第一篇:《列方程解决相遇问题练习课》教学设计
教学内容:
教材p82练习十七第10、12、14、15题。
教学目标:
知识与技能:
1.巩固相遇问题的解题方法。
2.培养学生初步的逻辑思维能力和解决稍复杂的行程问题的能力。
过程与方法:
经历列方程解决相遇问题的练习过程,进一步提高学生分析问题、解决问题的能力。
情感、态度与价值观:在学习活动中,激发学生的学习兴趣,培养学生的抽象思维能力,体会数学的应用价值。
教学重点:
熟练掌握相遇问题的解题方法。
教学难点:
找等量关系,掌握列方程的方法。
教学方法:
练习讲解。练习巩固。
教学准备:
多媒体。
教学过程
一、复习回顾
上一节课我们学习了列方程解相遇问题,那谁能说一下列方程解相遇问题的关键是什么?(学生讨论交流,然后指名回答。)
教师小结:列方程解相遇问题的关键在于找准题目中的数量关系。
今天我们就通过几道习题来巩固一下用方程解相遇问题的解题方法。
二、练习讲解
1.易错题分析
出示:甲乙两地相距660千米,一辆货车的速度是每小时行32千米,一辆客车的速度是每小时行34千米,两车分别从甲乙两地同时出发相向而行,经过几小时相遇?
易错原因:学生在解决相遇时间的问题中,能很好地利用等量关系式列方程,但在列方程时,部分学生对方程的格式书写不够规范。
学生尝试解答: 解:设经过x 小时两车相遇。
(32+34)x =660
x =10 答:经过10小时相遇。
教师小结:列方程解求速度、相遇时间等问题时,首先要根据以前学习的相遇问题中数量间的相等关系,设未知数列方程,再正确地解答。
2.教材第82页练习十七第12题。
组织学生阅读题目,获取题目的有用信息。
教师:怎样列方程解决这个问题呢?
组织学生独立思考后,在小组中交流解决问题的思路。
学生根据总路程=(甲车速度+乙车速度)×相遇时间列出算式,指名汇报。教师根据学生汇报板书:
<<<12&&&解:设乙车每小时行x 千米。
3.5(68+x)=455
x =62
三、巩固拓展
1.画线段图解决稍复杂的行程问题
出示:甲、乙两城相距420km,一辆汽车从甲城开往乙城,一辆摩托车同时从乙城开往甲城。汽车每小时行驶75km,3小时后两车相距15km。摩托车每小时行驶多少千米?
学生阅读题目,理解题目意思。
思路导引:
情况一:两车行驶3小时未相遇,两车还相距15km。用线段图表示:
根据上面的线段图可知:汽车3小时行驶的路程+摩托车3小时行驶的路程+15km=甲、乙两城之间的距离。由这个等量关系可以列出相应的方程。
情况二:两车相遇后,又继续行驶,两车相距15km。用线段图表示:
根据上面的线段图可知:汽车3小时行驶的路程+摩托车3小时行驶的路程-15km=甲、乙两城之间的距离。由这个等量关系可以列出相应的方程。
学生尝试解答:
教师小结:通过线段图,找出两车相距15km存在的两种情况是解答本题的关键。
3.教材第82页练习十七第15*题。
学生先自己看图,从图中获取信息,找出等量关系并列方程。对学生有疑问的地方教师予以解惑。
四、课堂小结。
经过这节练习课,你是不是对列方程解决相遇问题有了更深有了更深的了解。
作业:教材第82页第10、14题。
板书设计:
练习十七(2)
总路程=(甲车速度+乙车速度)×相遇时间
汽车3小时行驶的路程+摩托车3小时行驶的路程+15km=甲、乙两城之间的距离
汽车3小时行驶的路程+摩托车3小时行驶的路程-15km=甲、乙两城之间的距离 <<<12&&&
第二篇:《列方程解决相遇问题》教学设计
列方程解决相遇问题
教学内容:
五年级上教材79页例题5 教学目标:
1、结合具体事例,经历自主尝试列方程解决稍复杂的相遇问题的过程。
2、利用线段图分析题意,找出等量关系列方程并解答,感受解题方法的多样化。
3、体验用方程解决问题的优越性,获得自主解决问题的积极情感,增强学好数学的信心。
教学重点:掌握列方程解决相遇问题的解题方法。
教学难点:利用画线段图的方法帮助学生分析理解等量关系。
一、创设情景
师:生活当中的数学无处不在,钟老师在教师里走一走,我就能走出一个数学问题出来。钟老师一分钟走60米,走了5分钟,一共走了走多少米?(300米)一分钟走60米在我们的数学当中有一个重要的名字叫什么(速度),走了5分钟就是(时间),一共走了多少就是我们求的(路程),那速度,时间,路程三者之间有什么样的数量关系。
师板书:速度×时间=路程 师:老师这么一走就走出了一个数量关系式,这是我们以前所学的知识,今天我们就在这个关系式的基础上我们来研究点新的问题(板书:相遇问题)
二、新授 小黑板出示例题5 小林:小林每分钟骑250m。
小云每分钟骑200m。
小林家和小云家相距4500m。周日早上9:00 两人分别从家骑自行车相向而行,两人几分钟后相遇?
1、学生读题,学生边读边分析题意,找出已知条件和所求问题。(知道了路程和每个人的速度,求相遇的时间)
在这里有几个关键的词我们要理解一下,相距,相向,相遇,同时。
相距就是小云家和小林家的距离,相向就是两个人面对面站着,相遇就是两个人碰到一起了。同时就是同时出发。
2、利用线段图分析题意。
师:在数学当中我们可以利用线段图来分析题意,我们可以画一条线段来表示小林家和小云家的距离。用箭头表示他们行走的方向,他们是在怎么行走的在哪里相遇了,哪个同学愿意到黑板上把他们行走的过程演示出来。他们在哪里相遇了,在靠近小云家的中间相遇了。
3、根据线段图写出数量关系式
借助线段图我们很清楚的可以看出左边这一段距离是小林骑的路程,右边这一段距离是小云骑的路程,而他们两个人的路程合起来就是小云家和小林家的距离,我们可以把他们叫做总路程。现在同学们能根据这个线段图写出一个等量关系式吗?
小林骑的路程+小云骑的路程=总路程 小林骑的速度×相遇时间+小云骑的速度×相遇时间=总路程 小林和小云骑的速度我们知道,总路程也知道,只有时间
不知道,而时间就是我们题目中要求的问题,所以我们可以把这个要求的未知量设为x,现在同学们可以用我们所学的方法来解决这个这个问题吗,有哪个同学愿意到黑板上来展示吗。
4、根据关系式列出方程并解方程 方法一
解:设两人x分钟后相遇。
250x+200x=4500
450x÷450=4500÷450
x=10 答:两人10分钟可以相遇.方法二
解:设两人x分钟后相遇。
(250+200)x=4500
450x÷450=4500÷450
x=10 答:两人10分钟可以相遇.疑问:方法二是什么意思,250加200是什么意思了,是一分钟他们走的总路程,他们一分钟走了多少米,一分钟走了450米,就是一个450,2分钟就是2个450,x分钟就是x个450,也就是4500米。
5、教师小结:刚才我们利用画线段图的方法分析了题意,然后根据线段图和速度、时间、路程的数量关系,找到了等量关系式,列出了方程。这就是我们今天学习的列方程解决相遇问题(板书列方程解决相遇问题)接下来我们就利用刚才解决问题方法再来解决一些实际问题。
三、巩固练习
两列火车从相距570千米的两地同时相向开出。甲车每小时行110千米,乙车每小时行80千米。经过几小时两车相遇?
解:设经过x小时两车相遇。110x+80x=570 X=3 方法二:(110+80)=570 X=3 哪位同学将你的解题过程分享一下。
四、课堂小结
1、这节课你学会了什么知识?有哪些收获?
2、引导总结:
a.学会了用线段图累分析题意找出数量关系。b.学会了用两种方法来解决相遇问题。
第三篇:列方程解决相遇问题教案
列方程解决相遇问题
教学目标:
1、结合具体事例,经历自主尝试列方程解决稍复杂的相遇问题的过程。
2、利用线段图分析题意,找出等量关系列方程并解答,感受解题方法的多样化。
3、体验用方程解决问题的优越性,获得自主解决问题的积极情感,增强学好数学的信心。教学重点:掌握列方程解决相遇问题的解题方法。
教学难点:利用画线段图的方法帮助学生分析理解等量关系。教学过程
一、创设情境
1、复习
老师让薛奎志从后面走前来,你一分钟能走多少米?(100米)。一分钟能走100米,在数学中我们叫什么?(速度)谁能接着提问?10分钟走1000米,1000米叫什么?(路程)那路程、速度、时间之间的数量关系有什么样的数量关系呢?(出示幻灯片)
2、认识相遇
这是我们以前学过的,老师再叫两个同学上来,分别站在两边面对面,注意观察他们是怎么走的?听老师说开始走,直到碰面为止。他们两个碰了面就叫相遇。相遇时两个人的距离为零。像这样具有“两物、同时从两地相对而行”这种运动特点的行程问题,叫做行程问题中的“相遇问题”。(板书:相遇问题)
3、相遇问题与以前学习的行程问题有什么不同?(以前学习的行程问题是研究一个物体的运动情况,相遇问题是研究两个物体同时运动的情况。)
二、新授
出示例题
1、学生读题,学生边读边分析题意,找出已知条件和所求问题。(知道了路程和客车的速度,相遇的时间,求货车的速度)
在这里有几个关键的词我们要理解一下,相距,相向,相遇,同时。相距就是客车和货车的距离,相向就是两辆车面对面行驶,相遇就是两辆车碰面。同时就是同时出发。
2、利用线段图分析题意。
师:在数学当中我们可以利用线段图来分析题意,我们可以画一条线段来表示客车和货车的距离。用箭头表示他们行驶的方向。
3、根据线段图写出数量关系式
借助线段图我们很清楚的可以看出左边这一段距离是客车的路程,右边这一段距离是货车的路程,而他们两辆车的路程合起来就是客车和货车的距离,我们可以把他们叫做总路程。现在同学们能根据这个线段图写出一个等量关系式吗?
客车行的路程+货车行的路程=总路程
客车的速度×相遇时间+货车的速度×相遇时间=总路程客车的速度我们知道,总路程,相遇时间也知道,只有货车的速度不知道,而货车的速度就是我们题目中要求的问题,所以我们可以把这个要求的未知量设为x,现在同学们可以用我们所学的方法来解决这个这个问题吗,有哪个同学愿意到黑板上来展示吗。
4、根据关系式列出方程并解方程 方法一: 疑问:方法二是什么意思,95加X是什么意思呢,是客车与货车1小时行驶的路程,把它看作一个整体,叫速度和。那么几个这样的速度和就等于总路程呢?3小时就是3个95加X米。
5、教师小结:刚才我们利用画线段图的方法分析了题意,然后根据线段图和速度、时间、路程的数量关系,找到了等量关系式,列出了方程。这就是我们今天学习的列方程解决相遇问题(板书列方程解决相遇问题)接下来我们就利用刚才解决问题方法再来解决一些实际问题。
三、巩固练习
打开课本15页练一练
四、课堂小结
1、这节课你学会了什么知识?有哪些收获?
2、引导总结:
a.学会了用线段图分析题意找出数量关系。
b.学会了用两种方法来解决相遇问题。
第四篇:《列方程解决稍复杂的相遇问题》教学设计
《列方程解决稍复杂的相遇问题》教学设计
教学目标:
1、结合具体事例,经历自主尝试列方程解决稍复杂的相遇问题的过程。
2、能根据相遇问题中的等量关系列方程并解答,感受解题方法的多样化。
3、体验用方程解决问题的优越性,获得自主解决问题的积极情感,增强学好数学的信心。
教学重点:正确地寻找数量之间的相等关系。
教学难点:掌握列方程解具有两积之和(或差)的数量关系的应用题的解法。
教学过程:
一、激发
1.在相遇问题中有哪些等量关系? 板书:甲速×相遇时间+乙速×相遇时间=路程(甲速+乙速)×相遇时间=路程
2.出示复习题:甲乙两列火车分别同时从北京和上海开出,相向而行。甲车每小时行122千米,乙车每小时行87千米,经过7小时相遇。北京到上海的路程是多少千米?
生做完后,指名说一说自己是怎样解答的,师画出线段图,并板书出两种解法。
甲车相遇乙车
每小时122千米每小时87千米 北京上海
第一种解法:用两车的速度和×相遇时间:(122+87)×7
第二种解法:把两车相遇时各自走的路程加起来:122×7+87×7
3.揭示课题:如果我们把复习准备中的第2题改成“已知两地之间的路程、相遇时间及其中一辆车的速度,求另一辆车的速度”,要求用方程解,又该怎样解答呢?这节课我们就来学习列方程解相遇问题的应用题。(板书课题)
二、尝试
1.出示例题:北京到上海的路程是1463千米,甲乙两列火车分别同时从北京和上海开出,相向而行。乙车每小时行87千米,经过7小时相遇。甲车每小时行多少千米?
2.指名读题,找出已知所求,引导学生根据复习题的线段图画出线段图。3.根据线段图学生找出数量间的相等关系:
甲车7小时行的路程+乙车7小时行的路程=1463千米 4.设未知数列方程并解答。
解:设甲车平均每小时行x千米。87×7+7x=1463 609+7x=1463 7x=1463-609 7x=856 x=856÷7 x=122 答:甲车平均每小时行40千米。
4.启发学生用不同方法列方程,并说说方程所表示的数量关系。表示相遇时,两车的速度和与时间的积等于两地间铁路的长度。
三、应用
试一试,试着让学生列出两种方程,如: 32x+32×7=480,480-32x=32×7
四、体验
相遇问题中求速度的应用题,列方程解比较简便。列方程解求速度、时间等问题时,首先要根据以前学习的相遇问题中数量间的相等关系,设未知数列方程,再正确地解答。
五、作业 练一练
教学后记:
这节课的最大特点是演示取代了教师的讲解和灌输,激发了学生浓厚的学习兴趣和求知欲望,学生学得比较轻松、愉快。不仅掌握了应用题的两种解答方法,而且明白了知识的形成过程,也培养学生自主探究、合作交流的意识和提出问题、分析问题、解决问题的能力。通过这节课,我体会到学生学习需要经历亲身的体验,才能获得切实的感受,感受越深,理解数学知识
第五篇:列方程解决行程问题教学设计
《列方程解决行程问题》教学设计
一.教学内容:
人教版五年级上册第79页例5.二.教学目标:
知识与目标:结合具体事例,列出方程解决稍复杂的相遇问题。
过程与方法:根据相遇问题中的等量关系列方程并解答,感受解题方法的多样化。
情感态度与价值观:体验列方程解决问题的价值,增强学好数学的自信心。注重数学练习生活实际,快乐学习列方程解决行程问题。
三.教学重难点:
教学重点:正确寻找数量间的等量关系式。
教学难点:创设情境提高学生的学习兴趣,并利用画线段图的方法帮助学生分析理解等量关系。
四:教学过程: 1 复习导入
(1)教师:我们学过有关路程的问题,谁来说一说路程,速度,时间之间的关系?
学生:速度×时间=路程。(2)引导学生:一般情况下,咱们算的路程问题都是向同一个方向走的。那么,想一想,如果两个人同时从一段路的两端出发,相对而行,会怎样?(相遇)(3)揭示主题:今天我们就利用方程来研究相遇问题。2 互动新授
1.出示教材第79页例5.小林家和小云家相距4.5km。周日早上9:00 两人分别从家骑自行车相向而行,两人何时相遇?
教师提出问题:1,从图中你得到了哪些数学信息?
2,你们有不明白的地方吗?
(理解“相距”,“相向而行”,“相遇”含义)
3,你能用图把这道题的意思表示出来吗? 引导学生观察,并思考题中的已知条件和要求的问题是什么? 学生思考讨论了一段时间后 学生:我知道了题目中的已知信息是:小林每分钟骑250m,小云每分钟骑200m.小林和小云相距4,5km。问题:两人何时相遇? 学生:“相距”是说两地之间的距离;“相向而行”是他们两人互相面对着面而行;“相遇”是他们两人碰到了一起。学生:用线段图表示为
老师:对,你们很棒!回答的很正确。
教师:有同学知道这副线段图表示的意思吗?你们用手比划比划这两个人。他们是怎么走的,边比划边说说。
同学用手比划:两地 同时 相对(相向)相遇
活动:让学生上台走一走演示相遇,并用画线段图的方法分析数量关系。
老师提出问题:你能解决这个问题吗?请你独立列式解答,如果有困难,可以和小伙伴商量商量。
教师引导学生:这里的路程已经不是一个人行驶的了,而是两个人行驶的路程之和。相遇的时间就是两个人共同行驶全程用的时间。
学生交流汇报:小林骑的路程+小云骑的路程=总路程。教师质疑:现在能不能求出小林骑的路程和小云的路程呢? 引导学生汇报:都不能求出,因为他们行驶的时间不知道。再思考:他们俩行驶的时间一样吗?为什么?
学生交流后会发现:他们是同时出发,所以相遇时行驶的时间应该是一样的,可以把他们行驶的时间都设为x.教师让学生根据分析,尝试列方程解答问题。小组交流,汇报,教师根据学生的汇报板书: 小林骑的路程+小云骑的路程=总路程 解:设两人x分钟后相遇。
0.25x+0.2x=4.5
0.45x=4.5
X=10 答:两人在9:10相遇。
教师:你们还有没有其他的方法,思考交流一下。学生交流汇总:学生1:
(两边的路程分别分成了若干段,分别表示每一分钟行驶的路程)
学生2:
两人每分钟骑的路程和)×x=总路程
解:设两人x分钟后相遇。
(0.25+0.2)x=4.5
0.45x=4.5
X=10 答:两人在9:10相遇。
教师提问:你们是怎样想出来的,这每一步是怎样来的。这一段一段的路程表示什么? 学生思考交流汇总:
学生:可以先求总速度,就是他们两人一分钟骑的总路程,相遇时间一样,再乘以一起骑的时间(相遇时间)就是他们一共骑的路程。设相遇时间为x.教师:真聪明,你回答的真棒!
教师引导学生对这两种方法进行比较:通过比较可以知道这两种方法是运用了乘法分配律。引导小结:在相遇问题中有哪些等量关系? 甲的路程+乙的路程=总路程
(两人每分钟骑的路程和)×相遇时间=总路程 3.巩固拓展
教师出示例题:
两个工程队同时开凿一条675m长的隧道,各从一端相向施工,25 天打通。甲队每天开凿12.6m,乙队每天开凿多少米?
教师引导:1 自己读题,找出已知所求,引导学生画出线段图
2.用方程如何解决这个问题?自己试着做一做。
学生自己独立思考动手完成。
若干分钟后对学生的解题过程汇总: 学生:解:设乙队每天开凿x米。
(12.6+x)×25=675
12.6+x=675÷25
12.6+x=27
12.6+x-12.6=27-12.6
X=14.4 答:乙队每天开凿14.4米。4 课堂总结
教师:这节课你学会了什么知识?有哪些收获? 引导总结:
①通过画线段图可以清楚的分析数量之间的相等关系。
②解决相遇问题要用数量关系:甲速×相遇时间+乙速×相遇时间=路程;(甲速+乙速)×相遇时间=路程。
③列方程解求速度,相遇时间等问题时,首先要根据以前学习的相遇问题中数量间的相等关系,设未知数列方程,再正确的解答。5 作业
完成课本上第82页11,12,13,14题。
(谢谢)
设计人:沙口镇下新河中学 杨燕
2017年12月9日