之相适应的思想方法理论体系的科学。

近年来,有学者认为,数学是一门撇开内容而只研究形式和关系的科学,并且主要研究数量的和空间的关系极其形式。数学研究的对象可以是任何客观现实中的形式或关系。因此,数学可以定义为逻辑上可能的纯粹的(抽去了内容的)形式科学,或者是关于关系系统的科学。

因此,我们可以认为,数学是研究存在的形式或关系的科学,即对现实世界的研究;同时还研究思想的形式或关系的科学,即对思想世界的研究。

从数学产生和发展的历史看,数学还具有这样几个性质:①由人类发明或创造②数学的创造源于对现实世界和思想世界研究的需要③数学的性质具有客观存在的确定性④数学是一个不断发展的动态体系。

三、数学的基本特征

1、知识的抽象性

2、逻辑的严谨性

3、运用的广泛性

第九章文本论述主题:可以通过哪些途径来发展儿童建构数学概念的能力?

构建数学概念,需要学生具备一定的生活经验及数学认知结构,一定的数学思维能力和语言理解、记忆、表述能力。这些能力不是学生先天就有的,也无法从其他途径获得,只能在数学概念的构建过程中加强培养,才能逐步形成、逐步提高。因此,在数学概念教学中,要把培养学生构建概念的能力放在重要地位。

1.重视表象的过渡

小学生的思维尚处在具体运算阶段(以直观思维为主)向形式运算阶段(以呈现思维为主)逐步发展的过程中,因此,形成数学概念往往有一个从直观到抽象的一个过渡,这个过渡就是“表象阶段”。表象就是对对象的一个整体的“映象”,而在这个“映象”,包含着对象的本质的和非本质的所有属性,包含着对对象的外在认识,也包含着对对象的内在认识,是在直观感知基础上,并在语言(更多的是外部语言)支持下,通过对对象的分析与综合等思考的产物,其基本特征就是还没有真正摆脱对具体对象的依赖,但它是儿童形成概念的一个重要的基础。

在这个过渡的过程中,有三个方面需要引起注意的。第一,在引导学生观察时,要让学生充分地明确自己的观察任务;第二,在学生在感知对象时,加强他们语言的运用;第三,在学生获得感知的基础上,要引导他们及时地归纳。

2.加强数学交流

准确地运用数学概j念是发展数学交流能力的一个条件,而充分的数学交流活动又能促进数学概念的进一步发展。

(1)表述和交流自己的发现(2)解释和说明自己的观点(3)质疑和反驳他人的想法

3.促进数学思维

(1)发展观察能力

观察是人们有目的、有计划地感知和描述各种自然现象的一种思维方法。观察是获取感性认识的重要手段。观察能力是指通过数学活动而形成的一种对数量关系和空间形式的形式化知觉的能力。其中“形式化”是指把对象所共有的数学关系和联系用一般的形式结构表示出来。感知一些数学材料,好像具体数据,具体材料都消失了,剩下的仅仅是标志数学关系和联系的骨架。

(2)发展分析比较能力

分析是比较的基础:为了确定不同事物的共同点,就需要把其中每一个事物分解为各个部分(或各个方面),分别研究其特征。比较是分析的继续和发(3)发展抽象概括能力

抽象能力表现为善于归纳,把具有共同属性的事物看作一类,善于透过现象抓住本质,揭开表面上的差异性,发现隐藏在背后的共同特征的能力;概括能力表现为两个方面:一是把从特殊的具体事物抽象出来的共同特征,推演到同类粤物中,并形成一般概念的能力。二是从特殊和具体的事物中,发现与某已知概念的关系,把个别特例纳入一个已知概念的能力 ①案例分析:现实数学观与生活数学观。要求学生完成800字左右的评析。②临床学习:临床观察。要求学生完成不少于800字临床观察报告。说明:以上案例分析和临床学习要求任选其一完成。学生下载对应的附件完成作业,上传提交任务。生活数学观,书上的概念如是说:“作为生活的数学,往往是一种经验符号的数学,更多运用的是语言和直觉。作为生活的数学,就是指存在于生活实践中的那些非形式的数学,是人们在社会生活的实践活动中获得交流和理解的数学。”可是,我更多地将它理解为孩子们原本已获取的与数学相关的生活经验,这正是将儿童日常的生活或经验与书本上的数学结合起来的最好的桥梁,也正是张兴华老师等数学特级教师理论中所提倡的“关注学生对相关知识的掌握程度,对已有的经验进行迁移。”这里的“迁移”的“已有的经验”,就是将孩子们已经获得的生活数学。“迁移”,就是对生活数学进行理论化和系统化,使之成为书本上数学知识。现实数学观,书上的概念如是说:“现实数学是依靠‘局部组织’来支撑的,它往往是依赖于人的经验的,是存在于我们的现实之中的。对于大多数的人来说,是他们加强与外部世界进行沟通和交互,从而获得高质量生存并推进社会进步的一些必要的知识,因为每一个人的经历不同,他们对现实数学的理解也会有差异。”

在小学数学学习的组织过程中,如果想要体现出现实数学观与生活数学观这样的学科性质特征,我们就一定要正视学生作为主体的重要性和必要性,一切从学生的实际出发,让我们的数学课与学生的生活实际接轨,让我们的数学课考虑儿童需要直观操作的心理特征,让我们的数学课考虑到每个学生经验的不同进行有针对性的现实引导。具体来说,可以这样操作:

首先,创设源于生活的情境,回归儿童生活。我们既然已经关注到,儿童诗从自己的生活实践开始认识数学的,我们就应当让儿童的数学学习真正地回归到儿童的生活中去。创设情境时首先考虑,儿童经历了什么?对什么感兴趣?在生活中发现了什么?将学习纳入他们的生活背景之中,再让他们自己去寻找、发现、探究、认识和掌握数学。比如,在《解决问题的策略——替换》一课中,可以先播放《曹冲称象》的故事,让学生说说曹冲是将大象替换成了什么解决了难题?这样替换有什么好处?这样,从学生喜闻乐见的故事中迅速唤起了学生经验中关于替换的已有认知。

其次,关注个体认识差异,正确引导现实数学。小学数学课程的一个重要特点就是沟通抽象的数学与现实实践的联系,强化数学的产生与运用真正回归儿童的生活现实。再次,提供可供操作的素材,经历完整思考过程。儿童在小学数学学习中,主要是通过直观方式获得数学的,因此,不应简单地将这个直观过程理解为就是教师的呈现和演示过程,在大多数的情况下,应将这个过程理解为就是学生自己的尝试操作的探究过程。

这两点我想用一个例子来说明——在教学《搭配规律》时,“商店里有两种帽子和三个不同的木偶娃娃,小明想买一个木偶娃娃配一顶帽子,有多少种不同的搭配方法?”学生依据实际经验利用实物进行搭配,从而发现有序搭配是不重复也不遗漏的关键,可以用第一顶帽子配三种木偶娃娃,有三种搭配方法;再用第二顶帽子配三种木偶娃娃,又有三种搭配方法。还有的学生先选木偶,用第一种木偶配两种帽子,有两种搭配方法;再用第二种木偶,三种木偶„„这样的过程,就是充分考虑了小学生的特点,让学生充分地操作。

然而,教师还可以引导学生用符号、数字、字母代替木偶和帽子,进行简化的搭配。甚至最终学生总结出,不论是先选帽子,还是先选木偶,都可以用一个乘法算式来计算出所有的搭配方法:2×3=6或3×2=6。让学生由实物操作,甚至是从个人经验出发不同的操作,进而寻求抽象的符号的搭配,最终归纳出乘法计算方法,这便是在学生经历了思维过程的基础上,对现实数学的“图式化”,将现实数学引导成为理论数学,沟通了抽象数学与现实实践之间的关系,学生在这样的过程中学习数学,才会更加易于接受、易于理解呢!文本论述:需要学生在学习完第一章至第三章之后完成。选择以下三个主题中的一个主题进行文本论述,其字数不得少于200字。

第一章文本论述主题:小学数学教学中如何帮助学生去积极构建普遍知识与特殊情境的联系。请举例说明。

第二章文本论述主题:请举例说明,影响小学数学课程目标的基本因素有哪些?

第三章学习文本论述:请用实例分析我国新课程标准对小学数学课程内容呈现的基本要求。(1)社会发展因素的影响。学校教育要为社会发展服务,数学课程目标的制定要考虑社会发展对学生未来数学素养的需求,这是学校教育的功能决定的。另一方面,课程目标的确定也应当体现促进社会发展的作用,要使学生通过学校课程的学习更好的理解社会,认识社会,解决社会问题。

(2)儿童发展因素的影响。考虑儿童的发展因素,不只是适应儿童的发展水平,更重要的是通过数学学习促进儿童的发展,包括学生思维水平的发展,学生交流能力、数学情感和数学推理能力的培养。

(3)数学科学发展的影响。现代数学已经有了很大进步,再也不能按照传统的数学内容体系来安排中小学数学内容。数学教育现代化的一个突出标志就是课程目标与教学内容的现代化。①案例分析:小学空间几何学习的操作性策略。要求学生完成800字左右的评析。②临床学习:临床设计。要求学生完成不少于1000字临床设计报告。说明:以上案例分析和临床学习要求任选其一完成。学生下载对应的附件完成作业,上传提交任务。关于儿童形成空间观念的心理特点主要有:

①对直观的依赖较大;②用经验来思考和描述性质或概念;

③(空间观念的形成)依靠渐进的过程;④容易感知图形的外显性较强的因素; ⑤对图形性质间关系有一个逐渐理解的过程;⑥对图形的识别依赖标准形式; 儿童的空间知觉能力的发展有如下阶段性的特征:

①方位感是逐步建立的;②空间概念的建立逐渐从外显特征的把握发展到从本质特征的把握; ③空间透视能力是逐步增强的;

儿童的空间知觉能力的发展的阶段性的特征是:

①方位感是逐步建立地;②空间观念的建立逐渐从外显特征的把握发展到从本质特征的把握; ③空间透视能力是逐步增强地;

义务教育《大纲》中指出:“几何初步知识的教学,要充分利用和创造各种条件,引导学生通过对物体模型等的观察、测量、拼图、制作、实验等活动,掌握形体的基本特征和面积、体积的计算方法,并注意在实际中应用,以利于培养初步的空间观念。”因此,我们应依据大纲的精神,在几何知识教学中注意促进、培养和发展学生的空间观念。

一、在具体操作中感知,以形成清晰、正确的表象,促进空间观念的形成。

学生在学习几何知识时,要从具体事物的感知出发,获得清晰、深刻的表象,再逐步抽象出几何形体的特征,以形成正确的概念。如在学习长方形的认识时,启发学生根据自己已有的知识找出生活中的长方形来。学生可以列举出桌面、玻璃板、书面、黑板面等。此后,再让学生拿出一张长方形纸,自己去比一比、折一折、量一量找出长方形的特征。然后教育学生用简练的语言将长方形的特征描述出来。接着,再用纸、笔画出一个长方形来。

二、在观察中比较、想象,培养空间观念。

想象是学生依靠大量感性材料而进行的一种高级的思维活动。在几何知识教学过程中,要培养学生按照一定目的,有顺序、有重点地去观察,在反复细致观察的基础上,让学生展开丰富的空间想象。如讲圆锥体时,圆锥的高线学生看不见,摸不着,较难掌握,教师就要用模型演示,并进行实际操作,让学生细致观察,从而帮助学生形成表象,抽象出圆锥高这一概念。教师可以用圆锥教具沿底面圆直径到圆锥顶点切开,让学生观察到切开后的横截面是一个等腰三角形,它的底边正是圆锥底面圆的直径,从圆锥顶点到底面圆心的距离就是圆锥的高。可让学生去量一量圆锥的高,还可以在黑板上画一草图标出圆锥的高,这样,抽象的概念形象具体了,便于学生理解,空间想象力就会初步形成。

三、在实际运用中,发展空间观念。

在教学中,要引导学生经常运用图形的特征去想象,解决各种实际问题,发展他们的空间想象力。如向学生出示这样一题:将一个长5厘米、宽4厘米、高3厘米的长方体,平均分成两个小长方体后,表面积最多增加()平方厘米。最少增加()平方厘米。对于这样的问题需要学生首先在头脑中要想象这样一个长方体。长方体的六个面分别是由5×4、5×3、4×3组成,沿上下两个面平均分,将会增加两个上下面(5×4面)。沿左右两个面平均分将会增加两个左右面(4×3面)。学生有一定空间想象力,在头脑中就容易形成长方体的表象,头脑中有了这样的依托,再去想它的变化,按照长、宽、高位置关系去理解平均分的方法,即沿大面平均分可多出两个大面积。沿小面平均分可多出两个小面积。同时也可以理解到若不平均分同样可多出两个面积来。

文本论述:需要学生在学习完第四章至第六章之后完成。每位学生可以选择以下三个主题中的一个主题进行论述,其字数不得少于200字。

第四章文本论述主题:为什么说儿童的数学认知起点是他们的生活常识?

第五章文本论述主题: 请具体分析再创造学习理论在小学数学教学中运用的优缺点。第六章文本论述主题:如何理解和把握教师在课堂活动中的角色与作用? 关于教师在课堂教学中的地位和角色,随时对教育本质和教育价值取向的不同认识,历来有很多不同的说法。在今天对于教师作为在课堂教学中的角色和作用,越来越多的学者和教育工作者,至少在如下几方面趋向于共识:

1、教师字课堂学习活动中起设计和组织的作用

教师作为承担间接知识的学习组织者,需要依据课程标准和学生特点,做科学合理的教学设计,并在课堂教学活动过程呢感中,根据临场的反应作适当的修正或协调,同时要通过自己有效的教学评价来定向和激励学生的持久学习。

2、教师在课堂教学活动中起引导、激励和促进的作用学生是课堂教学活动的主导者,但是由于他们经验、认知水平等影响,需要教师通过各种质疑,设疑、组织讨论等方式给予一定的引导和帮助。

3、教师在课堂学习活动中起诊断和导向的作用

教师作为课堂学习活动的参与者和学生学习的合作者,需要利用自己的认知和能力水平,通过细心的观察、合理的评价等诊断方式,来及时发现学生在学习活动中出现的问题,从而通过各种方式和手段来帮助学生进行修正或调整。

①案例分析:教学活动中的巡视与评价。要求学生完成800字左右的评析。②临床学习:临床评析。要求学生完成不少于1000字临床评析报告。说明:以上案例分析和临床学习要求任选其一完成。学生下载对应的附件完成作业,上传提交任务。

教师在数学讲授过程中,要多用激励性的说话必定学生的前进和尽力。学生个别千差万别,个性特征了了可见,学生的思维成长程度存在差别,而与之慎密联系的表达能力也参差不齐。面临如许的近况,教师必需要给思维速度慢的学生有更多思虑的空间,许可表达不清楚不流利的学生有反复和悔改的时候,更主要的是许可学生有失落误和改正失落误的机遇。一时语塞或背道而驰,当即请他坐下,便扼杀了学生的自负心和自决定信念,使学生不敢想,不敢说,更不敢间。教师应极力做到待人至诚,与学生平等相处。师生关系协调,让学生和教师扳谈时感应心理平安,心理自由,即使回覆问题有错误,也能获得教师的指点和鼓动鼓励,学生处处可赐教师光辉的笑脸,亲热的笑脸,处处可听到“你真行!”、“你讲得真棒”、“斗胆些,教员相信你必然能行”等鼓动鼓励赏识的讲授评价语,使学生体验成功的欢愉。从而调动起学生进修的积极性,加强学生的自决定信念,也让教师有“送人玫瑰,手有余喷鼻”的愉悦之感。

数学课中,教师对学生的评价应注重的问题

小学数学讲堂上,教师得当的评价,对精心呵护学生的自负心,加强学生的进修热情与乐趣很是主要。但若是评价得不合适宜,过于子虚不真实。那么,教师的评价对学生的成长和成长就没有价值。

(一)数学课上对学生的评价要有度,万万不成滥用。若是学生很泛泛的行为,教师都年夜加赞赏,如许的评价就失落去了应有的意义和价值。因为超值的奖励会让学出发生惰性,学生往往就会“迷失落自我。”

(二)教师在数学课中对学生的评价、要具有个性化。教师在评价学生时,必然要有针对性,找准评价的切入点,存眷学生数学进修的个性差别。让讲堂上的评价具有个性化特色,如许才能让每一个孩子获得成长。

当然,我在学生讲堂进修评价方面摸索得还很不敷,此后我会继续在这方面进行切磋。我但愿本身经由过程这方面的进修和思虑,在数学讲堂讲授中,能充实阐扬评价激励功能,达到提高学生的数学素养,加强学生学数学的自傲,最终促进学生周全成长。

一、单项选择题

1.下列不属于生活数学特征的是(A)。

A.经验符号 B.非形式化 C.实践活动 D.逻辑和推理 2.下列不属于我国21世纪小学数学新课程突出体现的理念的是(C)。A.基础性 B.普及性 C.科学性 D.发展性

3.新世纪我国数学课程内容知识的领域切入可以分为“数与代数”、“空间与图”、“统计与概率”以及(D)等四个领域。A.解决问题 B.符号感 C.推理能力 D.实践与综合应用 4.从方法论层面予以区别,认知学习可以分为“接受学习”和(A)两类。A.发现学习B.知识学习C.技能学习D.问题解决学习

5.小学数学课堂学习中儿童的参与主要是指“行为参与”、“情感参与”以及(C)。

A.探究参与 B.问题参与 C.认知参与D.评价参与

6.由教师是先创设一个能刺激学生探究的就有现实性的情境,学生则是通过自己(小组合作的或独立的)探究,发现对象的本质属性的教学策略称之为(B)。B.探索一发现式策略 C.Hands on活动策略 7.以科学实证主义为哲学基础的评价是(B)。

A.形成性评价 B.量化的评价C.表现性评价 D.质的评价

8.概念的抽象过程中大致要经历“分离”、“提纯”和(C)等三个环节。A.表征B.描述 C.简化 D.思考

9.不借助工具直接通过思维求出结果的一种计算方法称之为(B)。A.笔算 B.口算 C.估算 D.速算 10.不属于描述空间对象量的方面概念的是(D)。

A.长度 B.体积 C.面积 D.测量

1.所谓对小学数学学科的再认识包含“儿童数学观”、“生活数学观”以及(B)。A.科学数学观 B.现实数学观C.形式数学观 D.抽象数学观 2.新世纪我国数学课程目标分为“总体目标”和(D)。

A.知识性目标 B.过程性目标 C.技能性目标 D.-般性目标

3.传统的小学数学课程内容的呈现具有的三个特征分别是“螺旋递进式的体系组织”、“逻辑推理式的知识呈现”和(C)。

A.论述体系的归纳式B.以计算为主线C.模仿例题式的练习配套 D.训练体系的网络式 4.技能可以分为动作技能与(A)两类。

A.心智技能 B.解题技能C.学习技能 D.制作技能

5.小学数学课堂学习中的认知建构的活动过程三个基本环节组成的环状结构分别是“定 向环节”、“行动环节”以及(D)。A.感受环节 B.执行环节 C.运动环节 D.反馈环节

6.构建小学数学课堂学习组织策略的基本要素的两个方面分别是“过程”以及(B)。A.方法 B.行为 C.情境 D.任务 7.下列不属于数学学业评价内容的是(D)。

A.对数学的价值的了解 B.数学思想与方法的获得 C.数学知识意义的建构D.数学解题的速度与准确度 8.不属于常见的小学数学概念的呈现方式有(C)。

A.发生定义B.外延定义 C.公理化定义.D.枚举 9.不属于运算心理活动过程特征的是(A)。

A.运算方法和运算技巧结合B.心智技能和动作技能协作 C.外部操作和内部思维同步D.形象感知和抽象思维统和

10.一般地看数学问题解决的过程,主要运用的方法有“试误法”、“逆推法”和(D)。A.算法化 B.顿悟 C.探究启发式 D.逼近法

1.“算法化”是以(A)为价值取向的。

A.功利 B.数学素养C.数学家 D.逻辑思维 2.下列不属于“客观性知识”的是(C)。

A.运算规则 B.数的概念C.图形分解的思路 D.不同量之间的关系

3.新世纪我国数学课程内容从学习的目标切入所分为的四个纬度分别是“知识与技能”、“数学思考”、“解决问题”以及(D)。

A.数与代数 B.统计与概率C.空间观念 D.情感与态度 4.小学数学学习中存在着的三类互相渗透与相互支持的不同的知识分别是“陈述性知识”、“程序性知识”以及(A)。A.策略性知识 B.过程性知识C.技能性知识 D.概念性知识

5.小学数学课堂学习中的认知建构的活动过程三个基本环节组成的环状结构分别是“定向环节”、“行动环节”以及(D)。A.感受环节B.执行环节 C.运动环节D.反馈环节 6.下列不属于传统的常见教学方法的是(B)。

A.叙述式讲解法 B.探索一发现法C.启发式谈话法D.演示法 7.下列不属于按评价的取向角度而划分的学习评价的是(B)。

A.目标取向的评价 B.量化的评价 C.主体取向的评价 D.过程取向的评价 8.“平行四边形”和“长方形”这两个概念是属于(A)关系。A.属种 B.交叉 C.对立 D.同一 9.空间定位不包括(A)。

A.空间大小 B.空间方位 C.空间形式 D.空间距离 10.下列不属于儿童形成统计思想过程特征的是(A)。

A.基本概念是帮助理解的基础 B.观念是伴随着操作活动逐步形成的 C.对数据理解是逐步发展的D.数据的分析与利用能力的形成是渐进的 L以数学素养为数学教育价值取向的是数学的(A)。A.大众化 B.公理化C.逻辑化 D.算法化

2.影响小学数学课程目标的基本因素有“社会的进步”、“数学的发展”以及(D)等。A.学生的需要 B.国家的需要 C.生活的需要 D.儿童的发展观 3.下列不属于传统小学数学课程内容的有(B)。

A.代数初步知识 B.概率知识 C.几何初步知识 D.量与计量知识

4.儿童在数学能力的结构类型中所表现出来的差异主要有分析型、几何型和(C)三种。A.计算型 B.具体型 C.调和型 D.概括型 5.从指向上看,探究学习的理论基础是(B)。A.行为主义 B.建构主义 C.格式塔理论 D.“数学化”理论

6.小学数学课堂学习中儿童的参与主要是指“行为参与”、“情感参与”以及(C)A.探究参与 B.问题参与C.认知参与 D.评价参与

7.主要通过学生的尝试操作来概括出典型本质特征的一种教学方法称之为(B)A.叙述式讲解法 B.实验法 C.启发式谈话法 D.演示法 8.不属于数学学业评价内容的是(D)。

A.对数学的价值的了解 B.数学思想与方法的获得C.数学知识意义的建构 D-数学解题的速度 9.从三角形抽象出直角三角形的过程称之为(A)。A.强抽象 B.概括C.弱抽象 D.分离

10.小学数学运算规则的学习是以(B)学习为起点的。A.方法 B.认数 C.概念D.性质

1.下列不属于数学素养基本特征的是(A)。A.精确性 B.发展 C.过程性 D.实践性

2.课程是由教师、学生、教材与(D)四因素之间的持续的相互作用所构成的有机的“生态系统”。A.目标 B.内容 C.学具 D.环境

3.新世纪我国数学课程内容知识的领域切入可以分为四个领域,包括“数与代数”、“空间与图”、“统计与概率”以及(D)。A.解决问题 B.符号感C.推理能力 D.实践与综合应用

4.从数学的陈述性知识、程序性知识和策略性知识的分类角度出发,可以将数学能力分为“认知”、“操作”与(D)等三类。A.逆运算 B.数量关系 C.解题思路 D.策略

5.程序教学的理论基础是(A)。A.行为主义 B.格式塔理论C.人本主义 D.“数学化”理论 6.在数学课堂教学过程中,教师与学生之间是一个(C)的关系。A.传递与接受 B.控制与被控制 C.交互主体 D.知与不知

7.通过教师的口述和示范,向学生描绘情境、叙述事实、解释概念、论证原理或阐明规律的一种教学方法称之为(A)。A.叙述式讲解法 B.探索一发现法C.启发式谈话法 D.演示法 8.下列不属于按评价的取向角度而划分的学习评价的是(B)。

A.目标取向的评价 B.质性取向的评价 C.主体取向的评价 D.过程取向的评价 9.运算法则的理论依据可以称之为(C)。A.方法 B.性质 C.算理 D.规则 10.空间定位不包括(A)。

A.空间形式 B.空间方位 C.空间大小D.空间距离 1.以数学素养为数学教育价值取向的特征就是(A)。A.大众化 B。公理化 C.逻辑化 D.算法化 2。下列不属于当今国际小学数学课程目标特征的是(C)。

A.注重问题解决 B.注重数学应用 C.注重逻辑推理 D.注重数学交流 3.下列不属于选择小学数学课程内容的基本原则的是(B)。A.基础性原则 B.学术性原则 C.可接受性与发展性相结合原则D.统一性与灵活性相结合的原则

4.从方法论层面予以区别,认知学习可以分为两类,分别是“接受学习”和(A)。A.发现学习B.知识学习C.技能学习D.问题解决学习5.下列不属于传统的小学数学学习方式特点的是(B)。A.客体性 B.思考性 C.单一性 D.接受性 6.“以事实为基础的问答策略”称之为(B)。

A.照本宣科型策略B.简单对话型策略 C.任务驱动型策略D.思维交互型策略 7.下列不属于小学数学学习评价价值的是(B)。

A.导向价值 B.甄别价值 C.反馈价值 D.诊断价值 8.概念与词汇的关系是(C)关系。

A.一一对应B.内涵与外延C.内容与形式D.抽象与概括 9.空间观念是空间知觉经过加工后所形成的(D)。A.概念 B.图像C.性质 D.表象 10.问题的客观方面就是指问题的(A)。

A.课题范围 B.问题空间C.目标状态 D.起始状态 1.下列属于数学性质特征的是(A)。

A.抽象性 B.逻辑性 C.客观性 D.唯一性 2.新世纪我国数学课程目标包括“一般性目标”和(D)。A.知识性目标 B.过程性目标C.技能性目标 D.总体目标 3.下列不属于我国传统的小学数学课程内容的是(C)。A.空间几何 B.统计与概率 C.数学问题 D.数学概念

4.小学数学学习中存在着的三类互相渗透与相互支持的不同的知识,分别是“陈述性知 识”、“程序性知识”以及(A)。A.策略性知识 B.过程性知识 C.技能性知识 D.概念性知识 5.下列不属于小学数学课堂活动基本构成要素的是(D)。

A.教学活动的共同体 B.教学活动的对象 C.教学活动的过程特征 D.教学活动的手段 6.接受型教学组织的具体的行为主要包含“讲解”、“示范”、“呈现”以及(D)。A.对话 B.操作C.讨论 D.演示

7.小学数学学业评估的原则包括“过程性原则”、“全面性原则”以及(A)。A.发展性原则 B.主体性原则 C.结果性原则 D.甄别性原则

8.从逻辑层面看,在小学数学运算规则学习中所包含的主要内容有“运算法则”、“运算性质”和(B)。A.数的认识 B.运算方法C.简便运算 D.理解算理

9.从概念间的逻辑关系看,“平行四边形”和“长方形”这两个概念是属于(A)。A.属种关系 B.交叉关系C.对立关系 D.同一关系 10.问题的主观方面就是指(B)。

A.问题的起始状态 B.问题空间 C.问题的目标状态 D.问题的中间状态 1.以数学素养为数学教育价值取向的特征就是(A)。A.大众化 B.公理化C.逻辑化 D.算法化

2.下列不属于当今国际小学数学课程目标特征的是(C)。

A.注重问题解决 B.注重数学应用C.注重逻辑推理 D.注重数学交流

3.我国21世纪小学数学课程标准将内容分为数与代数、(C)、统计与概率、实践与综合应用等四个领域。A.应用题 B.运算C.空间与图形 D.量与计量

4.从指向上看探究学习的理论基础是(B)。A.行为主义 B.建构主义C.格式塔理论 D.“数学化”理论

5.下列不属于小学数学课堂活动基本构成要素的是(D)。

A.教学活动的共同体 B.教学活动的对象C.教学活动的过程特征 D.教学活动的手段 6.小学数学学业评估的原则包括“过程性原则”、“全面性原则”以及(A)。A.发展性原则 B.主体性原则C结果性原则 D.甄别性原则 7.不属于小学数学运算规则学习方式的特点是(D)。A.淡化证明 B.逐步深化C.合情推理 D.注重命题 8.空间观念是空间知觉经过加工后所形成的(D)。A.概念 B.图像C.性质 D.表象 9.问题的条件信息包括“数据”、“关系”和(A)等。A.状态 B.运算C.问题 D.方法

10.小学统计教学组织的主要策略包含“关注儿童对现实生活的经历”、“增强在数学活动中的体验”和(B)等。

A.让学生尝试设计方案去体验 B.强化将知识运用于现实情境 C.通过游戏活动来引导 D.通过日常活动来引导

二、判断题11.数学素养具有过程性这一特征。(√)12.注重问题解决实当今国际小学数学课程目标改革的一个显著特点之一。(√)13.儿童的数学概念获得方式是逐渐由“概念同化”为主发展到“概念形成”为主的。(×)14.在概念的引入教学阶段通常较多的是运用表象语言。(×)11.程序教学的理论基础是人本主义。(×)12.教学活动的手段不属于小学数学课堂活动基本构成要素。(√)13.空间观念是空间知觉经过加工后所形成的映像。(√)14.低年段的儿童学习统计与概率知识,是以直观的活动为主的。(√)1.数学是一门直接处理现实对象的科学(×)12.一种教学策略就有若干固定的教学方法所组成。(×)13.所谓学业评价,就是指学生的学习成就的评价。(√)14.不同情境下的各种数据有着各自不同的处理策略和模式。(√)11.作为儿童生活的数学,是一种完全形式化的数学。(X)12.师生是课堂活动的“学习共同体”。(√)13.操作是儿童构建空间表象的主要形式。(√)14.统计的本质就是从局部观察到的资料的统计特征来推断整个系统的状态。(√)11.将学习的全部内容以定论的形式皇现给学习者的学习方式称为接受学习。(√)12.所谓学业评价,就是指学生的学习成就的评价。(√)13.“操作性策略”是建立概念阶段主要的教学组织策略。(×)14.“概率与统计”学习重要的目标之一就是发展儿童合理解读数据的能力。(√)11.作为小学课程的数学是一种形式化的数学。(×)12.传统的小学数学课程开发具有“学术中心”的特征。(√)13.教学方法是一个稳定不变的程序结构。(×)14.课堂教学评价的价值在于对教师教学行为的某种鉴定。(×)1 1.传统的小学数学课程组织具有“学科取向”的特征。(√)12.儿童的数学概念获得方式是逐渐由“概念同化”为主发展到“概念形成”为主的。(×)13.“再创造”学习理论的核心就是“数学化”理论。(√)14.数学课堂教学过程就是师生以数学问题为媒介的相互作用过程。(√)1.传统的小学数学课程开发具有“学科取向”的特征。(√)2.儿童的数学认知的起点是他们生活常识。(√)3.运用情境的方式呈现学习任务不是现代课堂教学组织策略的特点之一。(×)4.常模参照评价是一种绝对评价。(×)

三、填空题(本大题共4小题,每空2分,共24分)

15.小学数学课堂教学常见的教学手段有---------、-----------、------以及计算机技术等。16.范例教学模式在教学内容上要突出____、—— 和—— 这三个特征。17.问题的客观状态包括____、---------—以及_ ___等三个部分。

18.儿童概率思想发展的过程具有-------------、----------------------以及------------等这样一些特征。

答案:15.操作材料 辅助学具 电化设备 16.基本性 基础性 范例性

17.起始状态 目标状态 中间状态 18.对事件发生可能性的认识是逐步发展

对事件发生的可能性认识受到经验的制约 对事件发生的可能性认识需要通过直观操作来支持 15.数学的严谨性特征体现在它的____、____ 以及_ _—等方面。

16.儿童的数学问题解决能力的发展大致要经历________、__—、以及符号运算阶段等这样一个过程。17.儿童在课堂学习过程中的认知参与主要包含____、____以及____等几种状态。18.在儿童的运算规则学习的巩固与运用阶段中主要可以采用____、以及 等策略。

答案;15.逻辑性 精确性 系统性 16.语言表述(阶段)理解结构(阶段)多级推理(能力形成)17.浅层次(策略)深层次(策略)依赖(性策略)18.过程性(策略)表现性(策略)多样化(策略)15.发现学习的基本流程是____、____、---------及总结运用等。

16.儿童在课堂学习过程中的情感参与主要包括-----------、---------、------以及态度 等因素。17.运算性质根据其所起作用可分为 ___ _、_ ___ 以及------等几类。18.发展儿童数学问题解决能力的主要策略有----------、---------、----------等。答案:15.创设情境 提出假设 检验假设 16.兴趣 动机 自信心

17.改变参算数的位置 改变运算顺序 参算数的改变引起的运算结果的变化 18.创设自由探究的空间 发展学生问题表征的能力 大胆提出假设和积极思考 15.小学数学学习中存在、等三种互相渗透与相互支持的不同的知识。____、____ 16.现代小学数学课堂学习中教学组织策略具有 以及 .,.__

一、____等的特点。

17.所谓空间观念,就是指物体的____、、_ ___、距离、方向等形象在人头脑中的映象。18.常见的数学问题解决的方法主要有____、以及____ 一等三种。

答案 15.概念性(陈述性)知识 技能(程序)性知识 策略性知识

16.运用情境的方式呈现学习任务 数学活动是以任务来驱动的 探索是数学活动的重要形式 17.形状 大小 位置 18.试误(法)逆推(法)逼近(法)(爬山法)15.影响小学数学课程目标的基本因素主要有---------------------、-----------------、----------------等

16.构建教学策略的主要依据有----------------、-----------以及------------等。17.数学客观性知识主要包括---------、-------------、---------等。

18.问题的主观方面主要由-----------、-----------以及----------等三个成分所组成。答案:15.社会的进步(对数学课程目标的影响)数学自身的发展(对数学课程目标的影响)儿童的发展观(对数学课程目标的影响)

16.对小学数学教育价值追求的基本认识 对儿童学习数学过程的认识和理解 对课堂学习过程的理解和诠释 17.数学概念 数学规则 数学思想方法

18.(问题解决的)起始状态(问题解决的)中间状态(问题解决的)目标状态 15.无论哪一种程序教学模式,都具有-------、-----、-------这样相同的流程。16.培养儿童构建数学概念的能力,主要可以从------、-------、----等三个方面人手。17.运算性质根据其所起作用可分为-------------------、---------------以及-------等几类 18.儿童概率思想发展的过程具有---------------------------、----------以及--------等这样一些特征。

答案:15.解释 显示问题 解答(反应)与确认16.重视表象过渡 加强数学交流 促进数学思维 17.改变参算的数的位置 改变运算顺序 参算的数的改变引起的运算结果的变化 18.对事件发生可能性的认识是逐步发展的 对事件发生的可能性认识受到经验的制约

对事件发生的可能性认识需要通过直观操作来支持

15.推理通常可以分为-------、一---------、-------一等三种不同的形式;

16.发现教学模式的基本流程是-------、---------、---------以及总结运用等四个阶段。17.空间定位包括对物体的一----------以及-------等的识别。

18.小学数学统计教学的主要策略有----------、一---------以及----------等。

答案:15.演绎推理 归纳推理 类比推理16.创设情境 提出假设 检验假设 17.空间方位 空间距离 空间大小

18.关注儿童对现实生活的经历 增强在数学活动中的体验 强化将知识运用于现实情境

四、简答题(本大题共3小题.每题6分,共18分)19.简述课堂学习活动中学生参与的基本含义。

答案: ①行为参与主要指(反映)学生在课堂学习(过程)中的行为表现;

②情感参与主要指学生在课堂学习(过程)中所获得的情感体验;

③认知参与主要指学生在课堂学习(过程)中(通过学习方法)所表现出来的思维水平与层次 20.简述可以构建哪些促进学生发展的学业评估的策略?

答案: ①过程性评价(评价的策略之一)核心词句:多元化;生成性;即时性;

②发展性评价(评价的策略之二)核心词句:多样化;开放性;体验性; ③表现性评价(评价的策略之三)核心词句:思维水平;问题解决能力;数学交流;数学情感。21.简述在运算规则的导入阶段主要可以运用哪些策略?

答案: ①情境导人核心词句:情境本身则蕴涵着某一个规则命题;情境刺激着儿童的兴趣和注意力;

②活动导人核心词句:活动中发现并提出问题;思考;尝试;探究;

③问题导人核心词句:儿童已有的知识或经验;认知冲突;主动探究。

五、论述题(本大题共2小题,每小题10分,共20分)22.请用实例尝试分析儿童的儿童空间想象力发展的主要特点。

答案: ①低年段的儿童,对空间图形的想象还需要依附一定的直观物体的支持。(3分)

核心词句:学习基本上是从认识“二维图形”开始的,但积累的却是大量的“三维”的几何经验,因此,他们在对“二维”图形的空间思考的过程中,往往就会依附相应的直观的物体,即平面几何的思考中对直观物体的依赖性。

②中年段的儿童,开始有可能根据对象的性质特征,构造反映这个对象性质特征的模型,并以模型来思考。核心词句:在认识一些平面图形的性质特征时,已经开始不再将图形与相应的直观物体去对应,而只关注图形本身的性质特征。

③高年段的儿童,对图形的认识已经开始更多的依赖模型的构建。核心词句:摆脱了对象的直观特征,思考的是对象的性质特征。

23.运用“通过游戏活动来引导学生体验事件发生的可能性”策略尝试设计一个有关概率知识的课堂活动。答案: ①利用游戏来引导儿童体验事件发生的可能性以及等可能性是一个非常有效的策略。②活动要求 第一、具有游戏的特点;第二、通过游戏能体验事件发生的可能性;

四、筒答题(本大题共3小题,每题6分,共18分)19.简述可以从哪些方面去发展儿童的良好的数感?

培养儿童的数感,目的在于使儿童学会数学地思考,学会用数学的方法理解和解释现实问题。

(一)在实际的情境中形成数的意义。

①在实际情境中认识数; ②在实际情境中运用数。

(二)具有良好的数的位置感和关系感。

①发展数的良好位置感; ②对各种数的关系有敏锐的反应;③对数和数的运算实际意义有所理解。20.简述儿童形成空间观念的主要知觉的障碍。

(一)空间识别障碍。

空间识别能力表现出的是空间的方位感(它无论是在日常的生活中,还是在空间几何的学习中,都是一个非常重要的能力)。①儿童的空间识别能力是阶段性发展的;②儿童的空间识别能力的发展是不平衡的。

(二)视觉知觉障碍。

儿章在视觉知觉上表现出最大的障碍,可能就是在视觉观察中,还不能有效地建立或运用 视觉知觉符号与大脑中贮存的图式与概念迅速建立联系。21.简述影响数学问题解决的主要因素。

(一)问题情境的刺激模式。①问题类型及其难度; ②问题的呈现方式。

(二)问题的表征。

(三)定势。

(四)经验。

(五)认知策略。

(六)个性心理特征。

19.简述在当今的世界范围,小学数学课程内容改革有哪些共同的基本特点?

答案:①注重问题解决;②注重数学运(应)用;③注重数学思想与数学交流;④注重信息处理;⑤注重数学体验;⑥注重数学活动;

20.简述儿童的空间知觉能力的发展有哪些阶段性的特征?

答案:①方位感是逐步建立地;②空间观念的建立逐渐从外显特征的把握发展到从本质特征的把握;

③空间透视能力是逐步增强地;

21.简述在概念引入阶段主要可以运用哪些策略?(重点、应用、中)

答案:①生活化策略 主题词句:多样化的和丰富的情境;激发探求欲;唤起有的经验;

②操作性策略 主题词句:儿童数学学习;直观方式;操作;

③情境激疑策略 主题词句:丰富的情境;有利于主动的观察和积极的思考;发现并提出问题;

④知识迁移策略 主题词句:有的稳固和清晰的数学概念;有利于学生形成数学概念的系统化。19.简述当今国际上小学数学课程内容的组织与呈现的发展方面有哪些共同性的特征?

答案: ①在选择上表现出“切近儿童生活”(的价值取向); ②在呈现上表现出“强化过程体验”(的价值取向);

③在组织上表现出“注重探究发现”(的价值取向)。

20.简述空间想象力的基本要素有哪些?

答案: ①依据实物建立模型的能力;②依据模型还原实物的能力;

③依据模型抽象出特征、大小和位置关系的能力;④能将模型或实物进行分解与组合的能力。21.简述在小学数学的统计教学组织中可以运用哪些基本的策略?

答案: ①关注儿童对现实生活的经历; ②增强在数学活动中的体验; ③强化将知识运用于现实情境。

五、论述题(本大题共2小题,每小题10分,共20分)

22.请具体分析学生在课堂学习过程中三种参与之间的关系。

答案:①情感参与在很大程度上是通过参与度来显现的(但是,有时参与度与情感参与之间也会 分离,这就与学生参与学习的动力因素相关);

②行为参与的方式则是影响认知参与的主要因素; ③认知参与策略与参与度则无显著的相关性。

23.请用实例分别说明小学数学的概念引入阶段的主要教学组织策略。

答案: ①生活化策略(数学概念往往就是源于普通的常识); ②操作性策略(尝试操作的探究过程);

22.请做一个“以问题解决为主线的课堂学习的活动结构”的教学设计(只要设计出教学环节并说明该环节的主要任务)。

答案:①创设情景环节;②尝试探究与问题解决环节;③共同概况结论(讨论、评析或总结等)环节;

23.简要说明,儿童在空间几何学习过程中的如下几种反应,分别属于几何思维水平发展的哪个阶段?

①因为这个(矩形)像门,而这个(三角形)不像门,所以它们是不一样的。因为这个(正方 形)像一块手帕,而这个(菱形)也像一块手帕,所以它们是相同的。

②因为长方形是对边分别平行的四边形,所以,长方形就是一种平行四边形。

答案: ①水平O阶段(前认知阶段);核心观点:只能注意到对象的形状直观特征的某一部分;思维特征依赖对象的具体想象或

自己的触觉的刺激;建立在“形状相同”这样的等级之上;

②水平3阶段(抽象/关联阶段)核心观点:已经开始能形成抽象的定义;区分概念的必要条件和充分条件;注意到不随形性质之间的关系;

22.说明在小学数学引入概念阶段教学组织中分别运用哪些教学策略?

儿章学习数学概念有一个学习准备的过程,这个过程就称之为“概念的引入”。①生活化策略; ②操作性策略;

③情境激疑策略;④知识迁移策略。

23.请分别举例说明小学概率教学组织的主要策略。

答案: ①通过大量的活动来获得对事件可能性的体验;

②通过游戏活动来引导学生体验事件发生的可能性;

③通过让学生尝试设计方案去体验事件的可能性。

四、筒答题(本大题共3小题,每题6分,共18分)

19.简述构成小学数学课堂活动的要素由哪些?这些因素构成了哪些小学数学课堂活动 的基本矛盾?

要素:①教学活动的共同体; ②教学活动的对象;③教学活动的过程特征。

基本矛盾:①教师的主导性与学生的主体性之间的矛盾;②学生认知的心理特点与数学学科特点之间的矛盾; ③儿章数学与成人数学之间的矛盾。20.简述在建立概念阶段主要可以运用哪些策略?

①多例比较策略;②表象过渡策略;③概括关键要素策略;④表述交流策略;

⑤多次归纳策略;⑥操作分类策略;⑦导读自悟策略。21.简述如何发展学生问题表征的能力。

①仔细审定问题情境; ②学会深度表征。

五、论述题(本大题共2小题,每小题10分,共20分)

22.请用实例尝试分析儿童形成空间观念的主要知觉的障碍。

(一)空间识别障碍。空间识别能力表现出的是空间的方位感(它无论是在日常的生活中,还是在空间几何的学习中,都是一个非常重要的能力)。①儿童的空间识别能力是阶段性发展的;

②儿童的空间识别能力的发展是不平衡的。

(二)视觉知觉障碍。

儿童在视觉知觉上表现出最大的障碍,可能就是在视觉观察中,还不能有效地建立或运用 视觉知觉符号与大脑中贮存的图式与概念迅速建立联系。

23.运用“通过游戏活动来引导学生体验事件发生的可能性”策略尝试设计一个有关概率知识的课堂活动。

①必须是一个关于“可能性事件”的数学认识活动; ②必须带有游戏性质的活动; ③必须是一个全体学生都参与的游戏活动;

④游戏最终必须通过提问设计,让学生感受到“事件的发生有可能性”或者“事件发生的可能性有大小”。

四、简答题(本大题共3小题,每题6分,共18分)19.简述常见的教学手段有哪些?

①操作材料; ②辅助学具; ③电化设备;④计算机技术。20.简述小学数学学习评价的主要目的。

①对小学数学学习过程中教师与学生的活动质量判断,从而改善他们的行为方式和行为策略;

②对学生的数学学习成就和进步进行判断,从而激励他们进一步参与到数学的学习过程之中; ③为教师与学生参与课堂学习提供诸如行为方式、策略以及手段等方面的信息反馈,从而帮助他们随时修正或发展;

④使教师与学生能进一步明确数学学习的预期目标,并共同为达到这个目标而努力;

⑤促进教师对儿童的学习方式、行为方式以及情感的认识,改善儿童对数学的价值、对学习的态度以及参与学习的情感。

21.简述在概念引入阶段主要可以运用哪些策略?

①生活化策略;②操作性策略;③情境激疑策略; ④知识迁移策略。

19.简述在当今的世界范围,小学数学课程内容改革有哪些共同的基本特点?

①注重问题解决; ②注重数学运用; ③注重数学思想与数学交流 ④注重信息处理 ⑤注重数学体验;⑥注重数学活动。

20.简述在课堂教学中教师的作用和角色。

①教师在课堂学习活动中起设计和组织作用;

②教师在课堂教学活动中起引导、激励和促进的作用; ③教师在课堂学习活动中起诊断和导向的作用。

21.简述在运算规则的导入阶段主要可以运用哪些策略?

①情境导入; ②活动导人; ③问题导人。

五、论述题I本大题共2小题,每小题10分,共20分)22.请举例说明儿童数学技能的发展过程特征。

①依赖结构完满的示范导向发展到依赖对内部意义的理解。

②从外部的展开的思维发展到内部的压缩的思维。

③数感和符号感的逐步提高,支持着运算向灵活性、简洁性与多样性等方向的发展。

23.请用实例尝试分析儿童的儿童空间想象力发展的主要特点。①低年段的儿童,对空间图形的想象还需要依附一定的直观物体的支持。

②中年段儿童,开始根据对象的性质特征,构造反映这个对象性质特征的模型,并以模型来思考。

③高年级段儿童,对图形的认识已经开始更多的依赖模型的构建。

五、论述题(本大题共2小题,每小题10分,共20分)

22.请做一个采用“规一例教学模式’,.来组织的小学数学运算规则的教学设计(只要设计 出主要的教学环节,并解释每一个环节的主要任务)。

(一)必须是规则(计算)教学的内容;

(二)必须是教师先给出规则(法则或者公式等);

(三)至少包含的步骤:

①教师先出示(呈现)规则(法则或者公式); ②教师解释(说明、帮助理解)规则(法则或者公式); ③用实例进行验证;

23.请举例分析在小学空间几何教学中,可以如何落实“强化动手操作”这个策略。

①搭建活动; ②剪拼与折叠活动; ④实物操作活动; ④测量活动;⑤作图活动。

四、简答题(本大题共3小题,每题6分,共18分)1.简述我国小学数学课程内容在呈现方式上有哪些变革。①体现价值的主体性

②体现知识的现实性③体现学习的探究性④体现经历的体验性⑤体现过程的开放性⑥体现呈现的多样性

2.简述小学数学课堂学习中基本的教学组织类型。它们的含义分别是什么?①接受型的教学组织

基本概念:教师通过在课堂学习中的各种提示性活动,帮助学生接受知识,形成技能②问题解决型教学组织 基本概念:以问题为导向,以问题解决为目标,以教师与学生的共同活动为手段,促进学生主动学习。③自主型的教学组织基本概念:学生的自我学习占主导的地位,教师的控制性减弱,学生独立的尝试解决问题。

3.简述儿童数学技能发展的基本规律。

①依赖结构完满的示范导向发展到依赖对内部意义的理解②从外部的展开的思维发展到内部的压缩的思维③数感和符号感的逐步提高,支持着运算向灵活性、简洁性与多样性的发展

五、论述题(本大题共2小题,每小题10分,共20分)

1.请做一个“以实验操作为主线的课堂教学的活动结构”的教学设计(只要求设计出教学环节并说明该环节的主要任务)。基本流程:①情境呈现②尝试操作与探究

关键组织行为: ①是否提供有价值的操作材料②是否有探索性的实验活动 幺请实例说明问题情境的刺激模式是如何影响数学问题解决的速度和质量的。①问题类型及其难度

关键词:不同类型的知识;不同类型的问题;检索②问题的呈现方式 关键词:问题的陈述方式;知觉图式的呈现方式;模式辨识

第四篇:《小学数学》观课报告

观课报告

潘店镇张楼中心小学

尉万水

通过观看了几位老师的讲课,我的脑海中浮现了四个字:以生为本。现在流行的“生本课堂”也是教育部门推崇的这样一个课堂,作为一线的教师,我们一直在努力的尽量的寻找这样的课堂,在石冬梅老师的课堂上就较好的体现了这一理念,教师是引导者,合作者,给孩子提出问题的机会,并且通过这种有效的师生互动,学生主动的去尝试解决问题,情绪高昂,每一个学生几乎都投入到学习活动中,掌握了一定的学习方法,构建了一定的数学模式。

教师的教学能力是功夫,这个功夫的核心对于数学教师而言不只是表现在其解题、讲题的水平,更要体现在帮助学生聚焦困惑的能力上。就像是摄影工作,聚焦准确是第一位的。正如一位哲人说过“思维起源于某种疑惑、迷乱或怀疑”。因为,对于年级较低的小学生而言,学生学习的需要有时在很大程度上是学生自己不明确的,这时就需要教师的引导提升。

几位教师在充分考虑学生已有知识经验和认知发展水平的基础上,积极引导学生将旧知识迁移到新知,利用贴近学生生活的素材作为载体,使学生感到数学问题的新颖亲近,变得看得见,摸得着,易于接受,从而激发学生内在的认知要求,即体现出教学面向生活,也反映了现实生活,更好的启迪了学生的思维。例如:李老师在运用教材例题让学生通过“试验、猜想、验证、概括”,在主动探索与合作交流的基础上,进一步理解长方形和正方形的面积计算的算理,达到了自主掌握面积计算的方法并能用它解决一些简单问题的目的。

在教学环节中,教师能对知识传授的细节做到很好的处理,注重了算理的讲解,在明确算理的过程中,让学生自己讨论,教师只是以一个引路人的身份引导学生,帮助他们小结,使算理简洁有条理。在课堂教学中,时时出现计算方法的巩固。同时能根据学生的反映情况适当调整教学步骤,减轻学生直接学习的难度。在练习设计中,体现了知识的趣味性、知识性、应用性,在实践中应用数学,把所学的知识运用到生活中去,不仅增强了学生学习的积极性,而且进一步感受到数学与生活的密切联系,培养了学生应用数学知识、解决生活实际问题的意识和能力。

第五篇:小学数学观课报告会

小学数学观课报告会

11月3日、4日,安徽省第五届小学新课改观摩课暨名师报告会(小学数学专场)在安徽行政经济管理学院隆重举行。这次会议主题是“新课标下的高效智慧课堂”。本场活动六位专家和名师给我们听课老师献上了六堂精品课和三场讲座,让老师们获益匪浅。

南京市瑞金路小学的陈薇老师带给我们的是苏教版三年级上册《认识周长》。陈老师尊重学生的认知起点,从平面图形的周长引入教学,接着联系实际生活,进一步认识周长,感受周长的封闭性且只能用于二维平面图形,再通过动手操作,体验什么是图形的周长,以及用尺测量周长的方法。学生在多种感官参与的学习过程中逐步深化对周长的理解。这样紧密联系实际生活的数学才会激起学生更大的学习兴趣。

南京市北京东路小学的陈静老师是全国优秀教师、江苏省小学数学特级教师,不仅给我们上了一节精彩的示范课,还给我们作了别开生面的讲座《在小组合作学习中积累学生数学活动经验》。她强调要创设学生感兴趣的活动,活动要适可而止,要有明确的活动要求,教师在课堂中既要关注结果,也要关注过程,既要关注教学,也要关注活动,既要关注习得,也要关注获得。她提出小学数学课堂要开放,但不等于放开,开放的课堂对老师提出了更高的要求,要求教师在课前要有更多的思考,思考如何面对学生的各种生成问题。还给我们指导了怎样在课堂中积累数学活动经验、小组合作怎样开展等问题,非常有实质性的价值。

南京市数学教研员朱宇辉老师实例解读“新课标下的高效智慧课堂”,他主张让“良好的数学教育”在课堂上具体体现。教师在规划教学时解读文本要融汇显现素材与隐性内容,确立教学目标要具体即可观察、可操作、可检测。教师在设计教学时要以学定教、注重实效、贴近学生。教师在实施教学时要以生为本、开拓创新。朱老师理论与实际相结合,深入浅出、幽默风趣的讲解给我们指明了一条走向高效智慧课堂的光明大道。

南京市东山小学的李一婷老师在教学《认识平行》时,直接从“画直线”人手,让学生在小组内对自己所画的一组直线分类比较,引出两种位置关系,在此基础上,描述两条直线互相平行的概念。而后再让学生回到生活中,认识互相平行的实例,进一步丰富感性认识。在教学画法时,让学生在自主操作中不断地让学生获得体验和感受,从而规范画法。李老师还在教学伊始播放轻音乐,让学生静心冥想,在教学新课中穿插健脑操,让学生放松大脑,这些新鲜元素的加入,让学生学得轻松高效。

南京市玄武区洪武北路小学的马丽丽老师执教的是五年级下册《找规律》,让学生结合具体情境,用平移的方法探索并发现简单图形覆盖现象中的规律。教师根据中央电视台著名节目《购物街》引入新课,学生在“妙手推推推”猜商品价格的游戏中,学习兴趣非常得高。学生主动经历了自主探索与合作交流的过程,体验到了数学问题的探索性和挑战性,获得了最大的成功体验。

南京市成贤街小学的王学其老师不仅给我们上了一节高效智慧的数学课堂《认识公顷》,还给我们作了一场精彩的讲座《基于儿童 感悟数学》,王老师对若干小学数学教学案例的思考非常深刻。他觉得教数学要“三心二意”:即“核心、重心、童心、有意义、有意思”。他认为数学是可以“表演”的、数学是可以“意会”的、数学是可以“比方”的、数学是可以“联想”的、数学是可以“把玩”的,这些思考就像一股春风刮进我们的数学课堂,我们要让数学课堂充满朝气、充满灵气,要让数学课堂高效智慧,让数学课堂不再坚硬、不再冰冷、不再骨感!

通过观摩名师课堂教学、学习新课标下的高效课堂,让老师们了解如何把握解决新课标下的课堂问题及变化,通过提升课堂效率促使学生在知识与能力、过程与方法、情感态度与价值观等三个方面和谐发展。高效智慧的课堂需要教师以生为本,给学生提供思考空间,开放表达空间,高效智慧的课堂需要教师开拓创新,激活学生的思维,高效智慧的课堂学生可以自由的呼吸!让我们共同创造高效智慧的课堂!让我们和儿童共成长!

在紧张忙碌的教学工作中,一学期即将过去。在本学期中,我校全体数学教师认真执行学校教育教学工作计划,在继续推进我校“在学习中反思,在反思中前进”校本教研模式的同时,把新课程标准的新思想、新理念和数学课堂教学的新思路、新设想结合起来,转变思想,积极探索,改革教学,收到很好的效果。

一、课程标准指导教师进入课堂

在本学期中我们全组的数学教师参加了“新课标”小学数学优秀课例观摩暨学术报告会,鲜明的教学理念,全新教学的框架,明晰的教学目标,非凡的教育机智,充分体现以学生为主体的思想,使我们有效的学习对新课程标准的基本理念,设计思路,课程目标,内容标准及课程实施建议有更深的了解,给教师展示了一个空前的教育前景,通过学习和反思,我们每人都撰写了一篇学习的心得体会,并在天河部落小学数学的专栏中发表,特别是梁曼影和宋伟霞两位老师还撰写了《让学生的潜能在课堂上得到充分发挥》、《快乐的数学》教学案例及反思,与其它教师共同学习和探讨,本学期的教研中,我们还开展了教育机智现场发挥教研活动,在活动中教师们用自己的教育机智化解了一个又一个教育难题。我们还经常组织学习有关新课标的文章,例如:“怎样才算一节好课”“浅谈新课的导入”“如何开发生活中的数学资源”等,使各年级在新课程标准的指导下教育教学改革跃上了一个新的台阶。

二、课堂教学,师生之间学生之间交往互动,共同发展。

本学期我们每位数学教师都是课堂教学的实践者,为保证新课程标准的落实,我们把课堂教学作为有利于学生主动探索的数学学习环境,把学生在获得知识和技能的同时,在情感、态度价值观等方面都能够充分发展作为教学改革的基本指导思想,把数学教学看成是师生之间学生之间交往互动,共同发展的过程,在校长的带领下,紧扣新课程标准,每个人上了一堂教学研讨课,积极利用各种教学资源,创造性地使用教材,反复听评,从研、讲、听、评中推敲完善出精彩的案例。吕红英校长讲五年级《分数的意义》一节课成功的展示了充分发挥学生已有的知识基础,以教师为主导,学生为主体,创新为主轴,活动为主线,学生发展为本的原则以促进学生的主动探索为目标,改变传统的教学方法,重组教材,倡导学生自主探究的学习方式,收到良好的教学效果,得到听老师的充分肯定。为年青教师上了一堂优秀的示范课。实践表明,这种互相听课的方式,有利于教师之间的优势互补,从而整体提高备课水平,课前精心备课,撰写教案,实施以后趁记忆犹新,回顾、反思写下自己执教时的切身体会或疏漏,记下学生学习中的闪光点或困惑,是教师最宝贵的第一手资料,教学经验的积累和教训的吸取,对今后改进课堂教学和提高教师的教学水评是十分有用。课前准备不流于形式,变成一种实实在在的研究,教师的群体智慧得到充分发挥,课后的反思为以后的教学积累了许多有益的经验与启示。六年级的复习课《立体图形的表面积和体积》的设计给学生提供自主探索的契机,学生通过归纳分析各立体图形体积公式的内在联系,数学思想方法得于渗透。学生在观察、操作、讨论、交流、猜测、归纳、分析和整理的过程中,空间观念得到了发展,解决实际问题的能力及创新意识得到了提高。应用了然于心。使学生的智慧、能力、情感、心度受到震撼,心理得到满足,学生成了学习的主人,学习成了他们的需求,学中有发现,学中有乐趣,学中有收获,这说明:设计学生主动探究的过程是探究性学习的新的空间、载体和途径。同时也要处理好应用意识与解决问题的重要性,重视培养学生应用数学的意识和能力。重视培养学生的探究意识和创新能力。常思考,常研究,常总结,以科研促课改,以创新求发展, 进一步转变教育观念,坚持“以人为本,促进学生全面发展,打好基础,培养学生创新能力”,以“在学习中反思,在反思中前进”的校本教研模式的研究与运用为重点,努力实现教学高质量,课堂高效率。

三、创新评价,激励促进学生全面发展。

我们把评价作为全面考察学生的学习状况,激励学生的学习热情,促进学生全面发展的手段,也作为教师反思和改进教学的有力手段。对学生的学习评价,既关注学生知识与技能的理解和掌握,更关注他们情感与态度的形成和发展;既关注学生数学学习的结果,更关注学生学习数学的兴趣,在全校数学综合能力测试中各个年级都选拔出一批优秀的学生,做为数学的学习尖子向全校展示,激发了学生学习数学的极大热情。在今年的“小学奥林匹克数学”入学选拔中,我校有四名学生在老师的辛勤辅导下顺利入围,给了学生极大的鼓舞。平时全体数学教师从点滴入手,了解学生的认知水平,查找资料,精心备课,努力创设宽松愉悦的学习氛围,激发兴趣,教给了学生知识,更教会了他们求知、合作、竞争,培养了学生正确的学习态度,良好的学习习惯及方法,使学生学得有趣,学得实在,确有所得,向40分钟要效益;在4月18日进行了广州市小学五年级数学质量抽测中,我校学生及格率为98%,优秀率为70%。通过认真细致的分析卷面,分析学生的学习情况,我们找准今后教学的切入点,查漏补缺,培优补差,立足课堂,打好扎实的双基基础。

一份耕耘,一份收获。教学工作苦乐相伴。我们将本着“勤学、善思、实干”的准则,一如既往,再接再厉,把工作搞得更好。

一、这次的课体验出注重让学生经历数学知识的形成过程。新课程中知识的形成过程是在“动手实践”,“自主探索”,“合作交流”中让学生自己动脑、动手、动口完成的。积累数学基本活动经验是新课标的其中一点。在胡爱民老师上五年级的《长方体和正方体的认识》和高众老师上三年级的《猜一猜》这节课上就体现出在数学课堂上如何让学生积累数学基本活动经验。在课堂上胡爱民老师通过设计好的教具让学生动手把一根根的塑料棒拼成长方体和正方体。高众老师的猜一猜,运用了ABCD四个盒子做教,A盒装四个白球,B盒三个白一个黄球,C盒两红一白一黄,D盒四个黄球。他有意挑出了B盒,让同学们去摸球。通过摸出小球的颜色去判断这个盒子是哪一个。整个过程学生们积极参与在摸出一个白、两个白球的时候,学生们不断地发表自己的意见和判断。大部分的学生说可能是A、B、C;却有一个学生说“不可能是D”。这种学生自我生成的逻辑思维不断地得到发展。

这些有趣的数学活动中逐步理解并掌握知识的来龙去脉。同时我们还注意到课本中每一章的新知识的引入也是以大量生动活泼的,或是贴近学生生活背景的事件作为引题引入的,这样大大激发了学生的好奇心和求知欲望。

二、教师努力构建对话式的互动的课堂。

在这二十多节的的公开课来看,教师都精心设计生生、师生多重对话方式,让教学活动在平等、和谐的人际交往中进行。在课中经常可以听到“你们想听听老师的想法吗?”“你还想说什么吗?”这样的语言,充分体现出师生平等的地位,体现出教师对学生的尊重。这样的课堂,不再是单纯的“施予者”,学生也不再是单纯的“接受者”,教师与学生都是教学的主体,他们互相影响,互相分享经验与智慧,共同成长。例如黄爱华老师上的线与线之间的关系——垂直。黄老师在教学互相垂直、互为垂线、垂点几个概念的时候最能体现对话式的互动课堂。

情景一:在告知学生互相垂直的概念时,让学生找出成为垂直的关键词。出示了两条、直线、相交、成直角,几个关键词。然后让学生思考,哪个关键词最重要,然后让学生出来画一画。两分钟后,叫一名学生出来画的时候,黄老师突然停住了,他让全班学生猜一猜这个同学到底会画哪一个关键词。于是请同学们来猜并说出理由。这就是一个互相的游戏,同学们的兴趣一下子来了。有人说关键词是相交、有的说是直角、有的说是直线、还有的说是两条等。最后要看谁猜得对了,就看这位同学到底要画哪个关键词呢?他在听了同学们的意见后,画了一个关键词,想了想又画了一个,再想一下,最后把四个都画了。于是黄老师马上表扬了他,并说互相垂直的概念中每一个关键词都一样重要,缺一不可。

情景二:垂线?什么叫垂线?找了一位学生出来,让他解释什么叫垂线。这名同学在黑板上画了两条互相垂直的直线。黄老师进一步进行引导,给这两条直线安一个名字,分别是A、B。然后这名同学说A是B的垂线,B是A的垂线。黄老师让他用自己的话来说出这两条线的关系,“他们是对方的垂线”。表扬能用自己的话总结出来,然后创设情景。建议他写一封信给编委说我给垂线定义为他们是对方的垂线。编委回信说,这句话很好,可是很啰嗦,如果简练一点就好了。继续引导,参照前面的互相垂直,于是出现了互相垂线。再引导,A谁B的垂线,B为A的垂线。可不可以互……垂线,最后,同学说出了互为垂线。

数学知识、数学概念就是在这对话式的互动课堂中自自然然地生成了。同学们对知识和概念的认识更加深刻了。

三、教师精心创设生活化情境,激发学生的学习兴趣。

新课程更多地强调学生用数学的眼光从生活中捕捉数学问题,主动地运用数学知识分析生活现象,自主地解决生活中的实际问题。在这次的观摩课中老师们更善于从学生的生活中抽象数学问题,从学生的已有生活经验出发,设计学生感兴趣的生活素材以丰富多彩的形式展现给学生,使学生感受到数学与生活的联系——数学无处不在,生活处处有数学。如陆丽华老师的《认识米》这节课中食指的宽、一拃的宽;一米的绸带、黑板的长;一米的位置到老师的哪里,几个脚长是一米等等都是从生活中出发通过同学们经常接触的事物的长短长判断和感悟一米的长度。还有夏蔚老师的《位置的表示方法》这一课中,运用了学生们在教室里的座位去认识数对。还有张齐华老师上的《平均数》也是运用了生活中经常见到的打篮球,投篮的小故事进行引入,并通过投篮的游戏贯穿整堂数学课。

因此,通过学生所了解、熟悉的生活实际问题,为学生创设生动活泼的探究知识的情境,从而充分调动学生学习数学知识的积极性,激发学生的学习兴趣。

四、教师重视学生解决问题能力的培养,把解决问题与数学知识的学习融为一体。

解决问题能力的培养贯穿在小学数学教学过程的始终。在本次名思教研观摩课上也体现了这种思路。名师们一方面,课堂上的学习都尽量从现实情境引入,目的是让学生在学习数学知识的同时,经历解决问题的过程,提高解决问题的能力;另一方面,又适当地设置了专门解决问题的单元教材,对学生进行较集中的解决问题能力的培养与训练。如徐斌老师上的《苏教版》四年级下册的《解决问题的策略——画图》一课中,教师就要充分利用画图提供的现实情境,引导学生寻找解决问题所需要的数学信息,提出数学问题并解答,落实培养解决问题能力的目标,同时,又要引导学生通过画图去探索问题中的已知和未知因素,从而寻找出正确的解决问题的方法。

五、学生自主探索,合作交流,享受成功。

传统的教学模式是一种教师讲、学生听的灌输式做法,现在教师都在努力改变学生处于被动接受知识的局面,摒弃传统的数学学习单纯地依赖模仿与记忆的单调的学习方式,组织学生开展动手实践、自主探索、合作交流等多种形式的学习活动,从而形成学生对自己学习数学知识的有效策略。如胡爱民老师上五年级的《长方体和正方体的认识》,在课堂上胡爱民老师通过设计好的教具让学生动手把一根根的塑料棒拼成长方体和正方体。小组合作学习,它使不同层次的学生在小组里互补互助,获得更多的参与机会,特别是学习有困难的学生。在这一节课的教学中,胡爱民老师采用了小组合作的形式,给学生充分的时间进行讨论与交流,特别是部分中下的学生在优生的指导、帮助下也能进行探究活动。其间优生的优势得到发挥,学习有困难的学生得到帮助,两者都得到发展,两者的差距缩小,两者都体验到成功,教师面向全体的目标也得到实践。(但我在听课的时候听到旁边的老师私底下说“我都教不会,学生之间就能教会吗?”)真是这样吗?请老师们思考一下。

下载案例分析_现实数学观与生活数学观_电大_小学数学教学研究word格式文档
下载案例分析_现实数学观与生活数学观_电大_小学数学教学研究.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    小学数学观课报告

    小学数学观课报告 本次研修我观摩学习了薛老师的《平行四边形的面积》、刘老师的《小数的近似数》、渠老师的《用比例解决问题》这三节课的课堂实录,这几位老师的教学基本功......

    小学数学观课报告

    本次研修我观摩学习了《鸡兔同笼问题》《认识比例尺》《积的变化规律》,这三节课的课堂实录,这几位老师的教学基本功都很扎实,教学目标明确,教学思路、教学步骤清晰 ,有着极强的......

    小学数学观课报告

    小学数学两位数减两位数的观课观课报告 我认真观摩了三位老师的三节课课,课堂教学风格各有千秋,都浸润着浓浓的求知精神和探索理念,真实、朴实、扎实、生活化的数学课堂都是各......

    电大 小学数学教学研究 复习题(含五篇)

    电大 小学数学教学研究 复习题 一、单项选择题 1.下列不属于数学素养基本特征的是( 精确性 )。 2.下列不属于我国21世纪小学数学新课程突出体现的理念的是(严谨性)。 3.下列不属于......

    数学有效观课议课的案例分析范文合集

    数学有效观课议课的案例分析 ——牛龙 案例:议潘红梅老师的一节校内公开课 周老师(教研组长):昨天潘老师为我们上了一节公开课-----------“平行四边形”,请大家根据自己的听课记......

    小学数学案例分析汇总[本站推荐]

    分数的意义案例分析 魏士会 “分数的意义”是青岛版小学数学课本第九册的内容,这部分教材是在学生初步认识了分数的基础上,通过学习使学生从感性认识上升到理性认识,理解单......

    小学数学案例分析

    小学数学案例分析 1、案例描述 两位教师上《圆的认识》一课。 教师A在教学“半径和直径关系”时,组织学生动手测量、制表,然后引导学生发现“在同一圆中,圆的半径是直径的一半......

    小学数学案例分析

    小学数学案例分析 1、[案例描述]《带分数乘法》教学片断: ⒈学生根据应用题“草坪长5米,宽2米,求草坪的面积。”列出算式:5×2 ⒉算式一出现,教师就立即组织四人小组交流算法。......