第一篇:用方程解决相遇问题
“用方程解决相遇问题”教学设计
教学内容:教材P79例5及练习十七第11、12、13题。教学目标:
知识与技能:结合具体事例,学生自主尝试列方程解决稍复杂的相遇问题。
过程与方法:根据相遇问题中的等量关系列方程并解答,感受解题方法的多样化。
情感、态度与价值观:体验用方程解决问题的优越性,获得自主解决问题的积极情感,增强学好数学的信心。教学重点:正确寻找数量间的等量关系式。
教学难点:创设情境提高学生的学习兴趣,并利用画线段图的方法帮助学生分析理解等量关系。
教学方法:创设情境、知识迁移、自主探究、合作交流。教学准备:多媒体。教学过程
一、复习导入
1.复习:我们学过有关路程的问题,谁来说一说路程、速度、时间之间的关系?
学生回答:路程=速度×时间。
2.引导:一般情况下,咱们算的路程问题都是向同一个方向走的。那么,想一想,如果两个人同时从一段路的两端出发,相对而行,会怎样?(相遇)
3.揭题:今天我们就利用方程来研究相遇问题。
二、互动新授
1.出示教材第79页例5。
引导学生观察,并思考题中的已知条件和要求的问题是什么? 学生自主回答:已知:小林和小云家相距4.5千米,小林的骑车速度是每分钟250m,小云的骑车速度是每分钟200m。问题:两人何时相遇?
2.质疑:求相遇的时间是什么意思?
引导学生明白:这里的路程已经不是一个人行驶了,而是两个人行驶的路程之和。相遇的时间就是两个人共同行使全程用的时间。
3.活动:让学生上台走一走演示相遇,并用画线段图的方法分析数量关系。
出示线段图,教师讲解线段图:
先用一条线段表示全程,小林与小云分别从相对的方向出发,经过一段时间后相遇,也就是行完了全程。
追问:从线段图中,你知道了什么?
学生交流,汇报:小林骑的路程+小云骑的路程=总路程。4.质疑:现在能不能求出小林骑的路程和小云的路程呢? 引导学生汇报:都不能求出,因为他们行驶的时间不知道。再思考:他们两个行驶的时间一样吗?为什么?
学生交流后会发现:他们是同时出发,所以相遇时行驶的时间应该是一样的,可以把他们行驶的时间都设为x。
5.让学生根据分析,尝试列方程解答问题。
小组交流,汇报,教师根据学生的汇报板书(见板书设计): 引导学生对这两种方法进行比较:通过比较可以知道这两种方法是运用了乘法分配律。
引导小结:在相遇问题中有哪些等量关系? 板书:甲速×相遇时间+乙速×相遇时间=路程
(甲速+乙速)×相遇时间=路程
三、巩固拓展
书上第82页第12题:两地间的路程是455千米.甲、乙两辆汽车同时从两地开出,相向而行,经过3.5小时相遇。甲车每小时行68千米,乙车每小时行多少千米?
学生读题,找出已知所求,引导学生根据例题的线段图画出线段图,并解答。
解:设乙车平均每小时行x 千米。
3.5x+ 68×3.5 =455
x =135 答:甲车平均每小时行135千米。
四、课堂小结
师:这节课你学会了什么知识?有哪些收获? 引导总结:
1.通过画线段图可以清楚地分析数量之间的相等关系。2.解决相遇问题要用数量关系:甲速×相遇时间+乙速×相遇时间=路程;(甲速+乙速)×相遇时间=路程。
3.列方程解求速度、相遇时间等问题时,首先要根据以前学习的相遇问题中数量间的相等关系,设未知数列方程,再正确地解答。
五、作业:教材第82页练习十七第11、13题。
板书设计:
用方程解决相遇问题
小林骑的路程+小云骑的路程=总路程 解:设两人x 分钟后相遇。
方法一:0.25x +0.2x =4.5
方法二:(0.25+0.2)x =4.5
0.45x =4.5
0.45x =4.5
0.45x ÷0.45=4.5÷0.45
0.45x ÷0.45=4.5÷0.45
x =10
x =1O 答:两人10分钟后相遇。
甲速×相遇时间+乙速×相遇时间=路程(甲速+乙速)×相遇时间=路程
第二篇:相遇问题教学设计方程
篇一:《列方程解相遇问题》教学设计
《列方程解相遇问题》教学设计
教学目标:
教学过程:
一、激趣导入
1.在相遇问题中有哪些等量关系? 板书:甲速×相遇时间+乙速×相遇时间=路程(甲速+乙速)×相遇时间=路程
北京
甲每小时行122千米
乙每小时行87千米
?千米
第一种解法:用两车的速度和×相遇时间:(122+87)×7 第二种解法:把两车相遇时各自走的路程加起来:122×7+87×7
二、探究尝试
2.指名读题,你了解了哪些数学信息和要解决什么问题?
北京
甲每小时行?千米
乙每小时行87千米 1463千米
4.根据线段图学生找出数量间的相等关系:
可能出现:
甲车7小时行的路程+乙车7小时行的路程=1463千米
甲车7小时行的路程=1463千米—乙车7小时行的路程甲乙的速度和×相遇时间=1463千米
87×7+7x=1463 609+7x=1463 7x=1463-609 7x=856 x=856÷7 x=122
7x=1463—87×7或(x+87)=1463 6.汇报时启发学生用不同方法列方程,并说说方程所表示的数量间相等关系。
三、应用实践
师:请同学们完成试一试
学生审题,试着列出三种方程,如: 32x+32×7=480 480-32x=32×7 32x=32×7-480
四、生活体验
练一练1、2题
五、全课总结
师:这节课你有哪些收获?
学生汇报
教师小结:相遇问题中求速度的应用题,列方程解比较简便。篇二:小学 数学_学科_列方程解应用题(相遇问题)_教学设计
小学 数学_学科_列方程解应用题(相遇问题)_教学设计
闵行区中心小学 _乔轶卿_ 教学目标:
1、在理解题意的基础上寻找等量关系,初步掌握列方程解“相遇问题”的应用题。
2、学会借助线段图,帮助对解意的理解,并在探究的过程中初步构建行程问题的结构。
教学重点:思考等量关系甲的路程+乙的路程=相距的路程
教学难点:借助线段图正确分析行程问题中未知量与已知量之间的等量关系 教学准备: 教师准备:媒体课件
学生准备:掌握运用线段图帮助分析应用题等量关系的方法 教材分析:
学生对于一个物体的行程问题已经熟练掌握了,能通过“路程”、“速度”、“时间”三个量之间的关系灵活运用解决,而两个物体的行程问题学生第一次接触。
篇三:小学 数学_学科_列方程解应用题(相遇问题)_教学设计
小学 数学_学科_列方程解应用题(相遇问题)_教学设计
闵行区中心小学 _乔轶卿_ 教学目标:
1、在理解题意的基础上寻找等量关系,初步掌握列方程解“相遇问题”的应用题。
2、学会借助线段图,帮助对解意的理解,并在探究的过程中初步构建行程问题的结构。
教学重点:思考等量关系甲的路程+乙的路程=相距的路程
教学难点:借助线段图正确分析行程问题中未知量与已知量之间的等量关系 教学准备: 教师准备:媒体课件
学生准备:掌握运用线段图帮助分析应用题等量关系的方法 教材分析:
学生对于一个物体的行程问题已经熟练掌握了,能通过“路程”、“速度”、“时间”三个量之间的关系灵活运用解决,而两个物体的行程问题学生第一次接触。
第三篇:用方程解决实际问题归纳总结
龙文教育-----您值得信赖的专业化个性化辅导学校
龙文教育学科导学案
教育是一项良心工程 2
教育是一项良心工程 3
教导主任签字: ___________
龙文教育教务处
龙文教育课堂检测
完成周末作业
教育是一项良心工程 4
第四篇:列方程解决相遇问题教案
列方程解决相遇问题
教学目标:
1、结合具体事例,经历自主尝试列方程解决稍复杂的相遇问题的过程。
2、利用线段图分析题意,找出等量关系列方程并解答,感受解题方法的多样化。
3、体验用方程解决问题的优越性,获得自主解决问题的积极情感,增强学好数学的信心。教学重点:掌握列方程解决相遇问题的解题方法。
教学难点:利用画线段图的方法帮助学生分析理解等量关系。教学过程
一、创设情境
1、复习
老师让薛奎志从后面走前来,你一分钟能走多少米?(100米)。一分钟能走100米,在数学中我们叫什么?(速度)谁能接着提问?10分钟走1000米,1000米叫什么?(路程)那路程、速度、时间之间的数量关系有什么样的数量关系呢?(出示幻灯片)
2、认识相遇
这是我们以前学过的,老师再叫两个同学上来,分别站在两边面对面,注意观察他们是怎么走的?听老师说开始走,直到碰面为止。他们两个碰了面就叫相遇。相遇时两个人的距离为零。像这样具有“两物、同时从两地相对而行”这种运动特点的行程问题,叫做行程问题中的“相遇问题”。(板书:相遇问题)
3、相遇问题与以前学习的行程问题有什么不同?(以前学习的行程问题是研究一个物体的运动情况,相遇问题是研究两个物体同时运动的情况。)
二、新授
出示例题
1、学生读题,学生边读边分析题意,找出已知条件和所求问题。(知道了路程和客车的速度,相遇的时间,求货车的速度)
在这里有几个关键的词我们要理解一下,相距,相向,相遇,同时。相距就是客车和货车的距离,相向就是两辆车面对面行驶,相遇就是两辆车碰面。同时就是同时出发。
2、利用线段图分析题意。
师:在数学当中我们可以利用线段图来分析题意,我们可以画一条线段来表示客车和货车的距离。用箭头表示他们行驶的方向。
3、根据线段图写出数量关系式
借助线段图我们很清楚的可以看出左边这一段距离是客车的路程,右边这一段距离是货车的路程,而他们两辆车的路程合起来就是客车和货车的距离,我们可以把他们叫做总路程。现在同学们能根据这个线段图写出一个等量关系式吗?
客车行的路程+货车行的路程=总路程
客车的速度×相遇时间+货车的速度×相遇时间=总路程客车的速度我们知道,总路程,相遇时间也知道,只有货车的速度不知道,而货车的速度就是我们题目中要求的问题,所以我们可以把这个要求的未知量设为x,现在同学们可以用我们所学的方法来解决这个这个问题吗,有哪个同学愿意到黑板上来展示吗。
4、根据关系式列出方程并解方程 方法一: 疑问:方法二是什么意思,95加X是什么意思呢,是客车与货车1小时行驶的路程,把它看作一个整体,叫速度和。那么几个这样的速度和就等于总路程呢?3小时就是3个95加X米。
5、教师小结:刚才我们利用画线段图的方法分析了题意,然后根据线段图和速度、时间、路程的数量关系,找到了等量关系式,列出了方程。这就是我们今天学习的列方程解决相遇问题(板书列方程解决相遇问题)接下来我们就利用刚才解决问题方法再来解决一些实际问题。
三、巩固练习
打开课本15页练一练
四、课堂小结
1、这节课你学会了什么知识?有哪些收获?
2、引导总结:
a.学会了用线段图分析题意找出数量关系。
b.学会了用两种方法来解决相遇问题。
第五篇:用画线段图的方法解决相遇问题
用画线段图的方法解决相遇问题
用画线段图的方法解决相遇问题
数学教学是数学活动的教学,是师生之间、学生之间交往与共同发展的过程。数学教学,还要紧密联系学生的生活实际,从学生的生活经验和已有的知识出发创设生动有趣的情境,引导学生展观察、操作、猜想、推理、交流等活动,使学生通过数学活动,掌握基本的数学知识和技能,初步学会从数学的角度观察事物、思考问题,激发对数学的兴
趣,以及学好数学的愿望。
相遇问题是在学习了速度、时间和路程的数量关系的基础上进行教学的,由一个物体运动的特点和数量关系为基础来探索两个物体运动的特点和数量关系。对于相遇问题对学生来讲可能是一个难点,那么如何更好的理解数量之间的关系就成了学懂这一知识点的关键。例题:小林家和小云家相距4.5千米。周日早上9:00两人分别从家骑自行车相向而行,两人何时相遇?对于这节课的教学首先要让学生理解例题中的各数量关系,这样学生才会有着手处,知道了路程和每个人的速度,才能够求相遇的时间。随后我们就引入最直观的画图法,也就是先画线段图来分析熟练关系。通过画线段图可以清楚地分析数量之间的相等关系,再利用我们以往学过的用速度、时间和路程的数量关系来列方程,最后达到解决相遇问题的目的。用画线段图分析数量关系的方法,可以使学生感受到数学的学习原来是可以这样直观、简单、易于解决的,从而增强学生学好数学的信心,激发学生学习数学的兴趣。
不仅如此,为了让让学生在活动中学数学这一思想,我需要创设了走路的情境,先是一个人走路,让学生带着问题观察、思考,复习速度、时间、路程的有关计算,为新课的学习做好铺垫。接着是两个人走路,两个人相对而立,同时出发,直到相遇为止。让学生观察后描述他们走路的情况,揭示出同时、相对、相遇等术语的含义。进而探究两个人走路中的实际问题,即相遇问题。根据本班学生特点,我让两名同学演示相遇问题,并用线段图模拟过程,让学生理解两者所用时间是相等的,总得路程也是两个人路程之和。这样问题就顺利解决了。举一反三,让学生用画线段图的方法来自学解决相向运动求路程的,相背运动求路程的等数学问题。