第一篇:分数_教学设计_教案
教学准备
1.教学目标
1、进一步理解几分之一和几分之几,发展分数的概念。
2、会用分数表示整体与部分的关系。
3、体会数的发展源于生活、生产实际的需要。
2.教学重点/难点
1、进一步了解几分之一和几分之几,发展分数的概念。
2、会用分数表示整体与部分的关系。
3.教学用具
教学课件
4.标签
教学过程
一、新课导入(一)情景引入
1、师:同学们去秋游,在农家乐帮农民伯伯摘梨子,一共有10个梨子,小胖摘了1个,小巧摘了7个。那么他们的数量各占这堆梨的几分之几呢?
师小结:把一堆梨看作一个整体,其中的一份就使这个整体的几分之一;其中的几份就是这个整体的几分之几。(二)出示课题
师:今天我们继续来学习分数的有关知识。(出示课题:分数)
二、新课探究(一)探究一
师:观察图。小丁丁摘了几个梨? 小丁丁说:1/5的梨是我摘的。师:小丁丁说得对吗? 同学们谈论,汇报交流。
师:把梨平均分成5分,1/5就是其中的一份。师:小丁丁摘了几个梨呢?
师小结:把梨平均分成5分,1/5就是其中的一份,小丁丁摘了2个梨。(二)、探究二 出示图片
师:涂色部分的批萨占整个批萨的几分之几? 谁说得对呢? 小胖认为是1/6 小丁认为 是 1/4 小巧认为是1/8 现在可以看出披萨被平均分成了8份,涂色部分是其中的一份,小巧的答案是正确的。
小结:我们可以把一样物体看成一个整体,也可以把一群物体看成一个整体。
三、课内练习练习一
学生观察每一个图形,说出红色部分所表示的 分数。
练习二
师:我为大家准备了大小不同的图片,请大家分别涂出2/5、4/5 师:通过刚才的操作你发现了什么?
生:2/5表示将一个物体平均分成5份,涂色部分只占其中的2份; 生:4/5表示将一个物体平均分成5份,涂色部分只占其中的4份;
练习三
用笔圈出整体的1/4,集体订正。
练习四
有几个鹅宝宝被妈妈挡住了,小白鹅和小黑鹅原有几只? 提醒学生认真观察图片。
课堂小结
1.通过学习我们进一步了解几分之一和 几分之几的概念,加深对分数的认识。2.对分数在生活中的作用有了了解。
第二篇:分数除法_教学设计_教案
教学准备
1.教学目标
1.知识目标:使学生经历探索分数除以分数的计算方法的过程,理解并掌握分数除以分数的计算方法。
2.能力目标:使学生在探索分数除以分数计算方法的过程中,能正确计算分数除以分数的试题。
3.情感目标:进一步理解分数除法的意义,体会数学知识之间的内在联系。
2.教学重点/难点
理解分数除以分数的计算方法,能正确地进行计算;并能总结、归纳出分数除法的计算法则。
3.教学用具
课件
4.标签
教学过程
一、复习引新。1.口算。
2.揭示课题: 分数除以分数
二、教学例4.1.出示例4,学生读题,列式。
提问:这是已知什么,要求什么?用什么方法计算? 追问:为什么用除法计算?怎样列式? 2.引导探索:分数除以整数怎么算呢?
各自在书上的长方形里分一分,画一画。
(2)指名到黑板上画一画,使大家清楚地看出是3瓶。
(3)讨论:分数除以整数,能不能用被除数乘除数的倒数来计算呢?
你发现了什么? 4.概括方法
联系前面学习的分数除以整数和整数除以分数的计算,你能说出分数除以分数的计算方法吗?
三、练习。1.做“练一练”第2题。各自练习,并指名板演,练习后评议交流。2.做练习十一第10题。独立完成,并指名板演,练习后评议交流。
3.讨论练习十一第11题。思考:什么情况下,除得商比被除数小?什么情况下,除得的商比被除数大?
4.讨论练习十一第12题:不计算,用发现的规律直接判断左边的式子和右边数的大小。
四、作业。
练习十一第9、13、14题。
课后习题 完成课后练习题。
第三篇:分数乘法_教学设计_教案
1.教学目标
1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
2.教学重点/难点
教学重点: 使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。教学难点: 引导学生总结分数乘整数的计算法则。
3.教学用具 4.标签
教学过程
一、复习
出示复习题。
1.根据题意列出算式:
5个12是多少?
3个14是多少?
2.下列句子中那些可以看做单位1 猎豹的速度是狮子的七分之三。
参加合唱队的同学占全班人数的五分之一。红花比黄花多二分之一。十月比九月节约四分之三。
3.计算: 3/10 +3/ 10 + 3/10 = 3/10 + 3/10+ 3/10 这题我们还可以怎么计算? 今天我们就来学习分数乘法。
二、新授
1、利用 3/10 + 3/10 + 3/10 教学分数乘法。
(1)这道加法算式中,加数各是多少?(都是3/10)
(2)表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法,3/10 ×3)
(3)3/10 +3/10+ 3/10=9,那么 3/10 + 3/10 + 3/10= 3/10 ×3,所以3/ 10 ×3=____________=9。同学们想想看,3/10 ×3=9计算过程是怎样的?
谁能把它补充完整
2、出示例1,(1)理解题意:
引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的 2/11 ”,就是把袋鼠跳 一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2 份就表示人跑一步的距离。
(2)引导学生根据线段图理解,“人跑一步的距离相当于袋鼠跳一下的2/11 ”是 什么意思?如何理解“相当于”?再通过线段图帮助理解。画一条线段,表示袋鼠跳一下的距离。“人跑一步的距离相当于袋鼠
跳一下的2/11 ”,就要把袋鼠跳一下的距离即这一条线段看作单位 “1”,把这条线段平均分成11份,其中的2份就表示人跑一步的距离。求“人跑3步的距离相当于袋鼠跳一下的几分之几?” 就是求3个2/11 是多少?(列式:2/11×3 = 6/11)
有没有更简便的计算方法呢?独立完成。指生板演。出示课件演示。
3、结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数 相乘的积作分子,分母不变。
4、练习:练习完成“做一做”第2题。
5、教学例2
(1)出示3/8×6,学生独立计算。
(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?
(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。
(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。
6.练一练,课件出示,学生独立计算。然后订正。
三、巩固练习
比赛: 第一回合
1、完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约 分,养成先约分在计算的习惯)第二回合
2、“做一做”第3题。(提醒学生,计算前先观察分数的分母与整数是否可以约 分,养成先约分在计算的习惯)
四、课堂总结: 今天你有什么收获?
五、布置作业 : 练习二第1、2、4题。
第四篇:分数教学设计
分数教学设计
分数教学设计1
学习内容:
教材104页例1、例2及做一做。
学习目标:
1、我能理解同分母分数加、减法的算理,学会同分母分数加、减法的计算方法。
2、我能正确计算同分母分数加、减法。
3、我会用所学知识解决实际问题。
学习重点:
理解同分母分数加、减法的算理。
学习难点:
学会同分母分数加、减法的计算方法。
学习准备:
圆纸片
学习过程:
一、检查课前学习,导入新课
二、自主学习,合作探究
1、自学教材104页例1
(1)我得到的数学信息
(2)求爸爸妈妈一共吃了多少张饼?我写的`算式
(3)我是这样想的,得出结果
(4)通过解答,我发现
分数加法的含义与整数加法的含义( )
计算同分母分数加法时,分母( ),分子( )。
2、小组合作学习例2
仔细观察,根据问题,写出算式。
我是这样想的,得出结果:
从计算中,我发现分数减法含义与整数减法含义( ),计算同分母分数减法时,分母( ),分子( )。
3.小组展示,汇报。
4.观察例1和例2,我发现计算同分母分数加减法时,分母( ),分子( )。计算的结果不是最简分数时,应该( )。
5.我能行
完成105页做一做第一题。
分数教学设计2
教学内容:
苏教版义务教育课程标准实验教科书,六上《分数四则混合运算》
教学目标:
1、使学生结合解决实际问题的过程,理解并掌握分数四则混合运算的运算顺序,并能按运算顺序正确计算;主动体会整数运算律在分数运算中同样适用,能运用运算律进行有关分数的简便计算,体验简便运算的优越性。
2、使学生在理解运算顺序和简便计算的过程中,进一步培养观察、比较、分析和抽象概括能力。
3、使学生在学习过程中,体会到数学知识的内在联系,积累数学学习的经验。
教学重点:
分数四则混合运算的顺序。
教学难点:
灵活使用运算律计算分数四则混合运算。
教学过程:
一、复习铺垫,重温整数四则混合运算的运算顺序。
1、板演:5/8×18 1—3/4 4/5÷3/4 2/3+4/7
说说分数四则运算的方法。
2、谈话:中国结是我们中华民族特有的传统工艺制作,元旦时我们班将用它来装扮教室。出示场景图:小的中国结每个用4分米彩绳,大的中国结每个用6分米彩绳。两种中国结各做18个,一共用彩绳多少米?
3、学生口头列式,说说运算顺序。
4、提问:两种方法,哪一种计算更简便?为什么?
4、小结:整数、小数四则混合运算的运算顺序都是先算乘除法,再算加减法。有括号的先算括号里面的。还可以使用运算律使计算更简便。
二、主动探索,理解分数四则混合运算的运算顺序
1、将数据改为例1的场景图,学生自主列出综合算式。
板书:2/5×18+3/5×18 (2/5+3/5)×18
2、交流两种算式的不同思路:列式时你是怎样想的?
3、指出:在一道有关分数的算式中,含有两种或两种以上的运算,称为分数四则混合运算。
这两道算式都属于分数四则混合运算。(板书课题)
4、独立思考,尝试计算
(1)提问:根据以往计算整数、小数四则混合运算的经验,想一想,分数四则混合运算的运算顺序是怎样的?
使学生明确:分数四则混合运算的运算顺序和整数小数四则混合运算的运算顺序相同。
(2)尝试:这两道算式你能试一试吗?
学生分别计算,指名板演。
5、交流算法,理解顺序
让学生结合具体问题情境说说运算顺序。说清先算什么,再算什么。
6、小结:分数四则混合运算的运算顺序和整数四则混合运算的运算顺序相同。也是先算乘除法,再算加减法,有括号的先算括号里面的。
三、算中体验,把整数的运算律推广到分数。
1、讨论:这两个算式,如果让你选择,你喜欢计算哪一个?为什么?
使学生明确第二个算式因为括号内的和是整数,所以计算比较简便。
2、观察:这两种算式有什么联系?
得出:两种方法从算式来看,其实是乘法分配律的运用。
3、引导:两个不同的算式,求的都是“一共用彩绳多少米”。从中,你得到了什么启发?
4、小结:整数的运算律在分数中同样适用。我们在进行分数四则混合运算时,要恰当地应用运算律使计算简便。
四、练习巩固,正确计算。
1、练一练第1题
先让学生说说运算顺序,再计算。
反馈时:可以让学生说说自己的算法,第1题的`除法和乘法你是怎么处理的?
小结:分数四则混合运算的运算顺序和整数四则混合运算的运算顺序相同。但整数四则混合运算通常是一次计算出一个得数,而分数四则混合运算的乘除法连在一起时可以同时运算。
提问:你是怎么检查结果是否正确的?
使学生重温检查的方法,养成习惯:(1)数字、符号有没有抄错;(2)每一步的计算是否正确;(3)书写格式是否规范。
2、练一练第2题
独立完成
交流时,说说应用了什么运算律或运算性质,为什么要这样算。
提问:分数四则混合运算在使用运算律时,有什么特别之处?
小结:整数四则混合运算在使用运算律时,常常是使用运算律凑成整十或整百、整千数再计算,但分数四则混合运算在使用运算律时,通常是凑成整数,或者观察是否有利于约分。计算步数较多的题时,要随时注意使运算简便。
3、练习十五1、2题
独立完成
五、全课总结
说一说:这节课你有哪些收获或不足?
计算分数四则混合运算时,你觉得你对同学们可以提出什么样的友情提醒?
六、练习设计:
1、填空:(1/9+5/6)×18=( × + ×)
4/7×1/6+4/7×5/6= ×( + )
2、下面四个算式中,得数最大的是:( )
(1/7+1/9)×10 (1/8+1/9)×10 (1/8+1/10)×10 (1/9+1/10)×10
3、用简便方法计算:
(4/5—3/4)×20 (5+4/5)×10 7/9×15/11—7/9×4/11 (9/4+9/7)÷9/28
4、解决问题:一块地,长1/2米,宽是长的4/5,这块地的周长是多少?
分数教学设计3
一、教学目标
(一)知识与技能
通过整理和复习,帮助学生巩固对分数的意义、基本性质以及分数加减法的认识理解,提高学生对这些知识的掌握水平,增强知识的运用能力。
(二)过程与方法
结合整理和复习,回顾学习过程和方法,体会将知识条理化的作用,逐步养成整理和反思的习惯。
(三)情感态度和价值观
培养学生良好的学习习惯,增强学习数学的兴趣和信心。
二、教学重难点
教学重点:分数的基本性质。
教学难点:分数的意义,分数的加减法运算的算理、算法。
三、教学准备
多媒体课件。
四、教学过程
(一)知识整理,整体回顾
1、知识梳理。
教师:关于分数,本学期我们学习了哪些知识?你能说一说、写一写吗?
(1)学生在自己的本子上写一写,组内交流。
(2)学生汇报,老师补充并同时在黑板上整理,形成下图。
【设计意图】总复习是对一个学期所学知识的全面整理和巩固,帮助学生梳理知识,形成完整、系统的知识网络。这样既有利于学生更好地理解和掌握已学的知识内容,也有利于培养学生良好的复习整理习惯。
2、概念回顾。
(1)复习分数的意义。
教师:分数的意义是什么?
学生:一个整体可以用自然数1来表示,我们通常把它叫做单位“1”。把单位“1”平均分成若干份,这样的一份或几份可以用分数表示,表示其中一份的数叫分数单位。
教师:单位“1”与分数单位有什么不同?请举例说明。
学生:把一块月饼平均分给5个同学,每位同学分到这块月饼的。这块月饼就是单位“1”,就是分数单位。
教师:分数与除法有什么关系?
(2)复习真分数和假分数。
教师:什么是真分数和假分数?
学生1:分子比分母小的分数叫做真分数,分子比分母大或分子和分母相等的分数叫做假分数。
学生2:真分数小于1,假分数大于或等于1。
学生3:假分数可以转化为整数或带分数。
(3)复习分数的基本性质。
教师:什么是分数的基本性质?它与什么相似?
学生:分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。它与商不变性质相似。
教师:如果的分子加6,要使分数的大小不变,分母应该怎么办?为什么?
学生:分母应该加16,因为分子加6之后扩大到原来的3倍,分母也要相应地扩大到原来的3倍,所以应该加16。
(4)复习约分和通分。
教师:什么叫约分?什么叫通分?它们分别有什么作用?
学生1:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。约分可以把一个分数化成最简分数。
学生2:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。通分便于比较异分母分数的大小,也便于异分母分数相加减。
教师:什么是最简分数?
学生:分子和分母只有公因数1,这样的分数叫做最简分数。
(5)复习分数和小数的相互转化。
教师:分数如何化成小数?小数如何化成分数?
学生:分数化小数,可以用分子除以分母,除不尽按要求取近似数;小数化分数,一位小数就是十分之几,二位小数就是百分之几……
教师:怎样的最简分数可以化成有限小数?为什么?
学生:如果分母中除了2和5以外,不含有其他质因数,这个分数就能化成有限小数。因为分母只含有质因数2和5,可以通过分数的基本性质把分子、分母同时乘若干个2或5,使分母变成整十或整百、整千等,一定可以化成有限小数。
(6)复习分数的加减法。
教师:分数的加减法运算要注意什么?
学生:要先把异分母分数化成同分母分数,计算结果要化成最简分数。能简算的要简算。
【设计意图】通过对概念的回顾与复习,可以加强知识间的联系。通过问答的形式帮助学生更好地理解与记忆分数的意义和性质、分数的加法和减法的相关内容。例如,约分与通分既有联系又有区别,它们都是依据分数的基本性质,保持分数的大小不变;它们的区别在于,约分只对一个分数进行,而通分至少要对两个分数进行。再比如,利用分数与除法的关系,既可以将假分数化成带分数,也可以解决分数化小数的问题(分数化小数既可以利用分数与除法的关系,也可以利用分数的基本性质)。
(二)应用拓展,发展技能
1、分数的意义与性质练习。
(1)分数单位是的最简真分数有;分子是3的假分数有(),其中最大的是(),最小的是()。
(2)把一条6米长的绳子平均分成8段,每段长()米,每段是全长的()。
(3)()÷()=0.6=()÷35。
(4)用直线上的点表示下面各数,估计一下哪个更接近2。
(5)先填空,再把各数按照从小到大的顺序排列。
(6)下面哪些数是最简分数,哪些数不是最简分数,把不是最简分数的`化成最简分数。
【设计意图】第(1)小题至第(6)小题是关于分数的意义和性质的综合练习,其中第(4)小题用数轴上的点表示数,有助于进一步理解分数与小数的联系,并通过估计培养学生的数感;第(5)小题既能帮助学生复习分数的基本性质,还涉及分数的大小比较,其中与的大小比较需要学生选择合适的策略,是对学生思维灵活性的考查。
2、分数的加减法练习。
【设计意图】同时出现同分母分数加减法、异分母分数加减法以及加减混合运算,旨在帮助学生切实理解同分母分数加减法、异分母分数加减法的联系和区别。如果时间允许还可以适当增加简便运算的练习,提高学生计算的熟练程度和技巧。
3、拓展练习。
(1)为帮助四川地震灾区的小朋友,小红捐献了自己压岁钱的,小刚捐献了自己压岁钱的,小刚捐的钱一定比小红多吗?请说明理由。
(2)在等式=+的括号里填入适当的数,使等式成立。
【设计意图】第(1)小题旨在考查学生对单位“1”的掌握情况,为六年级学习分数乘除法解决问题做铺垫。第(2)小题重在考查学生对分数的基本性质掌握情况,培养学生思维的灵活性。如果括号里填相同的数,那么=+;如果括号里填不同的数,则有多种选择,=+=+=+=+。对五年级的学生而言,不需写出所有答案,只要能有意识地先将分子、分母乘以相同的数,再分成两部分,最后化简为最简分数即可。
(三)课堂小结,回顾反思
1、通过今天的复习,你有什么收获?在练习的过程中遇到什么困难,出现什么错误?
2、回忆今天复习的方法,对今后的复习有什么启示?
【设计意图】对于复习课,教师要关注两点:一是查漏补缺,发现问题是改进教学的起点,也是帮助学生进步的方向;二是关注反思,培养学生整理与复习的方法。
分数教学设计4
设计说明
1.引导学生主动进行新旧知识的类比,利用知识间的迁移解决问题。
儿童心理学指出:类比、迁移能充分调动学生利用原有的知识经验解决新问题。因为百分数应用题的解题思路及方法与分数应用题大致相同,所以教学中要有效地利用两者之间的联系。上课伊始,通过对例题改编而成的分数应用题的分析、列式、解答,使学生进一步明确解答此类题的`关键是弄清谁是单位“1”,谁和谁相比。
2.体会算法的多样化。
在解决问题的过程中,鼓励学生采用不同的计算方法,体会算法的多样化,充分培养学生用不同策略解决问题的能力。所以在教学时,鼓励学生自主解决问题,组织交流解决问题的过程,使学生明确根据数据的特点可以灵活地进行转化,再解决问题。
课前准备
教师准备PPT课件学情检测卡
教学过程
⊙复习导入
1.复习。
(1)课件出示复习题。
春蕾小学的一项调查表明,有牙病的学生人数占全校人数的。春蕾小学共有750名学生,有牙病的学生有多少人?
(2)引导学生思考。
①解答此题的关键是什么?(解答此题的关键是弄清谁是单位“1”,谁和谁相比)
②用什么方法计算?怎样列式?(用乘法计算,列式为750×)
(3)尝试解答。(指名板演,其他学生自己做)
2.导入。
师:刚才我们复习了用分数解决问题,下面我们就来学习用百分数解决问题。(板书课题)
设计意图:通过复习“求一个数的几分之几是多少”的问题,引导学生复习解答此类问题的关键及解法,为实现知识间的迁移作铺垫。
⊙学习新课
1.旧知迁移,探究新知。
(1)课件出示教材85页例2。
(2)学生尝试解题,交流计算过程。
预设
生1:求有牙病的学生有多少人,就是求750的20%是多少。题中的数量关系符合“求一个数的几分之几是多少”,所以列式为750×20%,计算时可以把百分数直接化成小数进行计算。
750×20%
=750×
=750×0.2
=150(人)
生2:我的解题思路和他相同,但是计算过程不同,我是把百分数化成了分数,然后进行约分计算的。
750×20%
=750×
=750×
=150(人)
(3)比较例2与复习题中问题的异同。(引导学生从题意、思路及计算方法等方面比较后得出结论)
①解题思路相同,都是用全校人数×对应的分率。
②计算过程不同,复习题中的问题是用整数乘分数计算的,而例2是用整数乘百分数计算的。
(4)小结。
解决百分数问题可以依照解决分数问题的方法进行。“求一个数的百分之几是多少”也用乘法计算。关键是弄清谁是单位“1”,谁和谁相比。
分数教学设计5
教学内容:新课标实验教科书六年级上册第85-86页,完成做一做和练习二十的1-4题。
教学目标:
1、使学生加深对百分数的认识,能理解达标率、发芽率、出油率等这些百分率的含义,掌握有关百分率的计算方法,能用百分数解决生活中一些简单的实际问题。
2、依据分数与百分数应用题的内在联系,培养学生的迁移类推能力和数学的应用意识。
3、使学生了解求百分率在生产、生活中的重要性,激发学生学习的积极性,初步渗透概率统计思想。
教学重点:掌握常用的百分率的计算公式。
教学难点:理解达标率、发芽率、出油率等一些百分率的含义
教学过程:
一、揭示课题
1、提问:百分数表示什么?
2、说出以下百分数的含义:
我们班第三单元测验,有97%的人达到了优秀。
我们有45%的人近视。
师:由于百分数表示一个数是另一个数的百分之几,所以解决百分数的问题可以依照解决分数问题的方法。今天,我们就一起来学习“用百分数解决问题”。(板书课题)
二、探究新知
(一)教学达标率
1、出示信息:六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人。达标学生的人数占总人数的几分之几?
2、学生解答,反馈: 板书: =
3、问:你能把这个结果用百分数表述出来吗?
4、师:达标学生的人数占总人数的百分之几也叫做达标率。(请1~2人复述什么叫达标率。)
板书:达标率:达标学生的人数占总人数的百分之几。
5、引导学生总结达标率的计算公式。
板书:达标率=达标学生人数 / 学生总人数 ×100%
问:公式中为什么要乘100%?(因为达标率是百分率的的一种,公式本身应该用百分数的形式(%)表示。如果公式单写成“达标率=达标学生人数 / 学生总人数 ”只是分数形式,而不是百分数。如果在“达标率=达标学生人数 / 学生总人数”的后面添上“×100%”(相当于×1),就可以既使数值不变,而又是百分数的形式。)
6、在题目中再加上一问:六年级学生的达标率是多少?让学生解答。
板书:
120/160×100%=0.75×100%=75%
问:“达标率是75%”是指什么?后面要不要写单位?为什么?(百分率是表示两个数的比,没有单位名称。)
7、比较一下求达标率和求达标学生的人数占总人数的几分之几有什么相同的地方和不同的地方。
(二)教学发芽率
1、创设情境,出示例1第(2)题,问:发芽率的'含义是什么?(发芽率是指发芽的种子数占种子总数的百分之几。)
2、学生尝试算出绿豆种子的发芽率。
3、反馈算法,问;你能不能像计算达标率一样,也总结出一个计算发芽率的公式呢?让学生把书85页的公式填完整。
板书:发芽率=发芽种子数 /种子总数 ×100%
4、让学生继续算出花生和大蒜种子的发芽率。
5、教师说明:发芽率对于农民种田是十分重要的。农民伯伯需要根据发芽率的高低来选择种子品种和决定播种面积。这样,既可以保证所需苗的棵数不多不少,又可以避免种子的浪费。所以求发芽率对农业生产丰收有重要作用。
(三)其它百分率的计算
1、师:生活中用百分率进行统计的还有很多,像产品的合格率、小麦的出粉率等等,你还能说出一些百分率的例子吗?(出勤率、出米率、出油率、及格率、优秀率、成活率、命中率、升学率……)
2、你知道这些百分率的含义吗?可以怎样求出这些百分率呢?小组讨论、交流。
3、全班交流,总结一些常用的百分率的计算公式。
三、巩固应用
1、完成书86页“做一做”第2题。
2、书第87页第1题。
完成第1题后,可提问:我们班某天的出勤率为100%,说明了什么?有人预测我们班明天的出勤率为120%,可能吗?让学生思考、讨论。
3、判断:
(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率是105%。
(2)六年级共98名学生,今天全部到校,六年级今天的学生出勤率是98%。
(3)25克盐放入100克水中,盐水的含盐率是25%。
4、解决问题:
①六年级一班有学生50人,今天出席48人.求六年级一班今天的出勤率.
②在一次数学测验中,六年级一班同学一共做了400题,错误了16题,求错误率。
5、变式练习
(1)种了100棵树,死了1棵,求成活率
(2)25克盐和100克水,求盐水中的含盐率
四、全课总结
课后反思:今天这节课的主要内容是求“百分率”,联系生活实际,我列举一些生活中常见的百分率,提高学生的学习兴趣,回答问题有了一定的基础,突破了重点,难点。 课堂上我设计了基本练习、变式练习、综合练习,都来自生活,一环扣一环,层层加深,既练了学生的思维能力,让不同层次的学生都学有所得,也充分体现了数学与生活相结合,使学生真正享受数学带来的快乐,让他们在学中乐,乐中学。比如从例题求一对有着相对关系的出勤率和缺勤率,了解它们之和是100%,到基本练习达标率、发芽率等从单一的计算百分率,到“种了100棵树,死了1棵,求成活率”、“25克盐和100克水,求盐水中的含盐率”等变式练习,有效地培养了学生的思维的灵活性和广阔性,提高了学生的分析问题和解答问题的能力。
分数教学设计6
教学目标:
1、让学生在动手操作的体验活动中理解单位“1”不仅是一个物体,许多物体也可以看成单位“1”。
2、学生能掌握单位“1”平均分成若干份,表示其中的一份或者几份的数用分数来表示。能用分数表示部分与整体的关系,知道单位“1”的几分之几是多少。
3、通过创设互相协作,积极探索的学习情境,培养学生的学习兴趣,并渗透数学来源于实际生活的思想。
教学重点:
理解分数的意义。
教学难点:
认识单位“1”,知道许多物体也可以是一个整体。
教具:
课件、各种形状的纸张、水彩笔等。
引入:
1、分苹果
师:今天老师带来三个苹果,准备分给两个同学,谁能帮老师分一分?
生:一个同学分一个。
师:那还剩下一个怎么分呢?
生:一人一半。
师:那也就是说把这个苹果平均分成两份,每人一份是么?
生:是。
2、(幻灯出示书上的图片),师:请同学们看大屏幕,在古代,因为生产的需要,人们为了测量,把物体分成一段、两段、三段,不够一段了,不是整数,不能用整数的结果表示,为了准确地表示出来该怎么办呢?(出示幻灯,找同学来读)在测量、分物或计算时,往往不能正好得到整数的结果,这时就用分数来表示。
一、学习一个整体的分数
1、幻灯出示1/4,这就是一个分数,它读作什么?(生答四分之一)谁能说说它的各部分名称?它表示什么?(把一个物体平均分成四份,每份就是它的1/4)
师:课前老师让你们准备了教具,现在请同学们拿出来吧。
2、请同学们小组合作
(1)任意选桌上的的材料创造1/4
(2)用你喜欢的方式把1/4表示出来。
(一)、学习一个物体的1/4
(材料:一张正方形纸、一张长方形纸、一张圆形纸,一根一米长的彩带)
1、展示汇报
(1)师在同学中分别找到一个圆形、一个正方形、一个长方形的1/4
谁能说说你是怎么做的?
(2)生展示,师帮助强调把一个物体平均分成4份,取其中的一份,就是它的1/4。
生边做,师边幻灯演示。
2、师小结:以上我们把一张纸平均分成4份,每份是他的四分之一,这就是我们三年级学过的把一个物体平均分成4份,取其中的1份,就是他的1/4.(板书“一个物体”,“平均分”“1份”“1/4”)
3、同学们,你们真了不起,下面老师要考一考你们,你们怕不怕?
(出示幻灯练习题),请说说阴影部分是整个图形的几分之几。
4、同学们,今天老师还给你们带来了巧克力蛋糕,准备奖励给表现好的同学,(幻灯出示)这是一块正方形的`蛋糕,我们可以用正方形来代表它,它是原来蛋糕的1/4,猜猜它原来是什么样子的,请同学们做一回设计师,在你的练习本上画一画它原来的样子。
5、请小组内展示一下你的作品,探讨一下还有没有其他的画法啦?
6、学生展示,老师幻灯演示。
同学们,你们真是优秀的设计师。其实还有很多种不同的方法,我们在这里就不一一演示了。
(二)、学习一些物体的1/4
1、请同学们看大屏幕:
(1)这又是一块蛋糕,露出的部分是这个整体的八分之一,你能猜猜原来会是什么样子么?同学猜测。
师出示圆形的蛋糕
(2)老师这里还有一块蛋糕,用分数表示是1/8(幻灯),请同学们猜猜这次的蛋糕原来的是什么样的?
同学们可以用三角形代替蛋糕,动手画一画原来是样子。然后小组讨论。
同学展示作品。
师:大多数年同学画的都是圆形的蛋糕,可是这次的蛋糕不是圆形的了,而是由8块单独的蛋糕排列组成的。请看大屏幕。(幻灯出示)
师:同学们很聪明,你们的表现太出色了。这次的蛋糕不是一个了,而是一些物体了。(板书“一些物体”)请同学们看看我们刚上课时摆的1/4,你能找到你用一些物体摆出的1/4吗?说说你是怎样做的?
请2名学生到前面投影仪上展示,教师在旁边指导,让学生说出“把一些物体平均分成4份,每份是它的1/4”。
2、(幻灯出示)一个物体、一些物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。(请同学读)老师板书“一个整体”
请同学看看你桌子上的材料,说说你把谁看成一个整体了?你是怎么样分的?谁愿意来为大家做个示范?展示一下自己的本领!(再找两名同学展示)
3、请同学们看看你刚刚分的1/4,都是1/4,为什么有的同学分得的是1个物体,有的是2个物体?
生汇报,这个整体变了,因为四分之一是1个物体的原来是4个物体,四分之一是2个物体的原来是8个物体。
师:同学们真是爱动脑筋的好孩子,请同学们再说说同样是一个这一个物体,它可不可以是1/4,可不可以是1/8,可不可以是1/12?
生汇报:可以
师:为什么?
生:当有4个物体的时候,其中的一个就是1/4,当有8个物体的时候,其中的一个就是1/8…师:这说明什么?
生:分子不变,分母变了,说明分的份数变了。
师总结:同学们说得非常好,真棒!这肯定是一个“伟大”的发现。
二、学习单位“1”
1、师:刚刚我们分过的这些物体,都可以称作一个整体,一个整体可以用自然数1来表示,通常把它叫做单位“1”。(板书单位“1”)
这个“1”加了引号,你知道为什么吗?(生答:因为这个1不是就指1,而是指一个物体或者一些物体。)
2、师小结,刚刚我们把单位“1”平均分成若干份,这样的一份或几份都可以用分数来表示。这就是我们这节课要学的内容:分数的意义(板书“分数的意义”)
3、请同学们再看一下我们刚刚分过的物体,它们分别把什么看作单位“1”了?
(教师举例课后题)
4、在生活中,还有哪些物体可以看作单位“1”。
三、练习
1、请同学们看大屏幕,(幻灯出示12块糖),看看谁最聪明,回答的又快又好。
完成幻灯的练习
四、学习分数单位
1、同学们,请看黑板,其实分数也有计数单位,像这样,把单位“1”平均分成若干份,表示这样的一份的数,我们就把他叫做分数单位。(板书分数单位)。
师:谁能说说刚才题中的分数单位?
生:1/4、1/8、1/2…
师:老师说一个数,看谁能快速地说出他的分数单位。3/4、2/5、8/9…
生抢答。
师:老师还没说分子呢,有的同学就已经回答出来了,你们发现什么窍门了么?
生:分子都是1
生:分母都是分的那个份数。
师:所以说,分数单位是由分母决定的,分母是几,分数单位就是几分之一。
五、总结
同学们,这节课我们学习了分数的意义,单位“1”,和分数单位。你们这节课的表现非常出色,我为你们而骄傲,让我们为自己精彩的表现鼓掌。这节课就上到这里,下课。
分数教学设计7
教学目标
1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。
2、使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力。
3、构筑探索交流的平台,体验数学学习的乐趣,增强学生学习数学的信心。
教学重难点
理解分数与除法的关系
教学准备
每人准备4张同样大小的圆片
教学过程
一、引入情境,揭示例题
口答题
1、把8块饼干平均分给4个小朋友,每人分得几块?
2、把4块饼干平均分给4个小朋友,每人分得几块?
3、把3块饼干平均分给4个小朋友,每人分得几块?
怎样列式?板书3÷4
引导:把3块饼干平均分给4个小朋友,平均每人能分到1块吗?
不满1块那该怎么表示呢?
生:小数或分数
二、实践操作探索研究
师:那怎样用分数表示3÷4的商呢?请大家拿出3张同样的圆片,把它看作3块饼,按题目的要求把它分一分,看结果是多少?
学生动手操作
教师巡视,了解学生是怎样的想的,当学生表述比较好时,教师有选择的把圆片贴在黑板上,等集体交流时让学生说说这样分的理由。
师:接下来我们请同学汇报一下他们研究所得结果。
(生讲述这样分的理由)
教师总结:(1)把一块饼干平均分给4个小朋友,所以就平均分成4份,每人就可分得1/4块,现在一共有3块饼干,每人就可得到3个1/4块,就是3/4块。
(2)如果把三块饼干放在一起分,每人就可以分得3块的1/4,就是3/4块。
总结:把3块饼干平均分给4个小朋友,每人分得3/4块
板书:3÷4=3/4(块)
师:如果我想把3块饼干分给5个小朋友呢?,每人分得多少块?
学生口述理由。板书:3÷5
师:想想该怎么去分?把你的想法和同桌交流下。
指名让学生说说思考过程。
板书:3÷5=3/5(块)
师:如果分给7个小朋友呢?
学生口述3÷7=3/7(块)
三、归纳总结,围绕主题
师:请同学们仔细观察上面的两个等式,你发现分数和除法算式之间有和联系?这也正是本节课我们所要学习的内容。
板书课题:分数与除法的关系
生相互交流。教师板书:被除数÷除数=
师:除法算式又可以写成什么形式?
生补充:被除数÷除数=被除数/除数
师:如果用a表示被除数,b表示除数,那么a÷b又可怎么写?
生:a÷b=a/b
师:这里的a和b可以取任何数吗?为什么?
生:除数不能为0。
师:分数和除法之间的关系,你有什么好的方法记住它们吗?
生交流讨论并回答
师总结,被除数相当于分子,除数相当于分母,除号相当于分数线。
四、巩固练习,拓展延伸
师:请大家把书本打开到第45页,马上完成“练一练”的第一小题。
集体校对。
师引导:比较上下两行有什么不同?
在学生回答的基础上,引导:用分数可以表示整数除法的商,反过来,一个分数也可以看成两个数相除。
师:接下来请大家独立完成“试一试”两小题。
然后小组交流你是怎么想的?
师:把7分米改写成用米作单位,可以列怎样的除法算式?
生:7÷10=7/10(米)
师:第二个呢?
生:23÷60=23/60(时)
师:独立完成“练一练”的第二题
集体讲评校对。
师:完成“练习八”的第一题口答
师:完成“练习八”的第三题
学生在书本上完成,
教师追问:把1米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?把2米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?
五、课堂作业
完成“练习八”的第二题
教后反思:
本节课重在学生通过自己探索实践,来观察和理解分数和除法之间的关系。在教学时,要求学生把3块饼干平均分给4个小朋友,当有学生展示了自己的研究成果,即把一块饼干平均分给4个小朋友,就该把这块饼干平均分成4份,这样每人就可以得到1块饼干中的`1/4,也就是1/4块,现在有三个同样的饼干,按照同样的方法去分,每人就可以得到3个1/4块,就是3/4块。在边展示边讲解后,我继续提问,除了这样的思考方式,你还可以怎么分?有一个成绩较好,思维较敏锐的学生说,我们还可以把这块饼干平均分成8份,每人取其中的2份,就是2/8块,共有3个2/8块,就是6/8块也就是3/4块。我注意到了,我只是点了一下,这样也是可以的,6/8就是3/4,这是我们以后所要学习的内容。课后,在其余老师的点拨下,我也认真思考了这个问题。其实,我觉得,这个学生出现了这样的思维方式也未尝不可,的确也是合情合理的。但是实际上,我还是觉得该生对于分数的意义掌握的不够牢固,对于题目中已经很明显地给出了。要平均分给4个小朋友,那应该平均分成4份,而他却想到了平均分成了8份,这是思维跳跃的一种形式,但也是基本知识掌握不牢固的一种体现,所以在今后的教学中,我应加强学生认真读题的习惯,将基础知识扎扎实实地运用到解决实际问题中去。<
分数教学设计8
教学目标:
知识与技能:结合学生生活实际,借助学生的生活经验,使学生理解和掌握百分数的概念,知道百分数与分数之间的区别,会正确读、写百分数,会解释日常生活中常见的百分数。
过程与方法:在理解百分数的意义的过程中,培养学生的分析比较能力和抽象概括能力。 情感、态度、价值观:通过搜集学习材料并进行一系列的讨论和研究,使学生体验数学与日常生活的联系,激发学生学习数学的兴趣,树立学好数学的信心。
教学重点:理解和掌握百分数的意义。
教学难点:正确理解百分数和分数的区别
课前准备:学生搜集身边或日常生活中的百分数。
教学过程:
一、创设情境,生成问题
1.回答:(1)7米是10米的几分之几?
(2)51千克是100千克的几分之几?
2.说出下面各个分数的意义,并指出哪个分数表示具体数量,哪个分数表示倍比关系。
(1)一张桌子的高度是 米。
(2)一张桌子的高度是长度的 。
(引导学生说出: 米表示0.81米,是一具体的数量; 表示把长度平均分成100份,桌子高度占81份,表示倍比的`关系。)
二、探索交流,解决问题
1、教师举几个百分数的例子:这次半期考,全班同学的及格率为100%,优秀率超过了50%;体检的结果显示,我校的近视人数占全校总人数的64%??像100%、50%、64%这样的数叫做“百分数”。
2、同学们能举出几个百分数的例子吗?说说在生活中你们还在哪些地方见到百分数?
3、举例说说百分数表示什么,并归纳出百分数的意义。(表示一个数是另一个数的百分之几的数,叫做百分数,也可以叫做百分率或百分比。)
4、讨论百分数和分数的联系及区别:分数既可以表示一个数,又可以表示两个数的关系。而百分数只表示两个数的关系,它的后面不能写单位名称。
5、教学百分数的写法:通常不写成分数形式,而是在原来分子后面加上百分号“%”来表示。如:
百分之九十 写作:90%;
百分之六十四写作:64%;
百分之一百零八点五写作:108.5%。
(写百分号时,两个圆圈要写得小一些,以免和数字混淆)
6、教学百分数的读法:百分数的读法和分数的读法大体相同,也是先读分母,后读分子。
三、巩固应用,内化提高
1、完成P83“做一做”第二题:读出下面的分数。
2、完成P83“做一做”第一题:直接在书上的横线上写出对应的百分数。
3、P86练习十八第4题:读出或写出报栏中的百分数。
4、“做一做”第三题:学生根据自己的理解,说说分数和百分数在意义上有何不同。
四、回顾整理,反思提升。
思考题:
某小学六年级的100名学生中有三好学生17人,五年级的200名学生中有三好学生30人。
五、六年级的三好学生的百分率各是多少?哪个年级的三好学生的百分率高?
课后作业:
练习十八第1~3题。
板书设计:
百分数的认识
百分数表示一个数是另一个数的百分之几。 百分数也叫百分率或百分比
百分之九十 写作:90%; 百分之六十四写作:64%; 百分之一百零八点五写作:108.5%。
分数教学设计9
教学过程:
课前三分钟交流
讲故事《大胆的小猴》,并与大家交流,对学生进行自信、勇敢的培养。
设计意图:课前三分钟交流是孩子们展示的舞台,在这短短的三分钟时间里带给自己快乐、自由和成长。这个环节是师生的最爱。学生自信的主持,精彩的展示,内容的丰富,真可谓色、香、味俱全的大餐。学生展示的内容丰富,可以是数学古诗、数学家的故事、数学要闻、数学成语、数学符号的由来等等形式多样。真是万紫千红,各有千秋。
小组交流、探究、合作学习
一、展示课前收集的生活中的百分数。
设计意图:小学生学习的数学应是生活中的数学,是学生“自己的数学”。数学来自于生活,又必须回归于生活。数学只有在生活中才能赋予活力与灵性。数学学习内容远离生活无疑是导致学生对数学没有兴趣的根本原因,它使本该生动活泼的数学学习活动变得死气沉沉。有鉴于此,数学的教与学应该联系生活,注重现实体验,变传统的“ 书本中学数学”为“生活中做数学”,体现以解决问题为中心的生本教育理念。
二、小组交流百分数的.意义。
百分数表示一个数是另一个数的百分之几。是一个量与另一个量的比较。两个量比较才能产生百分数,只有一个数量是不能产生百分数的。百分数表示的是两个数比较的结果,所以也叫百分率或百分比。
设计意图:尊重学生的主体足够自主的空间、足够活动的机会的教学,让学生自探明之,自求得之,倡导合作学习、探究学习的教学,才能有效地增进学生的发展,创建一种开放的、浸润的、积极互动的课堂文化。
三、小组交流百分数的读法和写法。
读百分数时注意要读成百分之几,不能读成一百分之几。写百分数时,通常先写分子,再写百分号,并注意%的两个小圆圈要均匀且不能过大,以免和分子混淆。
在半分钟内写十个百分数,看看写出的百分数占总数的百分之几,并用自己喜欢的一个百分数说一句话。
设计意图:通过小组交流并展示生活中找到的百分数的读法和写法,又加深理解了百分数的意义。
四、小组交流百分数与分数的区别。
(1)意义不同
分数代表一个数值,也可以代表一个分率。而百分数只能代表一个分率。
(2)读法不同
分数读作几分之几,百分数读成百分之几,不能读成一百分之几。
(3)写法不同,百分数在分子后面加上百分号就行了,而不是写成分数的形式。
(4)分母不同
分数的分母可以是任何一个大于0的自然数。而百分数的分母规定是100。
(5)分子不同
分数的分子必须是自然数。百分数的分子可以是小数,整数,可以大于100,可以小于100。
(6)百分数不可以约分,分数可以约分。
(7)分数单位不同,分数的单位是几分之一,而百分数的单位只能是百分之一
设计意图:百分数源于分数,而又有别于分数。实践证明,学生认识这一点非常困难,这是长期学习的种属概念负迁移所致。学生会误认为分数与百分数是包含关系,分数有的属性,百分数也一定具有。为了跨越这一认识上的误区,我采用了小组探究交流的方式进行学习,使学生区分清楚百分数和分数是不一样的。
五、生活中的应用
1、经典文化中的百分数。
百发百中——100% 百里挑一——1%
2、做游戏。
石头 剪刀 布
规则:两人十次,想一想,你赢了对方几次?赢的次数占总次数的百分之几?
设计意图:学生通过找成语中的百分数和做游戏,已能找出生活中的百分数,并能将百分数应用到平时玩的游戏中。所以此环节承上启下,意在让学生意识到生活离不开数学,数学是有用的,既有利于培养学生的数学意识,又体现“学生活中的数学、学有用的数学”,符合生本教育的理念,在生活中找例子。
生本教育数学课堂练习是一堂数学课的重要组成部分,是进一步深入理解知识、掌握技能技巧、培养积极的情感和态度、促进学生深层次发展的有效途径;所以一节数学课,练习是否有效,将是一节课的点睛之笔。所以课堂练习要设计有挑战性习题,可以通过游戏、猜谜、闯关练习等形式,吸引学生的无意注意,当学生沉迷在问题的情境之中时,他们的无意注意就会转化为有意注意并趋于主导地位,从而达到主动探究的目的。
六、总结
请告诉大家你这节课学习情绪的比率。
愉快占( )%
紧张占( )%
遗憾占( )%
分数教学设计10
【教材分析】
本课是人教版义务教育课程标准试验教科书小学数学五年级下册第四单元第一课时的内容。本课是在学生已经初步认识了分数的基础上进行教学的,是学生系统学习分数的开始,为后续学习分数的除法,真分数和假分数以及学习分数的基本性质、分数四则运算、分数应用题等打下坚实的基础。
【教学目标】
1.通过观察、归纳,明确单位“1”的概念,理解并掌握分数的意义,知道分数单位的含义。
2.通过分一分,涂一涂等不同形式的操作活动和小组内的交流活动,明确平均分的概念,理解分数的意义。
3.在探究分数的意义过程中,培养分析综合与抽象概括能力;感受分数与生活的密切联系。
【教学重点】
掌握单位“1”概念的建立。
【教学难点】
理解分数的意义
【教具】
实物投影,课件,作业纸。
【教学过程】
一、谈话导入,引出新知
课件出示数学书46页情境图,从图中你能知道哪些数学信息?
学生汇报预设:
学生1:在进行测量时,有时不能正好测量出整数的线段。
学生2:两个学生平分食物,每人只能得到1/2。
教师小结:是啊,像这样的测量、计算、分物的时候不能正好用整数表示的情形在生活中经常出现,为了解决这样的问题,古代人们就引出了新的计数方法——分数。关于分数,我们在三年级就已经初步接触过,今天我们进一步研究分数。(板书:分数的意义)
【设计意图】简洁谈话,自然引入,学生能够认识到分数产生的必要性,体会数学就在身边,随时应用于生活中。
二、自主概括,理解意义
师:下面我们一起来看几幅图,请大家用分数表示下面各图中的涂色部分,并说出每个分数各表示什么,先写出来,再同桌交流一下。
1.我们来汇报一下所填写的分数。
2.说说这些分数各表示什么?(学生说)
板书:把一个月饼平均分成4份,涂色部分表示这样的3份,就是3/4。
把一个正方形平均分成8份,涂色部分表示这样的5份,就是5/8。
把1米平均分成5份,涂色部分表示这样的3份,就是3/5。
把6个圆平均分成3份,涂色部分表示这样的1份,就是1/3。
3.图上这四个分数分别是把什么平均分得到的?(一个饼、一个长方形、1米、6个圆平均分得到的。)
教师说明:一个饼可以称为一个物体,一个长方形是一个图形,1米是一个计量单位,6个圆就是一个整体。
一个物体,一个图形,一个计量单位,许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”,看屏幕,自己读一读。
问:单位“1”可以是什么?
4.那么,刚才这几幅图中我们分别是把什么看作单位“1”?把单位“1”平均分成了几份?表示这样的几份?
5.揭示概念。从这些例子中看,怎样的数叫做分数?你能用一句话概括吗?把单位“1”平均分成若干份,表示这样一份或几份的数,叫做分数。自己写一个分数,说说表示的意义。表示其中一份的数,叫做分数单位。
6.试一试:说出每个分数的分数单位,这个分数里有几个这样的分数单位。
【设计意图】通过多媒体课件及学生动手操作等活动,引导学生从平均分一个物体过渡到平均分多个物体,培养观察思考和分析推理能力,从而更好的理解单位“1”与分数单位的概念。
三、闯关练习,深化认识
1.练一练:
出示:练一练,用分数表示涂色部分,并说说每个分数表示的意义。说出每个分数的分数单位,这个分数里有几个这样的分数单位。怎样用分数表示图中的未涂色部分?
2.涂一涂:练习十一第2题。在图中涂色表示2/3。
3.说一说:练习十一的第3题。说出每个分数表示的意义。
4.找一找:练习十一第4题。在直线上画出表示下面各分数的点。
5.议一议:练习十一第5题。有12枝铅笔,平均分给2个同学。
每支铅笔是铅笔总数的`几分之几?每人分得的铅笔数是总数的几分之几?
【设计意图】通过巩固练习,加深学生对单位“1”的理解,促进知识的形成,最大限度调动了学生的积极性,学生真正成为学习的主人。
四、总结梳理,拓展延伸
今天我们学习了什么内容,你有什么收获?
刚才我们一起又一次认识了分数,其实在我们的生活中,分数无处不在。比如说,我们班级有多少名同学?男同学,女同学,第一组,第二组各有多少人?根据这些信息你能想到哪些分数?同学们课后去说一说吧!
【设计意图】帮助学生巩固所学知识,培养学生的自信心。
五、板书设计
分数的意义
把单位“1”平均分成若干份,表示这样一份或几份的数,叫做分数。
把一个月饼平均分成4份,涂色部分表示这样的3份,就是3/4。
把一个正方形平均分成8份,涂色部分表示这样的5份,就是5/8。
把1米平均分成5份,涂色部分表示这样的3份,就是3/5。
把6个圆平均分成3份,涂色部分表示这样的1份,就是1/3。
分数教学设计11
一、教学目的:
1、使学生认识百分数应用题的数量关系式,理解百分数应用题的解题思路和解题方法。在理解题意、分析数量关系的基础上正确解答百分数应用题。
2、通过划线段图、类比和归纳等数学活动,体验数学问题的探索性,感受数学思考过程的条理性。
3、教学重点是理解百分数应用题的.解题思路,结构特征和解题方法。
二、教学过程:
(一):复习百分数应用题的数量关系
判断单位1,说出数量关系
⑴男生占全班人数的4/5
⑵今天比去年增产二成五
⑶节约了15%
⑷期中考试的优秀率为52%
⑸打八折出售
通过同学们对关键句的分析、叙述,百分数应用题的数量关系、解题思路和解题方法,是完全一样的,都是要紧紧抓住数量之间的关系,准确判断单位1的量,确定解题方法。
(二):二基本题复习
分析解答下面各题,比较它们之间有什么相同点和不同点
⑴建造一栋楼房,计划投资100万元,实际用了90万元,节约了百分之几?
⑵建造一栋楼房,用了90万元,比计划节约了10%,计划投资多少万元?
⑶建造一栋楼房,计划投资100万元,实际节约了10%,节约了多少万元?
⑷建造一栋楼房,计划投资100万元,实际超用了10%,实际投资了多少万元?
分组讨论这一组题目的解法,在弄清解题思路和正确列式的基础上进行比较:它们之间有什么相同点和不同点?
这组题他们的单位1是相同的,数量关系式也是相同的,而数量之间的关系有所不同,解答方法也不尽相同,有乘法也有用方程解。
(三):变式练习:
根据题意列出算式和方程:
水果店运来苹果120千克, ,运来梨多少千克?
1、运来梨比苹果多25%
2、运来的比苹果少25%
3、运来的苹果是梨的25%
4、运来梨是苹果的25%
5、运来苹果比梨少25%
6、运来的苹果比梨多25%
7、运来梨比苹果的25%少2/5千克
在学生分析解答的基础上,教师总结:这些题目是百分数应用题中比较典型的,也是最基本的,解答时必须要准确判断单位1,弄清要求数量与单位1之间的关系和数量对应的百分率,确定解题方法。
分数教学设计12
教学内容:人教版小学数学教材六年级上册第90页例5及相关练习。
教学目标:
1.通过假设法,使学生能掌握“已知一个数量的两次增减变化情况,求最后变化幅度”的百分数问题。
2.让学生经历发现问题、提出问题、分析问题、解决问题的全过程,培养学生问题意识和探究意识。
教学重点:通过假设法,解决“已知一个数量的两次增减变化情况,求最后变化幅度”的百分数问题。
教学难点:单位“1”的不断变化。
教学准备:课件
教学过程:
一、复习导入,做好铺垫
教师:最近我们一直在学习百分数的相关知识,请同学们先来看看你能解决这些问题吗?
(一)只列式不计算:
1.180米增加20%是多少米?
2.图书馆有故事类书籍20xx册,历史类书籍1500册,历史类书籍比故事类书籍少百分之几?
(二) 找出下列题目中表示单位“1”的量:
1.连环画的本数是故事数本数的37.5%;
2.果园里苹果树的棵树比梨树多50%;
3.冰箱售价1800元,十一商场搞活动,降了10%。
【设计意图】“求一个数比另一个数多(少)百分之几”和“求比一个数多(少)百分之几的数是多少”,这两类问题是解决“已知一个数量的两次增减变化情况,求最后变化幅度”的百分数问题的基础,明确找准单位“1”也是这节课的难点所在,所以设计了这两个部分的旧知复习,为新知的学习做好充分的铺垫作用。
二、探究新知,解决问题
(一)阅读与理解
教师:今天这节课,我们继续来学习用百分数解决问题。
课件出示教材第90页例5:
某种商品4月的价格比3月降了20%,5月的价格比4月又涨了20%。5月的价格和3月比是涨了还是降了?变化幅度是多少?
教师:请同学们独立思考这样几个问题:
1.从题目中你得到了哪些数学信息?
2.你有哪些困惑?
问题2预设1:3月的价格都不知道,不能解决;
预设2:5月和3月的价格不变,降了20%和涨了20%抵消了,价格应该是不变的。
【设计意图】让学生自己阅读题目并独立思考问题,使所有学生的思维动了起来。对于这个问题,不同层次的'学生会有不同的问题和困惑。有些学生可能根本不知道如何下手解决,有些学生会觉得价格是不变的,也有学生能看出其中的端倪。在充分了解学情的前提下,引领学生分析与解答问题,让学生经历发现问题、解决问题的过程。
(二)分析与解答
教师:既然有些同学认为3月的价格不知道,无法求出最后是涨了还是降了,那么我们怎么来处理这个问题呢?
学生1:我想把3月的价格假设成100元,就能解决了。
学生2:我想把它假设为1000元。
教师:非常好,每个同学可以自己选择一个数,假设其为3月的价格,然后来求一求它的变化幅度。完成后小组内互相讨论一下,你们有什么发现?
学生独立完成后小组讨论。
学生1:100×(1-20%)=100×0.8=80(元),
80×(1+20%)=80×1.2=96(元),
(100-96)÷100=0.04=4%。
学生2:1000×(1-20%)=1000×0.8=800(元),
800×(1+20%)=800×1.2=960(元),
(1000-960)÷1000=0.04=4%。
学生3:1×(1-20%)=1×0.8=0.8,
0.8×(1+20%)=0.8×1.2=0.96,
(1-0.96)÷1=0.04=4%。
学生汇报:我们组每个人假设3月的价格都不一样,可是最后的结果是一样的。
教师:看来3月的价格是多少并不会影响最后的结果。有同学把价格假设为1,这里的1指的是什么?
【设计意图】通过不同数据的假设,并利用小组讨论的形式对结果进行比较,发现结果一致,促发学生进一步思考:这是为什么?在所有假设的数据中,“1”是最特别的,特别提出来分析,是让学生明白这里的“1”不只是单纯的1元,也可以代表“10元”“100元”等,这是一个高度抽象的概念。
(三)回顾与反思
教师:如果老师用更为一般的假设方法,把3月的价格假设为元,请你求一求结果,并思考你发现了什么?
学生:结果还是4%,过程如下:
(元);
(元);
。
教师:那么,开始的时候有同学提出“降了20%,又涨了20%,所以价格没有变”,你对此有什么看法?
学生:虽然涨价和降价都是20%,但是它们的基础不一样,也就是单位“1”不一样,4月的价格是在3月的价格的基础上降价的,而5月的价格是在4月的价格(也就是3月的价格降了20%之后所得的价格)的基础上涨价的。
【设计意图】把3月的价格假设为,通过计算发现最后的结果和没有直接关系,使学生从数学本质上理解各种假设法的合理性以及内在一致性。对于一开始认为价格不变的学生,重点提出反思,找出问题的关键点,也就是连续变化的时候单位“1”发生了改变,让学生经历了猜测、假设、验证的过程。
三、巩固练习,灵活应用
(一)基本练习
1.一台笔记本先降价10%,再涨价10%,现价是原价的百分之几?
2.一台笔记本先涨价10%,再降价10%,现价是原价的百分之几?
你发现了什么?
(二)变式练习
1.长方形的长增加25%,宽减少20%,面积变大还是变小了?
2.商店对某饮料推出了“第二杯半价”的促销办法,若卖出两杯这种饮料,相当于按原价的百分之几销售?
(三)提高练习
一根绳子,第一次剪去20%,第二次剪去余下的20%,第三次剪去余下的20%,还剩全长的百分之几?
【设计意图】通过形式多样、富有层次的练习设计,一方面可以巩固学生对“求已知一个数量的两次增减变化情况,求最后变化幅度的百分数”问题方法的掌握,另一方面让学生具体的生活情境中解决百分数的较为复杂的问题,学以致用,培养了学生的应用意识。
四、全课总结,加深认识
(一)师生共同小结:本节课我们学习了哪些内容?
(二)教师小结:我们可以用假设法解决有关百分数连续变化的问题,相对来说把单位“1”假设为“1”比较简单和方便。
【设计意图】通过小结,让学生自主地对本课所学知识进行简单的梳理,通过教师的归纳与提炼,让学生再一次巩固“已知一个数量的两次增减变化情况,求最后变化幅度的百分数”问题的解决方法。
分数教学设计13
一、设计理念:
《数学课程标准》指出:数学教学,要让学生亲身经历数学知识的形成过程,也就是经历一个丰富、生动的思维过程,使学生通过数学活动,掌握基本的数学知识和技能,激发学生对数学学习的兴趣。在新课程要求下,数学教学不再是单一的、枯燥的、以被动听讲和练习为主的形式,而是应该引导学生自主探究与合作交流。学生在观察、操作与交流等数学活动中,逐步形成自己对数学知识的理解和有效的学习策略。
本节课我在学生对分数初步认识的基础上,以学生发展为立足点,以自我探究为主线,以求异创新为宗旨,引导学生动手操作,观察辨析、自主探究,充分调动学生学习的积极性、主动性,让学生全面、全程、全心地参与到每一个教学环节中。在教与学的过程中,使学生观察、操作、口头表达等能力得以培养,使学生的创新意识得以开发与增强。
二、教材分析:
《分数的意义》是在四年级学生已经初步认识了分数,并且知道把一个物体、一个计量单位平均分成若干份,取这样的一份或几份,可以用分数来表示的基础上进行教学的;重点是使学生理解不仅一个物体,一个计量单位可用自然数1来表示,许多物体看作的一个整体也可用自然数1来表示,通常把它叫做单位“1”,进而总结概括出分数的意义。
三、学情分析:
学生在四年级已经认识了分数,对分数的各部分名称已经了解,并且知道分数是把一个物体、一个计量单位进行平均分。在以往有关分数的教学中,感觉同学们对分数的意义的理解不是很清楚。学生也觉得分数这个东西很抽象,存在理解的误区。学生对于分数的感知很少,好多就是靠背下来的,没有亲身体会过分数的真正含义。由于分数与“除法”、“比”都有着直接的联系,意义不理解会直接影响学生的后续学习。
四、设计思路:
学生认识事物是由易到难,由浅入深循序渐进的。学生虽然在前面的学习中对分数有了初步的认识,但要使学生理解单位“1”的概念,进一步明确分数的意义,必须遵循他们的认知规律。智慧的生成需要一个理想的“融炉”,而这个融炉就是先进的教学理念和具有挑战新问题情境的结合体。因此,本课坚持以学生为主体,教师为主导的原则。通过动手操作、直观演示,让学生充分感知,再经过比较、归纳,突破许多物体组成的.一个整体也可以看作单位“1”这一难点,层层推进、步步深入,并在此基础上理解分数的意义,培养了学生的多种能力。
五、教学目标及教学重难点:
教学目标:
知识与技能:在学生初步认识分数的基础上,结合具体情境,进一步认识分数,理解单位“1”及分数的意义。
过程与方法:通过动手操作使学生经历分数形成的过程,探索分数的意义,充分感知体验分数概念中的各要素,培养学生的实际操作能力和抽象概括能力。
情感态度价值观:通过活动培养学生合作交流意识,感受数学与生活的密切联系;结合教学内容适时渗透数学文化,培养学生的数学素养。
教学重点:进一步认识单位“1”,理解分数的意义。
教学难点:理解分数的意义。
六、教学过程:
(一)、复习导入:
现在天气越来越热了,看老师给大家带来了什么?(出示西瓜图)现在要把这个西瓜合理的分给每一个同学,应该怎样做?(平均分)每位同学得到多少?
对于这个分数你有哪些认识?(关于这个分数,我已经知道了)
【设计意图:通过复习导入,引发学生对旧知的回顾,明确分数的各部分名称。】
(二)、理解分数的意义。
1、认识单位“1”
(1)、举例平均分
师:刚才我们是把一个西瓜进行了平均分,在生活中,我们还可以把什么进行平均分?(学生举例)
估计学生会举出:把一个物体进行平均分
把一些物体进行平均分(如果学生没有说到一些物体的平均分,教师直接引导:我这里有一些笔,你能把它们平均分给两个同学吗?)
抓住学生中所说的把一些物体进行平均分的事例问:他把什么进行了平均分?和前面几个同学说的有什么不一样?你还能举出这样的例子吗?
(2)师小结揭示单位“1”:刚才大家所说的一个物体,一个图形,一个计量单位,一些物体都可以看做一个整体,这些个整体,我们在数学中,我们称它为“1”。
举例单位“1”
(3)举例单位“1”
师:谁能说说我们还可以把哪些想成一个单位1。
老师这里还有一些句子,读读看,它们各把什么看作单位“1”。
书上练习:上半月完成全月计划的
男工人数占全厂工人总数的
一条路,已修好全长的
小丽看了一本书的
(4)总结单位“1”
刚才我们列举了这么多的单位“1”,老师这里用一首儿歌概括了,读读看:
一条道路一个梨……
一吨稻谷一克米……
一片树林一群鸡……
都可看做单位“1”。
自己读读看。看懂了吗。这里的指的是一个物体一个计量单位
(5)单位“1”与数字1的比较
师:刚才我们说了那么多的单位1,那么单位“1”和以前所学的数字1有什么区别。
【设计意图:通过大量的举例,理解单位“1”,在原有的基础上,对单位“1”有更深更广的认识。】
2、揭示分数的意义
(1)集体演示分数
老师这里有一些笔,想把它平均分给两个同学,每个同学分到多少?
如果我想平均分给4个小朋友,该怎样做呢?(指生来做)
其中的一份就是,两份呢?
(2)学生独立动手操作得到分数
利用手中的材料,你有多少种不同的平均分的方法?可以得到哪些分数?
把找到的分数和小组同学进行交流,说清你是怎样找到分数的?
活动材料:6只小狗8只梅花鹿10只蝴蝶4块橡皮
(3)汇报
学生汇报:
渗透分数单位明确分数单位
同一个单位“1”平均分的份数不同可以得到不同的分数
同样的分数,由于单位“1”的不同,每份所表示的具体数量也不同
【设计意图:让学生在动手操作中,了解分数,理解分数的意义,明确同一个单位“1”平均分的份数不同可以得到不同的分数,同样的分数,由于单位“1”的不同,每份所表示的具体数量也不同】
(4)具体环境中理解
老师这里有一句话,一起来看一看:中桥小学五一班共有学生20人,其中男生13人,男生的人数占全班总人数的几分之几?你是怎样想的?
(5)揭示意义
师小结:我们把单位“1”平均分成若干份,表示这样的一份或几份的数,就叫分数。这就是分数的意义。一起读一读。(板书)(如果开始学生说不出,在这里揭示:分母表示什么?分子表示什么?)
【设计意图:学生由具体的事物抽象出语言形式,是思维的一个提升、概括。】
(三)、生活中的分数:
1、用线段上的点表示分数
2、数学与生活密不可分,读读看。学生在自由读题后指生回答。
果品生产是平谷农业经济的支柱产业和农民致富的主要来源,平谷建成了大桃、板栗、红杏、苹果等8大果品基地,年总产量1.6亿公斤,约占北京市总产量的1/4,连续居北京市首位,是全国果品百强区之一。表示把北京市果品总量看做单位1,平均分成4份,平谷的果品总量占其中的1份。
【设计意图:让学生了解到分数不止在数学课堂中体现,在生活中也有着广泛的应用,从而激发对家乡的热爱。】
(四)、数学小知识
分数在我国很早就出现了,并且用于社会生产和生活。我国春秋时代(公元前770年~前476年)的《左传》中,规定了诸侯的都城大小:最大不可超过周文王国都的三分之一,中等的不可超过五分之一,小的不可超过九分之一。中国使用分数比其他国家要早出一千多年。所以说中国有着悠久的历史,灿烂的文化。
【设计意图:数学小知识的介绍,不仅让学生了解数学的文化发展,更能进一步激发学生学习数学的热情。】
(五)、看书:这节课我们所学的内容是75页到77页,完成练习十二的1、2、4、5、8题。
(六)、游戏下课。
分数教学设计14
复习激趣《分数与除法》教学设计目标导学《分数与除法》教学设计自主合作《分数与除法》教学设计汇报交流《分数与除法》教学设计变式训练创境激疑
一、导入揭题。
1、复习:76是数,它表示()。107的分数单位是(),它有()个这样的分数单位。
2、观察:5÷8=4÷9=这两道题能得到整数商吗?
3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。
合作探究
二、明确学习目标。(在此处明确)
1、通过观察、探究,理解分数与除法的关系。
2、通过练习,会用分数表示两个数相除的商。
三、指导学生自主学习标杆素材、展示、反思、训练、点拨。通过观察、操作,自主探究分数与除法的关系。
例1、把一个蛋糕平均分给3人,每人分得多少个?
学习要求:
1、平均分怎样列式?
2、同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。
3、观察这两种解法有什么联系?
例2、把3个饼平均分给4个孩子,每个孩子分得多少个?
1、平均分同样可以列式为:3÷4。
2、小组合作探究:3÷4的商能不能用分数表示呢?【练后反思】通过进一步探究,你发现分数与除法有什么关系了吗?
【被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的'(分母),a÷b=ba(b≠0)想一想:为什么要注明b≠0?】
拓展应用
一个正方形的周长是64cm,它的边长是周长的几分之几?
总结
通过这节课的学习,你有什么收获?
作业布置
在括号里填上适当的数。5÷8=12÷17=()÷()=m÷n(n≠0)=
板书设计
分数与除法
例2、把3个饼平均分给4个孩子,每个孩子分得多少个?
被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)
分数教学设计15
教学目标:
1、学生理解真分数、假分数的意义,能正确地区分真分数、假分数。
2、培养学生观察、比较、抽象概括的能力。
3、感受数学图形的美,感受数学的价值,渗透集合转化的数学思想方法。
教学重、难点:
1、理解真分数、假分数的概念和特征。
2、对假分数实际意义的理解。
教学准备:
多媒体课件
教学过程设计:
一、复习导入
1、想一想,前几节课咱们都学了那些知识?
2、谁来说一个你最喜欢的分数,并说出它表示的意思? 3、7/8的分数单位是多少?它有几个这样的分数单位?
二、探究新知
1、认识真分数。
(1)课件出示例1直观图,引导学生用分数表示出各图中的涂色部分。
(2)比较例1中三个分数的分子和分母的大小,你发现这3个分数有什么特点?(1/3、3/4、5/6的分子都比分母小)。板书:分子小于分母
(3)联系直观图想一想:这些分数比1大,还是比1小?为什么? 板书:小于1
小结:像1/3、3/4、5/6这样的分数都叫做真分数。
提问:谁来总结一下什么样的分数叫做真分数?真分数有什么特点? (板书:分子比分母小的分数叫做真分数。真分数小于1。)
(4)让学生说几个真分数。
2、认识假分数。
(1)课件出示例2 直观图,指点导学生根据分数的意义用分数表示图中的涂色部分。
(2)比较这些分数的分子和分母的大小,你会发现什么? 板书:分子等于分母、分子大于分母
(3)联系直观图想一想:这些分数比1大,还是比1小?为什么?(4/4=1,7/4和11/5都大于1)
板书:等于1、大于1
(4)像4/4、7/4、11/5这些分数都是假分数,谁能说说什么样的分数叫做假分数?板书:假分数
(5)假分数有什么特征?像这样的分数还有吗?举例说说。
3、小活动:让学生说一些真分数和假分数。(同桌之间互相说)
4、练习1:
说出分母是6的所有真分数。
说出分子是6的所有假分数。
说一些分子是6的真分数。
说一些分母是6的假分数。
5、练习2。
(1)判断下列那些是真分数,那些是假分数。
(2)把相应的分数标到相应的`点上。
6、动手操作:用手中的圆纸片表示一个真分数和一个假分数。
三、巩固提高
1、判断。
①假分数都大于1。
②真分数都小于1。
③假分数是假的,其实它不是分数。
④分母比分子大的分数是真分数。
⑤分母是5的真分数有5个。
⑥分子是4的假分数有4个。
⑦所有分数,不是大于1,就是小于1。
2、思维训练
1.在分数a/5中,当a小于()时,它是真分数;当a大于或等于()
时,它是假分数;当a等于()时,它能化成整数。
2.在分数7/a(a>0)中,当a()时,它是假分数;当a()时它是真分数。
3.分数单位是1/10的最小真分数是( ),最小假分数是( )
四、课堂小结
通过本节课的学习,你获得了什么知识?对分数又有哪些新的认识?
板书设计:
真分数和假分数 分子小于分母真分数小于1 分子等于分母等于1 假分数 分子大于分母大于1
第五篇:分数教学设计
分数教学设计 1
设计思想
在三年级下册教材中,学生已经初步理解了分数的意义,能认、读、写简单的分数,会计算简单的同分母(分母小于10)分数加减法及应用,解决与分数有关的简单实际问题。这节课是五年级学习分数的第一节课,是后面继续学习分数的基础,它起着承上启下的重要作用。所以这节课既要对以前的知识的重点回顾,又要在此基础上有所发展。这节课通过开展一系列的活动,使学生经历动手实践、自主探索与合作交流,在宽松、和谐的氛围下,丰富学生对分数的认识,使学生进一步理解分数的意义。
教学目标
知识与技能:在具体的情境中,进一步认识分数,理解和掌握分数的意义,体会“整体”与“部分”的关系。
过程与方法:通过动手操作、合作交流,丰富分数的内涵,发展数感。
情感、态度与价值观:使学生感受数学与生活的密切联系,培养学生的学习兴趣和学习热情。教学重、难点:突出分数意义的建构,使学生充分体会“整体”与“部分”的关系,深化对分数本质的理解。
教具:
多媒体课件、实物展示平台。学具:彩笔。
教学过程:
一、复习引入
1、师:今天,老师给大家带来了一位老朋友,你认识吗?(出示分数二分之一)提问:看到二分之一这个分数,你想到了什么?请你用二分之一说一句话。
小结:同学们刚才所说都是我们以前学的,把一个物体平均分成二份,其中的一份,都可以用二分之一来表示。
2、师:请你在图上表示出对应的分数。(课件出示)①全班交流。
②讨论:在表示1/2的过程中,你有什么发现?
③教师质疑:这里是把谁看作整体“1”?一份是几个?这个整体“1”还可以指哪些呢?
3、师:同学们对分数了解到真多!今天我们再次来探访分数这个老朋友,相信你会对分数有更新的发现。(揭示课题:分数的再认识)
[设计意图:根据学生的知识基础,由“根据1/2说一句话”和“在图上表示出对应的分数”进一步唤醒学生以往对分数的认识,揭示课题。这样的设计,抛弃以往切入课题的浮华,通过两个知识复习,让时隔一年的分数知识再次明朗,轻松的谈话,使分数的知识在学生脑海里一步步清晰起来,为后续学习打下基础。]
二、探究新知活动一:拿彩笔
1、全班分成八个组。每组从彩笔盒中拿出彩笔总数的1/2。
2、汇报、展示:小组汇报所分铅笔总数、拿出的支数及拿法。
3、学生质疑:你发现了什么?
生:拿铅笔的方法相同,都是把铅笔总数看成一个整体,平均分成2份,拿出了其中的1份。生:我发现他们拿的支数有的一样,有的不一样。这是为什么呢?生:会不会数错了。
4、学生验证。经过验证是对的。
5、各组都是拿全部彩笔的1/2,拿出的彩笔支数有的一样多,有的不一样多,这是为什么呢?请大家独立思考,再和附近同学交流。
请台上的三位同学把所有的水笔都拿出来,并告诉同学们总支数是多少,1/2是多少支,验证刚才的结果。
师生小结:总支数不一样,同样是1/2,所表示的支数却不一样。活动二:说一说
1、小明看了一本书的1/3,小军看了一本书的1/3,他们看的一样多吗?
2、比较、讨论:“都是一本书的1/3,但表示的页数不一样多,为什么?”
3、质疑:怎么样的情况下,两本书的1/3是一样的?师:通过刚才拿彩笔、看书的活动,你发现了什么?
小结:同一个分数,对应的整体不一样,那么分数所表示具体的数量也不一样。活动三:画一画一个图形被两张纸遮住了,只露出了这个图形的1/4是□,画出这个图形来。
[设计意图:开展“拿彩笔”的活动,通过小组动手操作,合作探究,使学生体会:同样是“1/2”,彩笔的数量可能相同,也可能不同,这是因为原有的彩笔的总数有的相同,有的不同。“画一画”是借助直观图形体会一个图形的1/4都是一个□,但这个图形的形状有可能不一样。“拿彩笔“是直观操作,从学生的生活经验和已有知识出发,把学生对分数的朦胧经验抽象成理论知识;”画一画“既有利于加深学生对分数的理解,又有利于发展学生的空间想象能力。三个活动,由直观到抽象,遵循学生知识螺旋上升的原则,让学生逐步掌握知识。]
三、反馈提升
1、分数小游戏
请1个同学站起来,请学生先后说出这位同学占大组人数、小组人数、全班人数、全年级人数(467人)、全校总人数(2863人)的几分之几。
思考:请同学们想一想,同样一个人,怎么可以用那么多不同的分数来表示呢?发散:你还能举出这样的例子吗?
2、估一估
出示题目:一个整体的2/3是(8个圆),这个整体会是下列哪个图形?请学生先估计,然后再算一算,说说思考过程。
3、辩一辩
导语:“读万卷书,行万里路”,每年的4月23日是“世界读书日”,设定这样一个节日是让世界上每一个角落的每一个人都能读到书,让读书成为每个人日常生活不可或缺的一部分。同学们,你们现在窗明几净、桌凳整洁的教室里读书,你们真幸福。而在我国西部有这样一群孩子,他们要读书有何等困难。请看屏幕。课件播放“西部贫困山区孩子读书图片”。你想说什么?
课件出示:为了帮助西部贫困山区的孩子们读书,小明捐献了零花钱的1/4,小芳捐献了零花钱的3/4,小芳捐的钱一定比小明多吗?请说明理由。学生独立思考,全班交流。
[设计意图:反馈提升设计了“分数小游戏、估一估、辩一辩”三个环节,力求体现基础性、层次性,趣味性,突出重点,突破难点。同时,利用新颖多样的题型,把基础认知与思维发展紧密结合起来,以达到内化新知、形成技能、发展提高的目的。数学与生活紧密联系,让数学用于生活,使学生体会到数学的价值。]
四、回顾反思
1、通过这节课的学习,老师相信同学们一定有许多收获和大家分享。请你选择:(1)我感触最深的是……(2)我学会了……(3)我发现……中任选一种方式和大家交流。
2、还有什么不明白的知识吗?
五、拓展延伸
分数的产生经历了一个漫长的历史过程,你知道吗?课件播放录音。
课后,大家还可以通过查阅资料、网络等形式去了解分数的知识。
[设计意图:引导学生回顾总结全课,重温本课学习的知识,进一步沟通知识间的联系,加深对所学知识的印象。同时,从课内延伸到课外,拓宽学生的知识面,并鼓励孩子们利用网络资源继续学习,使学有余力的'孩子得到更大的发展。也符合新课标“使不同的学生在数学上得到不同的发展。”这一理念。]
教学反思:
教学完这节课,我有以下的收获:
1、注重结合实际展开教学。
从这节课中可以看出,学生的生活经验、知识基础已成为教师教学的重要资源。如教师利用学生已对分数意义有初步认识的基础上,让学生体会相同的1/2,得到不同的结果,从而激起学生的兴趣,体验整体“1”不同,同一个分数所表示数量的不同。
2、注重动手操作,自主探索,合作交流,让学生经历探究过程。
在本课的教学中,注重为学生创设自主探索的空间,在学会动手实践、合作交流下,学生通过拿彩笔、画一画、分数小游戏、辩一辩等活动,在各种感官协调参与下分数意义的建构。学生通过分组合作讨论,全班展示交流,体会到解决问题策略的多样性,既发展了求异思维,又在交流中深化了各自的认识。
3、让学生在生活大背景下学习。
数学源于生活,又高于生活,并且用于生活。本节课创设了多个生活化情境,让学生在小组交流中体验,在体验中感悟,在不知不觉中掌握新知。如“分彩笔”、“猜本数”、“分数小游戏”、“估一估”等,让学生在具体的操作实践、讨论交流中不知不觉地认识了分数,使学生体会数学与生活的密切关系,感受数学的价值。
4、注重学生的全面参与、合作交流。
《数学课程标准》指出:数学教育要面向全体,实现不同的人在数学上得到不同的发展。教师通过组织各种教学实践活动,使全休学生始终积极主动参与整个学习活动之中,课堂气氛很活跃。教师在课堂上确保学生有充分的合作交流时间与机会,让学生在动脑思考、合作学习的过程中掌握新知、发展思维、提高能力。
在教学中我还应注意学生的表达能力培养,让学生能清晰地说出心中所想,使听者更加明白。
5、注重学生情感、态度价值观的培养。
教学中,通过“世界读书日”引入,观看贫困山区孩子读书的图片,教育孩子们要珍惜现在来之不易的生活,好好学习。进而引出捐款。课尾,又介绍了分数的历史,使学生了解知识的产生与发展,体会数学在人类发展历史中的作用,激发学生学习数学的兴趣。
总之,整节课由“复习引入→探究新知→反馈提升→回顾反思→拓展延伸”五部分组成,环环相扣,设计了一系列的数学活动,学生在动手操作、独立思考、合作交流中,在教师的引领下,在宽松和谐,富有挑战力的情境,主动构建知识体系,获得了积极的情感体验。
分数教学设计 2
一、教学目标
知识与技能:理解百分数的意义,掌握百分数的读法、写法。
过程与方法:通过交流、讨论、辨析等教学活动,培养学生独立思考、抽象概括的能力,深刻理解百分数与分数的联系和区别。
情感态度与价值观:养成生敢于提问、善于质疑的学习态度、
二、教学重难点
教学重点:能理解百分数的意义。
教学难点:理解百分数与分数的联系与区别。
三、教学过程
(一)情景导入
提问:天气越来越冷,老师想去买一套保暖内衣,在商场里选了这样两套衣服。在看了合格证以后发现这样一些信息,请你来帮老师选一选,买哪一套比较好?(出示课件)
明确:100%棉表示这件衣服是全棉的,65.5%棉表示这件衣服含有65.5%的棉。
(二)新课教学
1、提问:你还在什么地方见过上面这样的数?举例说一说。老师这里也收集了几个这样的数。
总结:像刚才这样的数,都叫做百分数,也叫百分率或百分比。其中的“%”叫做百分号。
2、理解意义
提问:所有的百分数都可以这样表示吗?这个百分数表示什么?
明确:已经复制的文件容量占所要复制的文件容量的14/100。
提问:那么没有复制的文件容量占所要复制的文件容量的多少?(86%)表示什么?
提问:你能用这样的形式表示收集到的.百分数吗?同桌之间互相说一说(讨论)。
总结:百分数表示一个数是另一个数的百分之几。
3、百分数与分数的联系和区别
课件出示题目:下面哪几个分数可以用百分数来表示?哪几个不能?说说为什么。
学生讨论75%、50%各表示什么意义。
总结:分数既能表示一个数是另一个数的几分之几,也可以表示具体量。百分数只能表示一个数是另一个数的百分之几,不能表示具体量。
(三)巩固练习
练习:猜盐水的浓度。
这里有一杯淡淡的盐水,你能用一个百分数表示这杯盐水的浓度吗?这杯盐水的浓度是5%,谁能说说这个百分数表示的含义?如果这杯盐水的浓度很高,你觉得应该用怎样的一个百分数表示?为什么没人猜是100%?可能是100%吗?如果盐水的浓度是100%,这个百分数表示什么含义?
(四)小结作业
学习这节课之后,你有什么收获?谁能和大家分享分享?
(四)板书设计
百分数的意义和读写
(五)教学反思
分数教学设计 3
第一课时 认识分数
教学内容:书105--106
教学目标:
1、使学生初步认识几分之一、几分之几;会正确的读写分数,知道各部分的名称及含义。
2、从学生的实际生活出发,使学生在多种活动中理解知识,发展智力。
3、培养创新和实践的意识。
教学重点:理解为什么平均分才能用分数表示
教学难点:理解必须平均分才能用分数表示
教学过程:
一、认识二分之一
例1 把一张纸平均分成2份
直观演示,学生操作
把一张纸平均分成2份,其中一份不能用我们以前学习过的数来表示
用新的数来表示
二、认识四分之一 四分之三
例2 把正方形纸平均分成4份,然后把一份图上颜色。
一个正方形平均分成4份, 每份是他的四分之一,没有图颜色的就是3个四分之一,就是四分之三。
三、学习各部分的名称
例3 看图填一填,说一说
出示挂图
由学生说出是几分之几
师板书,介绍这些数就是分数,上面的叫分子、下面的叫分母、中间的线叫分数线。
四、课堂活动
1、1题
先用纸折一折,问:平均分成了几份?然后填空
2、2题
同方同学,你读我写,互相交换
3、说一说生活中,什么地方要用到分数?
第二课时 练习
教学内容:书107--108
教学目标:
1、通过练习巩固学生对分数意义的理解,提高应用能力 。
2、培养学生的.迁移能力。
教学过程:
一、交代本课的任务
完成练习十九的1--7题
二、基础练习
1、1题 用分数表示下图中的阴影部分
2、2题 在每个图里选适当的部分涂上颜色表示他下面的分数
三、发展练习
1、3题 用下面的分数表示涂色部分对吗?
注意 是否平均分
2、4题 选出合适的分数来表示各图中的阴影部分
此题的阴影部分不是连续的
3、5题 看图填空
4、6题 写出下面的分数,并指出分母和分子
5、7题
1个面包切成同样大小的10片,爸爸吃了4片,爸爸吃了这个面包的( )分之( )
分数教学设计 4
教学目标:
1、通过学生自主发现,自主探究,理解分子是“1”的分数大小的比较,学会同分母分数和分子是“1”的分数大小比较的方法。
2、让学生在自主探究的活动中,经历“猜测—验证—总结—应用”的数学学习过程,感悟数学学习的方法,从而培养学生动手探索的能力。
3、使学生在学习知识、体验学习方法的过程中收获学习的快乐。
其中,在学习同分母分数的大小比较时,沟通几分之几与几分之一的联系是本节课的教学重点,理解分子是“1”的分数大小的比较方法既是也是本节课的重点也是难点。学具准备:长方形纸片、圆形纸片、窄长方形纸片媒体准备:课件演示教学过程:
一、情境导入:
快看大屏幕!呦,多香的一张披萨饼呀!他俩正准备吃呢!沸羊羊说:“两个人,每人吃吧!”懒洋洋着急地说:“不够不够,我要吃!”
二、探究“分子是1的分数大小的比较”的方法:
1、初步比较,探学生认知:同学们请你们想一想,是大还是更大呢?指名答。预设1:有人说大,也有人说大,各自说明理由。师:这只是我们的猜想,到底是大还是大,我们还需要进一步来验证。预设2:叫起俩人都说大,师问大家:你们有不同想法吗?那你们都认为比大?谁能说说理由?师:除了借助实物比较出了和的大小,我们还能用在怎样的方法比较出和和的大小呢?
【教学意图:通过学前调研得知,分子是1的分数的比较是学生学习的难点,所以将书中由分西瓜的情境引出的比较和的大小改换为了由分披萨饼的情境的引出的比较和的大小,更贴近学生的生活经验,降低了认知难度。】
2、动手操作,验证和的大小:
1)动手验证:师:请任选手中的学具,开始验证吧。(第一大组,圆和长方形;第二大组,圆和窄长方形)师巡视:发现不用同一单位1的及时纠正;收集不同的材料。 2)汇报交流:(每组学生上来汇报完,教师屏幕出示直观比较图)
第一组:用圆来验证的,订正时注意通过动作演示体会同圆;要说清表示和的过程:用圆片代替披萨饼,把圆平均分成两份,其中的一份就是,把圆平均分成四份,其中的一份就是。第二组:用长方形来验证的,生说完,是强调:也是先平均分表示数,然后比较的。第三组:用窄长方形来验证的,你也是平均分的吗?3)统一比较的结果:同学们的比较结果都一样吗?板书>【教学意图:引导学生自主探究,在经历选择材料的过程中体会这两个分数比较的前提;在经历平均分,得到和的过程中,使学生初步感受、理解和的分数意义;在比较大小的过程中,利用数形结合的方法,表象支撑、直观比较。】
3、涂一涂、比一比,继续验证和,和的大小:
师:刚才通过动手折,我们比较出了和的大小,下面我们再来比较两组分数的`大小,请拿出1号纸,看清题目,开始!
实投学生作业汇报:我们来看这份作业,分别用阴影表示了这个圆的和,然后进行里比较,和你们比较的结果一样吗?板书>。再看和的比较结果,大家都一样吗?板书>。 【教学意图:在比较了和的大小之后,再让学生通过涂一涂、比一比的方法来比较和、和的大小,还是在帮助学生在头脑中建立表象支持。】
4、观察三组分数的比较,归纳得出分子是1的分数大小比较的方法:
师:观察这三组分数的比较,你从中发现什么?板贴:分子是1,分母越大,分数越小。
【教学意图:引导学生观察比较,从而培养归纳概括的能力。】
5、引导学生进一步理解、解释这一规律,从而深入理解比较方法:
小声读一读,再想一想,分子是1的分数,为什么会是这样比较的呢?你能再说说吗?也可以利用学具来帮忙!当学生用学具时,老师也拿出教具,引导全班同学一同折纸,并配合课件演示,折→→→→
问:在折的过程中,你看到什么?体会什么?如果这张纸无限薄,还能不能出现更小的几份之一?(使学生在操作中、在课件的直观变化中深刻体会到:越折份越多,其中的一份就越小)
【教学意图:学习知识要知其然更要知其所以然。发现规律并不难,重要的是要在发现规律之后理解、体会、解释规律。所以这一教学环节非常重要。】
6、帮助学生梳理学习方法:
在比较分子是1的分数大小时,我们先是通过猜想、接着又验证猜想、最后得出结论、还解释了结论。板书猜想、验证、结论、解释,这是一种非常严谨的数学学习的方法!【教学意图:数学课上要使学生获得知识,更要使学生在学习知识的过程中习得学习的方法。所以这里要及时帮助学生回顾、整理学习的方法,在学生刚经历完学习过程之后,归纳梳理出学习的方法显得水到渠成。】
7、小练习,巩固所学,同时引出分母相同的分数的比较:
下面我们通过几组题来检验一下刚才的学习结果。出示第一组:给几秒钟时间,指名,问:你是怎么比较的?(可能会直接叙述规律,也可能会从意义上来说)我们拿起一个学具(纸)想一想它的有多大?有多大?第二组:直接说出比较结果
第三组:指名说比较结果。问:你是怎么比较的?学生会从分数的意义上来说。
【教学意图:这个小练习的安排,意在及时复习所学,同时又引出同分母分数的比较。在比较第一组时,引导学生想想图形,利用表象;再比较第二组时让学生直接说出比较的结果,这样的教学层次使练习效果更好。】
三、探究“分母相同的分数大小的比较”的方法:
1、比较和
的大小,初步猜测同分母分数的比较方法:师:你能用学具来说明和
的大小吗?板书:<
,在比较和
的大小时,比较的方法和刚才有什么不一样?那分母相同的分数真的都是这样比较吗?我们怎样才能证明这个结论?(生:还得通过几组这样的分数比较的结果来证明)【教学意图:引导学生利用刚才的学习方法继续进行探究学习】
2、涂一涂,比一比和,和的大小:学生自己做,师巡视。实投汇报:
第一组:说说你是怎么通过涂一涂来比较的?追问:一份是多少?涂了几份?而呢?板书<
第二组:学生会按照上面的方法说清。追问:是在的基础上有涂了几份?板书<
【教学意图:通过涂、比、追问,使学生加深理解几分之几是分数单位累加的过程。设计这个分数为一会的研究做铺垫。】
3、归纳方法:
观察这几组分数的比较,看看我们最初的猜想对不对?板贴:分母相同,分子大,分数就大。 【教学意图:引导学生归纳总结。】
4、深入理解、解释这个结论:
读一读,再来说说你的理解,也是可以借助学具,随着学生的发言,师在实投上涂、每个学生用自己的学具涂,→→→→,体会分数单位累加的过程。 【教学意图:引导学生验证规律。】
5、回顾学习方法:
师:我们是怎样又得到了比较同分母分数的方法?【教学意图:引导学生回顾学习方法,即“猜想——验证——结论——解释”。】
6、分子和分母相同的分数:
出示:和比较的直观图,师:刚才在比较这组分数时,你发现了哪个分数比较特殊吗?你怎样理解这个分数的含义?那还有哪些分数也等于1?等于1的分数有什么特点?【教学意图:借助直观图,再结合刚才分的过程、取的过程,学生很容易理解这个分数的含义,进而理解分子和分母相同的分数的大小。】
四、及时回顾,对比梳理:
师:分子是1的分数我们会比了,分母相同的分数我们也会比较了,请你回忆一下,越分越多,一份就越小,是在比较?越涂越多,分数不断增加,是在比较?请和你的同桌说说这两种比较方法。
分数教学设计 5
一、教学目标
1、使学生理解和掌握分数的基本性质,能应用分数的基本性质把一个分数化成指定分母而大小不变的分数。
2、学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。
3、激发学生积极主动的情感状态,体验互相合作的乐趣。
二、教学重点
1、理解、掌握分数的基本性质,能正确应用分数的基本性质。
2、自主探究出分数的基本性质。
三、教学准备
课件、正方形的纸
四、教学设计过程
(一)迁移旧知.提出猜想
1、回忆旧知
根据“288÷24=12”填空
28.8÷2.4=
2880÷240=
2.88÷0.24=
0.288÷=12
被除数÷除数=()
说一说你是根据什么算的?引导学生回忆商不变的性质?媒体出示:商不变的性质:
被除数和除数同时乘或除以相同的数(零除外),商不变。
2、提出猜想
既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)
(二)验证猜想,建构新知
1、你有什么办法来验证自己的猜想?(折一折、分一分、涂一涂等方法。)
2、出示学习提示。
学习提示
A、同桌合作,借助手中的学具,选择喜欢的方法,验证自己的猜想。
B、验证结束后,把你的验证方法和结论与小组同学交流。
3、汇报交流
指名3到4名同学到讲台前与全班同学交流自己的验证方法和过程,教师相机板书。
C、总结规律
1、师:请同学们看黑板上的两组分数,说说它们的分子和分母分别是按什么规律变化的。指名回答,教师板书。
2、总结:对于任何一个分数,只要满足:分数的'分子和分母同时乘或除以相同的数,分数的大小就不会发生变化。
3、强调0除外。哪位同学将分数的分子和分母同时乘或除以0进行验证的?
如果有,问他是否验证出猜想,验证过程中出现了什么问题,如果没有,肯定他们的做法是对的,从而出示完整的规律:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
师:为什么要0除外?
师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)
教师以3/4为例说明分数的分子和分母同时乘或除以0是没有意义的。
师:再次出示分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。(板书课题)
D教学例2
把2/3和10/24都化为分母为12而大小不变的分数。
学生独立完成,集体订正。
(三)练习升华
1、填空
2、下面算式对吗?如果有错,错在哪里?
3、把相等的分数写在同一个圈里。
4、老师给出一个分数,同学们迅速说出和它相等的分数。
(四)作业
教材59页第9题。
(五)思维拓展
(六)总结延伸
师:这节课你有什么收获?
六、板书设计
分数基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数教学设计 6
教学目标:
1、使学生理解并掌握百分数和小数互化的方法,能正确地把分数、小数化成百分数或把百分数化成分数、小数。
2、在计算、比较,分析、探索百分数和分数、小数互化的规律的过程中,发展学生的抽象概括能力。
3、通过探索百分数和分数、小数互化的规律,激发学生的数学探索意识。
教学重点:
掌握百分数和分数、小数互化的方法。
教学难点:
正确、熟练地进行百分数和分数、小数的互化。
教学过程:
一、复习。
1.百分数的意义是什么?
2.把下面的小数化成分数,并说一说是怎样化的?
0.45 1.2 0.367
3.把下面的分数化成小数,说一说是怎样化的?
4.写出下面各百分数。
百分之十六 百分之七十二点五
百分之一百八十 百分之五百
5.把下面各数扩大100倍是多少?小数点是怎样移动的?如果把它们缩小100倍是多少?小数点是怎样移动的?
2.5 5 0.48 1.25 10.3
二、新授。
1.教学例1。
(1)出示例1:把0.24、1.4、0.123化成百分数。
(2)引导学生思考:要把小数化成百分数,要先把小数化成分母是100的分数,然后再把这个分数改写成百分数。
0.24= =24%
1.4= = = =140%
0.123= = =12.3%
(3)请大家观察一个,如果不看先化成分数的这个过程,小数可以怎样直接化成百分数的?(引导学生归纳出小数化成百分数的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。)
(4)说明:当小数点向右移动两位时,原数就扩大100倍,再添上百分号,又使它缩小100倍。所以原数大小是不变的。
(5)完成第80页“做一做”第(1)题。
2.教学例2
(1)出示例2:把27%、135%化成小数。
(2)引导学生思考:要把百分数化成小数,可以先把百分数改写成分母是100的分数,然后再用分子除以分母,把分数转化成小数。
(3)启发学生口述每题的转化过程,板书:
27%= =27÷100=0.27
135%= =135÷100=1.35
(4)引导学生观察、归纳,百分数怎样很快地直接化成小数?(把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位)
(5)使学生明白:当把百分数的百分号去掉时,原数就扩大了100倍;然后再把它的小数点向左移动两位,又使它缩小100倍,所以原数的大小不变。
(6)完成第80页“做一做”的第(2)题。
3. 引导学生进一步综合归纳百分数和小数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
4.教学例3
(1)出示例3:春蕾小学的一项调查表明,有蛀牙的学生人数占全校学生人数的20%,没有蛀牙的学生人数占80%。
(2)引导学生:百分数是分数的一部分,可以写成分数形式。请大家运用过去所学过的知识,试着把上面几个百分数改写成分数。
(3)根据学生回答,板书:
20%= = 80%= =
(4)想一想:2.5%怎样化成分数?(如果百分数的分子是小数的,可以根据分数的基本性质,把分子、分母同时扩大相同的倍数,使分子变成整数后,再约分。)
(5)完成P81“做一做”第1题。
5、教学例4
(1)学生通过小组自学讨论,找出将分数化成百分数的方法。
(2)小组汇报,并举例说明。(分子除以分母,除不尽时,保留三位小数,也就是百分号前保留一位小数)
(3)完成P82“做一做”第1、2题。
三、巩固练习
1、练习十九第1、2题。
2、练习十九第3题。
四、布置作业
练习十九第5、6、8题。
教学追记:
百分数和小数的互化,我并没有直接给出互化的方法,而是让学生自己探索,通过观察例题,再结合“做一做”,让学生在观察比较中发现互化的规律,从而找出快捷的互化方法。百分数和分数的互化这部分内容与百分数和小数的互化编排类似,因此我放手给学生,让他们通过自学、尝试、实践,掌握百分数与小数互化的方法。同时,通过对方法的探索、分析、比较和总结,培养学生思维的灵活性和抽象概括能力。
用百分数解决问题(2)
教学目标:
1、掌握稍复杂的求一个数比另一个数多(或少)百分之几的问题的解答方法。
2、提高学生迁移类推和分析、解决问题的能力。
教学重点:
掌握解决此类问题的方法。
教学难点:
理解题中的数量关系。
教学过程:
一、复习
1、把下面各数化成百分数。
0.63 1.08 7 0.044
2、说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位“1”)
(1)某种学生的出油率是36%。
(2)实际用电量占计划用电量的80%。
(3)李家今年荔枝产量是去年的120%。
二、新授
1、根据数学信息提出问题:出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。
(1)计划造林是实际造林的百分之几?
(2)实际造林是计划造林的'百分之几?
(3)实际造林比计划造林增加百分之几?
(4)计划早林比实际造林少百分之几?
2、让学生先解决前两个问提。解决这类问题要先弄清楚哪两个数相比,哪个数是单位“1”,哪一个数与单位“1”相比。
3、学生自主解决“实际早林比计划增加了百分之几”的问题。
(1)分析数量关系,让学生自己尝试着用线段图表示出来。
(2)让学生说说是怎样理解“实际造林比原计划增加百分之几”的?(求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位“1”。)
(3)明确解决问题的方法:让学生根据分析确定解决问题的方法,并列式计算出结果。
方法一:(14-12)÷12=2÷12≈0.167=16.7%
方法二:14÷12≈1.167=116.7% 116.7%-100%=16.7%
(4)小结解题方法:像这样的百分数问题有什么特点?解决它时要注意什么?(这是求一个数比另一个数增加百分之几的问题,它的解题思路和直接求一个数是另个数的百分之几的问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位“1”,但是这里比较的两个量中有一个条件没有直接告诉我们,必须先求出。
(5)改变问题:问题如果是“计划造林比实际造林少百分之几?”,该怎么解决呢?
学生列出算式:(14-12)÷14
(再次强调两个问题中谁和谁比,谁是单位“1”。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位“1”。)
三、巩固练习
1、独立完成课本第90页“做一做”的题目。
2、练习二十二第1、2题。
四、布置作业
练习二十二第3、4题。
教学追记:
求“相差率”的应用题,是在“求比一个数多(少)几分之几的基础上”发展的。这种问题实际上还是求一个数是另一个数的百分之几的问题,只是有一个条件没有直接给出,需要根据题里的条件先算出来。教学中,我充分让学生理解这一点,理解了这个道理,对于学生的解题起到了不小的帮助作用。同时,我紧扣线段图,帮助学生理解题意,分析数量关系,再通过讨论学习的方式,让学生自主尝试,并理解两种不同解法的含义。
分数教学设计 7
教学目标
1、使学生知道分数的产生,理解分数的意义,特别是理解单位“1”、分子、分母的意义,学会用分数描述生活中的事情。
2、培养学生动手操能力和概括能力。
3、让学生在轻松和谐的课堂教学氛围中主动参与,在操作体验中,激发学习兴趣,树立学好数学的信心。
教学重点:
分数的意义,正确认识单位“1”。
教学难点:
单位“1”概念的建立。
教学准备:
教具:课件、图片,电子白板。
学法指导:
引导学生 自学、带着问题学,培养良好的学习习惯。
教学过程
活动一: 复习导入
1、提问:
(1)把2个苹果平均分给2个小朋友,每人分的几个??
(2)把1个苹果平均分给2个小朋友,每人分的几个?(每人分得这个苹果的 2/ 1)?
活动二:
1、关于分数,你知道了分数哪些知识?分数是怎样产生的呢?能说出几个简单的分数吗?
2、关于分数,你还想知道什么?
设计意图:注意新旧知识的衔接,为建立单位“1”打下基础。
活动三:
探究单位“1”是一个物体或一个计量单位的分数
初步得出:把一个物体或一个计量单位平均分成若干份,表示这样的一份或几份,我们可以用分数来表示。
活动四:探究单位“1”是许多物体的一个整体。
引导学生说出:原来是把一个物体或一个计量单位看作一个整体,现在是把许多物体看作一个整体。
练习:举例,然后说出各个例子中的单位“1”。
设计意图:把单位“1”从一个物体过渡到一个整体,初步建立单位“1”概念。
小结:单位“1”可以指一个物体、一个计量单位,还可以指由许多物体组成的一个整体。能说说我们生活中哪些物体可以看作单位“1”?
设计意图:进一步认识单位“1”,使学生理解单位“1”,不仅可以是一个物体,许多物体也可以看成单位“1”。为充分理解分数的意义基础。
练习
活动五:归纳分数的意义
⑴我们学到这里大家能说说什么叫做分数?(同学试着说说)
⑵读读书上是怎么说的?
⑶课件出示分数的意义:让学生再读一遍。
⒎认识分数的各部分名称
同桌同学说分数,说名称。
活动六:巩固应用?? 拓展练习?? 思考题
?课件出示
(五)总结全课
通过这节课的.学习,同学们知道了什么?
板书设计:
分数的产生和意义
分数的产生? 生活的需要
分数的意义
1/4? 3/4
把一个整体平均分成若干份,这样的一份或几份的数都可以用分数表示。
分数教学设计 8
教学内容:
苏教版义务教育课程标准实验教科书,六上《分数四则混合运算》
教学目标:
1、使学生结合解决实际问题的过程,理解并掌握分数四则混合运算的运算顺序,并能按运算顺序正确计算;主动体会整数运算律在分数运算中同样适用,能运用运算律进行有关分数的简便计算,体验简便运算的优越性。
2、使学生在理解运算顺序和简便计算的过程中,进一步培养观察、比较、分析和抽象概括能力。
3、使学生在学习过程中,体会到数学知识的内在联系,积累数学学习的经验。
教学重点:
分数四则混合运算的顺序。
教学难点:
灵活使用运算律计算分数四则混合运算。
教学过程:
一、复习铺垫,重温整数四则混合运算的运算顺序。
1、板演:5/8×18 1—3/4 4/5÷3/4 2/3+4/7
说说分数四则运算的方法。
2、谈话:中国结是我们中华民族特有的传统工艺制作,元旦时我们班将用它来装扮教室。出示场景图:小的中国结每个用4分米彩绳,大的中国结每个用6分米彩绳。两种中国结各做18个,一共用彩绳多少米?
3、学生口头列式,说说运算顺序。
4、提问:两种方法,哪一种计算更简便?为什么?
4、小结:整数、小数四则混合运算的运算顺序都是先算乘除法,再算加减法。有括号的先算括号里面的.。还可以使用运算律使计算更简便。
二、主动探索,理解分数四则混合运算的运算顺序
1、将数据改为例1的场景图,学生自主列出综合算式。
板书:2/5×18+3/5×18 (2/5+3/5)×18
2、交流两种算式的不同思路:列式时你是怎样想的?
3、指出:在一道有关分数的算式中,含有两种或两种以上的运算,称为分数四则混合运算。
这两道算式都属于分数四则混合运算。(板书课题)
4、独立思考,尝试计算
(1)提问:根据以往计算整数、小数四则混合运算的经验,想一想,分数四则混合运算的运算顺序是怎样的?
使学生明确:分数四则混合运算的运算顺序和整数小数四则混合运算的运算顺序相同。
(2)尝试:这两道算式你能试一试吗?
学生分别计算,指名板演。
5、交流算法,理解顺序
让学生结合具体问题情境说说运算顺序。说清先算什么,再算什么。
6、小结:分数四则混合运算的运算顺序和整数四则混合运算的运算顺序相同。也是先算乘除法,再算加减法,有括号的先算括号里面的。
三、算中体验,把整数的运算律推广到分数。
1、讨论:这两个算式,如果让你选择,你喜欢计算哪一个?为什么?
使学生明确第二个算式因为括号内的和是整数,所以计算比较简便。
2、观察:这两种算式有什么联系?
得出:两种方法从算式来看,其实是乘法分配律的运用。
3、引导:两个不同的算式,求的都是“一共用彩绳多少米”。从中,你得到了什么启发?
4、小结:整数的运算律在分数中同样适用。我们在进行分数四则混合运算时,要恰当地应用运算律使计算简便。
四、练习巩固,正确计算。
1、练一练第1题
先让学生说说运算顺序,再计算。
反馈时:可以让学生说说自己的算法,第1题的除法和乘法你是怎么处理的?
小结:分数四则混合运算的运算顺序和整数四则混合运算的运算顺序相同。但整数四则混合运算通常是一次计算出一个得数,而分数四则混合运算的乘除法连在一起时可以同时运算。
提问:你是怎么检查结果是否正确的?
使学生重温检查的方法,养成习惯:(1)数字、符号有没有抄错;(2)每一步的计算是否正确;(3)书写格式是否规范。
2、练一练第2题
独立完成
交流时,说说应用了什么运算律或运算性质,为什么要这样算。
提问:分数四则混合运算在使用运算律时,有什么特别之处?
小结:整数四则混合运算在使用运算律时,常常是使用运算律凑成整十或整百、整千数再计算,但分数四则混合运算在使用运算律时,通常是凑成整数,或者观察是否有利于约分。计算步数较多的题时,要随时注意使运算简便。
3、练习十五1、2题
独立完成
五、全课总结
说一说:这节课你有哪些收获或不足?
计算分数四则混合运算时,你觉得你对同学们可以提出什么样的友情提醒?
六、练习设计:
1、填空:(1/9+5/6)×18=( × + ×)
4/7×1/6+4/7×5/6= ×( + )
2、下面四个算式中,得数最大的是:( )
(1/7+1/9)×10 (1/8+1/9)×10 (1/8+1/10)×10 (1/9+1/10)×10
3、用简便方法计算:
(4/5—3/4)×20 (5+4/5)×10 7/9×15/11—7/9×4/11 (9/4+9/7)÷9/28
4、解决问题:一块地,长1/2米,宽是长的4/5,这块地的周长是多少?
分数教学设计 9
教学内容:新课标实验教科书六年级上册第85-86页,完成做一做和练习二十的1-4题。
教学目标:
1、使学生加深对百分数的认识,能理解达标率、发芽率、出油率等这些百分率的含义,掌握有关百分率的计算方法,能用百分数解决生活中一些简单的实际问题。
2、依据分数与百分数应用题的内在联系,培养学生的迁移类推能力和数学的应用意识。
3、使学生了解求百分率在生产、生活中的重要性,激发学生学习的积极性,初步渗透概率统计思想。
教学重点:掌握常用的百分率的计算公式。
教学难点:理解达标率、发芽率、出油率等一些百分率的含义
教学过程:
一、揭示课题
1、提问:百分数表示什么?
2、说出以下百分数的含义:
我们班第三单元测验,有97%的人达到了优秀。
我们有45%的人近视。
师:由于百分数表示一个数是另一个数的百分之几,所以解决百分数的问题可以依照解决分数问题的方法。今天,我们就一起来学习“用百分数解决问题”。(板书课题)
二、探究新知
(一)教学达标率
1、出示信息:六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人。达标学生的人数占总人数的几分之几?
2、学生解答,反馈: 板书: =
3、问:你能把这个结果用百分数表述出来吗?
4、师:达标学生的人数占总人数的百分之几也叫做达标率。(请1~2人复述什么叫达标率。)
板书:达标率:达标学生的人数占总人数的百分之几。
5、引导学生总结达标率的计算公式。
板书:达标率=达标学生人数 / 学生总人数 ×100%
问:公式中为什么要乘100%?(因为达标率是百分率的的一种,公式本身应该用百分数的形式(%)表示。如果公式单写成“达标率=达标学生人数 / 学生总人数 ”只是分数形式,而不是百分数。如果在“达标率=达标学生人数 / 学生总人数”的后面添上“×100%”(相当于×1),就可以既使数值不变,而又是百分数的形式。)
6、在题目中再加上一问:六年级学生的达标率是多少?让学生解答。
板书:
120/160×100%=0.75×100%=75%
问:“达标率是75%”是指什么?后面要不要写单位?为什么?(百分率是表示两个数的比,没有单位名称。)
7、比较一下求达标率和求达标学生的人数占总人数的几分之几有什么相同的地方和不同的地方。
(二)教学发芽率
1、创设情境,出示例1第(2)题,问:发芽率的含义是什么?(发芽率是指发芽的种子数占种子总数的百分之几。)
2、学生尝试算出绿豆种子的发芽率。
3、反馈算法,问;你能不能像计算达标率一样,也总结出一个计算发芽率的公式呢?让学生把书85页的公式填完整。
板书:发芽率=发芽种子数 /种子总数 ×100%
4、让学生继续算出花生和大蒜种子的发芽率。
5、教师说明:发芽率对于农民种田是十分重要的。农民伯伯需要根据发芽率的高低来选择种子品种和决定播种面积。这样,既可以保证所需苗的棵数不多不少,又可以避免种子的浪费。所以求发芽率对农业生产丰收有重要作用。
(三)其它百分率的计算
1、师:生活中用百分率进行统计的还有很多,像产品的合格率、小麦的出粉率等等,你还能说出一些百分率的例子吗?(出勤率、出米率、出油率、及格率、优秀率、成活率、命中率、升学率……)
2、你知道这些百分率的含义吗?可以怎样求出这些百分率呢?小组讨论、交流。
3、全班交流,总结一些常用的百分率的计算公式。
三、巩固应用
1、完成书86页“做一做”第2题。
2、书第87页第1题。
完成第1题后,可提问:我们班某天的出勤率为100%,说明了什么?有人预测我们班明天的出勤率为120%,可能吗?让学生思考、讨论。
3、判断:
(1)学校上学期种的105棵树苗现在全部成活,这批树苗的`成活率是105%。
(2)六年级共98名学生,今天全部到校,六年级今天的学生出勤率是98%。
(3)25克盐放入100克水中,盐水的含盐率是25%。
4、解决问题:
①六年级一班有学生50人,今天出席48人.求六年级一班今天的出勤率.
②在一次数学测验中,六年级一班同学一共做了400题,错误了16题,求错误率。
5、变式练习
(1)种了100棵树,死了1棵,求成活率
(2)25克盐和100克水,求盐水中的含盐率
四、全课总结
课后反思:今天这节课的主要内容是求“百分率”,联系生活实际,我列举一些生活中常见的百分率,提高学生的学习兴趣,回答问题有了一定的基础,突破了重点,难点。 课堂上我设计了基本练习、变式练习、综合练习,都来自生活,一环扣一环,层层加深,既练了学生的思维能力,让不同层次的学生都学有所得,也充分体现了数学与生活相结合,使学生真正享受数学带来的快乐,让他们在学中乐,乐中学。比如从例题求一对有着相对关系的出勤率和缺勤率,了解它们之和是100%,到基本练习达标率、发芽率等从单一的计算百分率,到“种了100棵树,死了1棵,求成活率”、“25克盐和100克水,求盐水中的含盐率”等变式练习,有效地培养了学生的思维的灵活性和广阔性,提高了学生的分析问题和解答问题的能力。
分数教学设计 10
教学目标
1.依据小数、分数和百分数的意义,引导学生开展自主探索,理解和掌握将分数、小数化成百分数的方法。
2.会解决求一个数是另一个数的百分之几的问题。在求命中率的基础上,理解更多生活中的百分率的实际含义,感受百分率在生活中应用的广泛性。
3.进一步明确百分率与分数的联系和区别,培养学生比较分析、归纳概括的思维能力。
重点:
掌握小数、分数化成百分数的方法。
难点:
理解生活中百分率的实际含义。
教学过程
课件出示教材第84页主题图。
师:王涛和李强是各自篮球队的主要得分手。在一场比赛后,他们之间有这样一段对话,从图中你能获得哪些信息?
生:王涛是5投3中,李强是6投4中。
师:根据这两条信息,老师想知道谁的投篮更准,该怎么比较呢?学生计算,指名回答。
生1:3÷5=,4÷6≈,因为<,所以李强的投篮更准。
生2:3÷5=,4÷6=,因为<,所以李强的投篮更准。
教师:这两种算法有什么相同的地方?(算式相同)都是求什么?(命中率,即投中的次数占投篮总次数的几分之几)有什么不同呢?(一个是用小数表示结果,一个是用分数表示结果。)
1.揭示命中率。
师:这种计算的方法,与篮球比赛技术统计中的投篮命中率类似。请从百分数的意义出发进行思考,什么叫“投篮命中率”?(投篮命中率表示投中次数占投篮总次数的百分之几。)
师:该如何计算呢?(投篮命中率=。)
师:这个题目的问题是“他们两人的命中率分别是多少?谁的命中率高?”。
2.小数、分数化成百分数。
师:投篮命中率是一个什么数?(百分数)你能把刚才的两种运算结果转化成百分数吗?(学生练习,指名回答。)
生1:3÷5===60%。
师:你是怎么做的?(把小数化成分母是100的分数,再化成百分数。)
生2:3÷5====60%。
师:4÷6除不尽,怎么办?(除不尽时,通常保留三位小数。)
生:4÷6≈==%或4÷6=≈=%。
师:你能解释这里的“≈”和“=”符号的用法吗?(4÷6除不尽,保留三位小数约等于。然后把这个小数转化为分母是1000的'分数。)
师:这样我们已经分别计算出了两个人的命中率,谁更高些?(李强。)
3.引导归纳,得出方法。
课件出示=%。
师:你能理解这样的表示方法吗?(把小数点向右移动两位,再加上百分号。)
师:把小数点向右移动两位意味着什么?(把这个数扩大了100倍。)
师:加上百分号意味着什么?(把这个数缩小了100倍。)师:我们一起来归纳将小数、分数化成百分数的方法。
引导式总结:把小数、分数化成百分数,可以化成分母是100的分数,(不能转化的保留三位小数)再化成百分数;
也可以先将分数化成小数,(除不尽的保留三位小数)再将小数点向右移动两位,加上百分号。
师:刚才我们计算的投篮命中率,表示投中次数是投篮总次数的百分之几。可以表示成投篮命中率=×100%的形式。为什么要“×100%”呢?预设:因为求的是百分率,要用百分数的形式表示。在后面添上“×100%”确保结果是百分数的形式。
师:在实际生活中,像上面这样常用的百分率还有许多。如学生的出勤率、绿豆的发芽率、产品的合格率、小麦的出粉率、树木的成活率等。你能表示出求这些百分率的式子吗?(学生练习,指名回答。)
小结:百分率表示一个数是另一个数的百分之几,它在我们生活中的应用非常广泛。
1.生物小组进行玉米种子发芽试验,每次试验结果如下:
试验次数试验种子数发芽种子数/粒发芽率1 300 285 2 300 282 2 300 294 4 300 291 ?师:从结果中我们可以直接看出哪一次实验的发芽率最高?哪一次最低?(让学生感受百分率的实际作用。)
2.把下面的小数和分数改写成百分数。0.3.你能联系实际说一说哪些百分率不可能达到100%,哪些可能达到100%,哪些可能超过100%吗?通过这节课的学习,说说你有什么收获?还有什么疑问?教学反思根据学生已有的知识,放手让学生自主探究小数、分数化成百分数的方法。在整个教学活动中,利用教师的合理揭示、适时点拨、引导归纳,使学生的探究活动呈现出较强的层次性。这样的过程既符合学生的思维特征,又有利于知识的理解和掌握。通过分析各种百分率所表示的意义,不仅使学生体会到这一知识在生活中的广泛应用,也对求百分率的方法有了更为深刻的理解。
分数教学设计 11
教学目标
1、使学生掌握把加分数化成整数或带分数的方法。
2、使学生在探索的过程中,进一步发展数感,培养观察、
分析、推理等思维能力。
教学重点:把加分数化成整数或带分数的方法。
教学难点:能利用分数与除法的关系直接进行转化。
教学准备;多媒体教学。
教学过程:
一、复习:
填空。
1=( )/1 1=( )/2 2=( )/3 3=( )/4
二、自主探究。
1、出示例7:把下面的假分数化成整数。
4/4 10/5 28/7
学生独立思考。
反馈:
指名学生回答,并说出自己的想法。根据学生的想法引导出假分数化成整数的方法:用分子除以分母把假分数化成整数;
借图进行分析;
根据分数的意义推想。
优化方法:学生阐述各种方法,引导学生利用分数与除法的关系直接进行转化。
2、出示例8:怎样把11/4化成带分数?
学生独立思考。师引导学生回忆假分数化成整数的方法。
反馈:指名学生回答,并说出自己的`想法。分析假分数与带分数之间的关系。
三、巩固练习。
1、把12/3、30/6、8/5、8/3化成整数或带分数。
指名板演。
板演的学生说出各自转化的方法。
2、在 里填上“>”、“ <”或 “=”。
教科书P49页第6题。
四、课堂总结:把假分数化成整数或带分数的方法是什么?
分数教学设计 12
第一课时异分母分数的加、减法(1)
教学内容:教材第80页例1、“试一试”和“练一练”,练习十四的第1-4题
教学目标:
1、使学生经历探索异分母分数加、减法计算方法的过程,能正确计算异分母分数的加、减法
2、使学生在联系已有的知识经验探索异分母分数加、减法的过程中,进一步体会数学知识之间的内在联系,感受“转化”思想在解决新的计算问题中的价值,发展数学思考
3、使学生在学习活动中,进一步感受数学学习的挑战性,体验成功学习的乐趣,增强学好数学的信心
教学过程:
一、教学例1
1、出示例1,指名读题,并要求根据题意列式
提问:为什么这样列式?(启发学生解释自己列式的思考过程)指出:这是一道分数加法算式。因为相加两个数的分母不同,所以把它叫做异分母分数的加法。(板书:异分母分数的加法)
2、提出问题:以前我们曾经学过同分母分数的加法,那么异分母分数的加法该怎样计算呢?
指导分小组操作:折一折,涂一涂,分别表示出1/2和1/4,再看看1/2和1/4相加的和是多少。
学生分组操作,教师巡视
交流:您能根据操作的情况说出1/2和1/4的得数是多少吗?
追问:你是怎样看出1/2和1/4的得数是3/4的?把涂色部分看作3/4时,原来的1/2被看作了几分之几?想一想,计算1/2+1/4时,先要做什么?
明确:计算1/2+1/4时,先要把1/2和1/4通分,把它们转化成同分母的分数。
要求:按刚才讨论的方法,完成例题中的填空。
3、交流学生填空、计算的情况
讨论:把1/2和1/4转化成同分母分数的过程应用了什么知识?(分数的基本性质)概括地说,这个过程就是把这两个分数怎样?(通分)
二、教学“试一试”
1、提出要求,让学生独立进行计算
2、学生完成计算后,组织讨论:
(1)例题学习的是异分母分数的加法,5/6-1/3是计算异分母分数的——(减法)(在已经板书的“异分母分数的加法”后添上“和减法”,完成课题的板书)
(2)计算5/6-1/3时,先要做什么?想一想,通分的目的是什么?5/6-1/3的得数是多少?作为得数3/6和1/2,哪个更简洁?应用什么方法可以使3/6化成1/2?
指出:计算结果如果能约分的,要约成最简分数。
(3)你是怎样计算1-4/9的?你是怎样想到把1转化成9/9的?
指出:计算1减几分之几时,先要根据减数的分母,把1转化成与减数同分母的'假分数。
3、提出:你会验算上面的两道题吗?你打算怎样验算?
交流后:让学生各自验算,确定上面两道题的计算结果。
4、引导学生总结异分母分数加、减法的计算方法。
(1)提出要求:计算异分母分数加、减法要注意什么?
(2)在学生充分交流的基础上,明确:计算异分母分数加、减法时,要先通分,再按同分母分数加、减法进行计算;计算结果能约分的要约成最简分数;计算后要自觉进行验算。
三、巩固练习
1、做“练一练”
2、做练习十四的第1-4题
四、全课小结
这节课学习的是什么内容?你能把计算异分母分数加、减法的经验和体会说给其他同学听听吗?
第二课时异分母分数的加、减法(2)
教学内容:
教科书第82页的练习十四的第5-9题。
教学目标:
1、使学生进一步掌握正确、灵活地计算异分母分数的加、减法。初步学会估算异分母分数的加、减法。
2、使学生进一步在解决新的计算问题中,发展数学思考。
3、使学生在学习活动中,进一步感受数学学习的挑战性,体验成功学习的乐趣,增强学好数学的信心。
教学重难点:
能根据实际情况灵活地估算异分母分数的加、减法。
教学过程:
一、复习
1、通分练习(口答)
5和310和79和38和520和1535和7
2、计算练习(指名板演)
1/5+3/103/5-3/8
二、探索规律
1、出示练习十四第5题,学生自己读题观察。
1/2+1/31/9+1/101/4+1/71/5+1/8
1/2-1/31/9-1/101/4-1/71/5-1/8
2、交流观察后发现。
分数教学设计 13
教学内容:
人教版小学数学五年级下册《分数的意义》
教学目标:
1、在具体的情境中了解分数的产生,会用分数表示生活中的事物。
2、通过动手操作、观察、比较、探究等学习活动,归纳、整理并理解分数的意义,理解单位“1”,明确分数单位。
3、通过一系列的数学活动学生获得成功、愉悦的情感体验,并感受到生活中处处有分数,培养学习数学的兴趣。
教学重点:
学生理解分数的意义和分数单位,弄懂单位“1”。
教学难点:
理解单位“1”的含义
教学过程:
一、导入:回顾旧知,引入新课(2分钟)
出示:1/3 2/5 7/10
师:老师黑板出示了三个分数,记得在三年时我们初步认识了分数。现在让我们一起把这三个分数读出来。(生齐读)
师:同学们,除了会读,还记得哪些分数的知识?
(生汇报)
师:同学们对分数已经有了初步的了解,但是关于分数的知识还有很多,这节课我们就来进一步学习有关分数的知识。(教师板书课题:分数的意义)
二、交流预习,明确任务(3分钟)
师:老师知道我们班同学都爱学数学,因为数学里埋藏着好多奥秘,数学是一个藏金的.宝藏。不知道你们在昨天的预习中挖出了什么宝贝?先让我们来交流一下预习情况。或说出你收获了哪些知识,或提出需要进一步探究的问题。
(学生汇报,教师适当提炼板书)
师:大家真的用心预习了,找出了本课的知识点。下面就让我们来深入地学习。
三、新授:自主学习、探究新知(20分钟)
1.联系实际,了解分数的产生、发展
师:我们已经知道分数是由于人们生产、生活的实际需要产生的,如测量、分东西、计算等。你能举例子说一说在我们的周围什么时候需要分数吗?
(学生观察,交流)
师:同学们看到了,生活中处处有分数。然而,我们今天使用的分数它却走过一段及其漫长的旅程。让我们具体了解一下,课件出示。
(一)初步概括分数的意义
请同学们拿出已经准备的长方形纸、正方形纸、圆形纸、线段图。动手折一折,涂一涂,表示它的1/4。
引导学生初步概括分数的意义(分数是把一个物体平均分成若干份,表示这样的一份或几份的数)。
(二)、更进一步理解分数的意义。
1、理解单位“1”
我以组词游戏的形式引出单位“1”。
课件出示一个苹果(1个苹果)
再出示两个苹果(1双、1对)
4个苹果呢?(1组、1盘、1斤)
24个苹果呢?(1箱)
小结:通过刚才的小游戏我们发现,自然数“1”不仅可以表示1个物体,还可以表示多个物体。我们把这些多个物体也看作了一个整体。这个整体我们通常把它叫做单位“1”。
2、感悟分数的意义
课件演示把这一箱苹果打开,再把这24个苹果看作是一个整体,把它平均分成4份,取其中的一份可以用1/4表示。
通过我们观察折一折、涂一涂的活动和分苹果活动,请同学们认真观察以上的表示过程,说一说有什么相同的地方,有什么不同的地方。
(1)相同点:都表示1/4。
(2)不同点:有的用长方形纸表示、有的用正方形纸表示、有的用圆形纸表示、有的用线段表示、有的用24个苹果表示。
指着黑板与学生沟通:请同学们静下心来想一想:分数是什么呢?从而概括出(分数是把一个物体、一些物体平均分成若干份,表示这样的一份或几份的数。)
3、学习分数单位
课件出示教科书46页做一做的练习题
通过练习让同学们,认识当我们把单位“1”平均分成若干份,表示其中的一份的数叫分数单位。
四、巩固反馈,拓展提高
练习十一的第1、2、3、4题。
五、课堂小结
本节课你学习了哪些知识,你有哪些收获?
资源文件列表:
分数教学设计 14
教学目标:
1、在解决问题的过程中学习并掌握小数乘分数的计算方法。
2、经历小数乘分数的计算方法的探究过程。
3、体会算法多样化的数学思想,提高计算能力。
教学重点:
掌握小数乘分数的计算方法。
教学难点:
灵活选择不同的计算方法,熟练地进行小数乘分数的计算。
教学过程:
一、复习导入。
1、计算
交流时让学生说一说计算方法和计算过程中的约分方法。
2、把下面的小数化成分数,分数化成小数。
1。20。4()3。5()1。25()
让学生说一说怎样将一个小数化成分数?
二、探索新知
1、例题5:松鼠的尾巴长度约占身体长度的。松鼠欢欢的身体长2。1分米,松鼠乐乐的身体长2。4分米。
(1)提取题中的已知条件和所求问题
已知条件:①松鼠的尾巴长度约占身体长度的34,②松鼠欢欢的身体长2。1dm。
所求问题:松鼠欢欢的尾巴有多长?
(2)确定单位“1”,根据“松鼠的尾巴长度约占身体长度的34”可知,应把“松鼠欢欢的身体长”看作单位“1”,单位“1”已知,所求松鼠欢欢的'尾巴有多长,就是求2。1dm的34是多少,用乘法计算,列式为2。1×34
启发观察,这个算式和我们前面学习的分数乘法有什么不同?
(3)探讨小数乘分数的计算方法。
提问:小数乘分数,可以怎样进行计算呢?想一想,试一试。
学生独立思考,尝试计算。组织交流,得出可以把2。1化成分数,也可以把化成小数。汇报交流计算方法,教师结合交流情况进行板书。
小数化成分数:= =(分米)
分数化成小数:=2。1×0。75=1。575(分米)
3、解决问题二。
(1)出示问题:松鼠乐乐的尾巴有多长?
(2)学生独立解答。
组织交流汇报。交流时,先让学生说说列式的依据,再交流计算方法。
学生可能会采用问题一中学习的方法进行计算,这时教师可以追问:同学们,想想分数乘整数时,我们是怎样进行约分的,小数乘分数也能这样约分吗?
当学生有所发现后,让学生进行尝试计算,最后汇报交流。教师结合学生的交流情况进行板书
小数和分母约分:(分米)
4、观察比较,回顾思考。
提问:观察上面三种计算方法,你想发表自己的什么见解?让学生独立思考后进行小组交流讨论,是后进行全班交流。(三种方法中,小数化成分数的方法具有普遍性,适用于所有的小数乘分数的计算;当分数不能化成有限小数时,一般不采用分数化成小数的方法进行计算;当小数和分母不能进行约分时,一般不采用小数和分母约分的方法进行计算。三种方法中,小数和分母约分的方法计算起来最简便,因此在计算小数乘分数时,先观察这个小数能不能和分母进行约分,如果可以进行约分,一般采用先约分再乘的方法。)
三、巩固练习。
1、教材第8页“做一做”。先让学生独立计算,再组织汇报交流。交流时让学生说说为什么选择这样的方法进行计算。
2、教材第10页“练习二”第2题。
3、教材第10页“练习二”第3题。
分数教学设计 15
教学目标:
1、结合具体事例,经历认识真分数、假分数和带分数的过程。
2、认识真分数、假分数和带分数,会读写假分数和带分数。
3、积极参与数学活动,对分数知识充满好奇心,培养学习数学的兴趣。
教学重点:
真分数、假分数、带分数的意义及特点
教学难点:
由分饼的过程引出假分数和带分数。
教学课时:
1课时
教学过程:
(一)创设情境,引出新课。
我们都看过西游记吧,今天他遇到了一些与分数有关系的难题。
猪八戒去化缘,第一天化到了1张饼,平均分给师徒4人,该怎样分?每人得多少张饼呢?”
师:猪八戒贪吃,把4份全吃了,他吃了几分之几张饼呢?
第二天化了3张饼,师徒4人平均分,每人应分多少张饼?
(板书)师:第三天,化得了5张饼,要平均分4份,每人应分得多少张饼?
(二)动手操作,创设新知。
1、活动平均分5张饼小组讨论交流。
(设计意图:通过讨论在确定自己分的策略可行的同时,寻找其他方法,使学生掌握多种分的策略,体现学生的自主学习。但分的策略不是主要的,而主要是让学生明白每种策略的结果都是相同的。)
2、动手操作:让生小组4人扮演唐僧师徒四人,然后用5张圆片代替3张饼,动手剪一剪,分一分(师巡视)
(设计意图:通过学生自己动手操作观察经历“假分数”、“带分数”的产生过程,并让学生理解“假分数”、“带分数”的概念以及它们之间的关系,体现了教学的层次性。更为重要的是这样的学习符合学生的认知规律,有助于学生更加深刻地理解和掌握知识。)介绍分饼的方法。
第一种情况:小组演示每人先分一张,剩下的一张饼平均分成4份,每人再分,每人分到1张饼和张饼,把它们合在一起。板书:
读作一又四分之一。
第二种情况:把1个圆片分成4份,5个圆片分成20份,每个人分5个张饼。写成,然后把5个张饼拼在一起就是1张和张饼。
有的同学说还可以把5个圆片叠在一起,平均分成4份,也就是把每个都分成4份,每人拿5个其实就是第二种情况。这两种分法的结果是一样的。我们帮助了猪八戒解决了难题。现在老师再填上几个分数如,我们四人分为一组观察讨论它们的特点,并对这几个分数进行分类。
第(1)组是真分数,第(2)、(3)组是假分数。下面我们再分组讨论一下这几组分数与1的关系。
真分数小于1,假分数大于1或等于1(设计意图:通过每个教学环节的设计,使生通过自主尝试积极寻求解决问题的`策略。亲身体验了知识探究的全过程,不仅使学生掌握本节课所学重点,又使学生在学习中既体验到了成功的喜悦,又掌握了解决问题的方法。)让学生举几个真分数和假分数的例子。
黑板上还有一种分数我们观察这个分数由几部分组成?生:两部分由哪两部分组成?生:整数和分数组成。分数部分是真分数,还是假分数?生:真分数。(教师讲写法,学生练习。)那么是不是带分数?
带分数的整数部分能不能为0呢?不能如果为0就是真分数了。
回答问题并说举3个带分数。小结真分数、假分数、带分数的特点。
现在我们认识了这些分数做一个猜谜游戏:考试作弊;考试不作弊{各打一数学名词}假分数、真分数
我们对待学习应一丝不苟,不能弄虚作假。今天我们了解了这些分数,看看掌握的怎样?我们做几道练习题。
(三)(出示幻灯片)巩固练习:
1、分母是6的真分数有()个,最大是()
分母是6的假分数有()个,最小是()(设计意图:通过练习检验对知识的理解和掌握情况。)
2、读出下面的分数,再把它们分别写在下面的圈里。真分数假分数带分数
3、涂一涂,画一画。有重点进行指导。(设计意图,练习结合情境展开,生动有趣,有挑战性。第1、3题都进一步让学生加深理解真分数与假分数的特点。这样的练习,既注重了基础,又促进了发展,既活跃了课堂气氛,又调动了学生的学习兴趣。)
(四)课堂小结:让学生总结这节课的内容有助于培养学生对重点的把握。还有力于锻炼学生的概括能力。
板书设计:
分数的再认识
分子比分母小
真分数:小于1
分子等于分母
等于1假分数
分子比分母大
大于1
由整数和真分数组成
带分数
本节课设计的意图体现在三点:
第一,创设情境,激发学生探究新知的欲望。如在教学刚开始利用学生喜欢的猪八戒解决难题,不仅激发了学生学习的兴趣,而且帮猪八戒解决问题的同时,也激发了自己探究新知的愿望,又促使学生主动参与到探索新知中。
第二,在操作中,让学生自主学习。学生的智慧往往从他们的手指间流露出来。对于较抽象的知识,安排形象的操作,让学生自己探索出新知。这样不仅能让学生亲历知识的形成过程,而且能使学生对新知形成深刻的印象。所以我在教学过程中有这样的意识:能让学生动手的就让动手操作。例如,让学生动手来剪一剪,分一分,并产生了“真分数、假分数”概念,而且找出了“真分数、假分数”的特点,这样教学,由于整个知识是学生自己借助于形象操作活动探究出来的所以大家易记易理解。
第三,注重小组合作交流,让学生在互动中学习数学。教学时,在活动前我安排了小组讨论交流:把你的想法和小组的其他同学说一说,在这一环节上,我鼓励学生通过讨论、交流找到了多种分的策略。另外我在两个活动中我都安排小组合作动手剪、分、拼等活动,让学生在合作交流的过程中感受不同的思维方式和思维过程,激发学生学习数学的兴趣。