第一篇:法拉第电磁感应定律教案
百度空间“稚子居”整理收集——稚言智语志敛于中,中庸为道
§ 4.3 法拉第电磁感应定律
编写 薛介忠
【教学目标】 知识与技能
● 知道什么叫感应电动势
● 知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、
t● 理解法拉第电磁感应定律内容、数学表达式 ● 知道E=BLvsinθ如何推得 ● 会用Ent和E=BLvsinθ解决问题
过程与方法
● 通过推导到线切割磁感线时的感应电动势公式E=BLv,掌握运用理论知识探究问题的方法
情感态度与价值观
● 从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想
● 了解法拉第探索科学的方法,学习他的执著的科学探究精神 【重点难点】
重点:法拉第电磁感应定律
难点:平均电动势与瞬时电动势区别 【教学内容】 [导入新课]
在电磁感应现象中,产生感应电流的条件是什么? 在电磁感应现象中,磁通量发生变化的方式有哪些情况? 恒定电流中学过,电路中产生电流的条件是什么?
在电磁感应现象中,既然闭合电路中有感应电流,这个电路中就一定有电动势。在电磁感应现象中产生的电动势叫感应电动势。下面我们就来探讨感应电动势的大小决定因素。[新课教学] 一.感应电动势
1.在图a与图b中,若电路是断开的,有无电流?有无电动势?
电路断开,肯定无电流,但有电动势。2.电流大,电动势一定大吗?
电流的大小由电动势和电阻共同决定,电阻一定的情况下,电流越大,表明电动势越大。
3.图b中,哪部分相当于a中的电源?螺线管相当于电源。4.图b中,哪部分相当于a中电源内阻?螺线管自身的电阻。
在电磁感应现象中,不论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就有感应电动势。有感应电动势是电磁感应现象的本质。
分析图4.2-
1、4.2-
3、4.2-
6、4.2-7中的电源是哪一部分。二.电磁感应定律
空间网址:http://hi.baidu.com/splow 百度空间“稚子居”整理收集——稚言智语志敛于中,中庸为道
感应电动势跟什么因素有关?结合第二节中的几个演示实验,提出三个问题供学生思考:
问题1:在实验中,电流表指针偏转原因是什么? 穿过电路的Φ变化产生E感产生I感.问题2:电流表指针偏转程度跟感应电动势的大小有什么关系? 由全电路欧姆定律知ERrI=,当电路中的总电阻一定时,E感越大,I越大,指针偏转越大。
问题3:在图4.2-2中,将条形磁铁从同一高度插入线圈中,快插入和慢插入有什么相同和不同? 磁通量变化相同,但磁通量变化的快慢不同。
教师:磁通量变化的快慢用磁通量的变化率来描述,即单位时间内磁通量的变化量,用公式表示为tt。可以发现,越大,E
感
越大,即感应电动势的大小完全由磁通量的变化率决定。精确的实验表明:电路中感应电动势的大小,跟穿过这一电路磁通量的变化率成正比,即E∝t。这就是法拉第电磁感应定律。
(师生共同活动,推导法拉第电磁感应定律的表达式)
设t1时刻穿过回路的磁通量为Φ1,t2时刻穿过回路的磁通量为Φ2,在时间Δt=t2-t1内磁通量的变化量为ΔΦ=Φ2-Φ1,磁通量的变化率为
E=k
tt,感应电动势为E,则
在国际单位制中,电动势单位是伏(V),磁通量单位是韦伯(Wb),时间单位是秒(s),可以证明式中比例系数k=1,(同学们可以课下自己证明),则上式可写成
E=
t
设闭合电路是一个n匝线圈,且穿过每匝线圈的磁通量变化率都相同,这时相当于n个单匝线圈串联而成,因此感应电动势变为
E=n
t
t比较:磁通量Φ、磁通量的变化量△Φ、磁通量的变化率的意义
(1)磁通量Φ是穿过某一面积的磁感线的条数;磁通量的变化量△Φ=Φ1-Φ2表示磁通量变化的多少,并不涉及这种变化所经历的时间;磁通量的变化率表示磁通量变化的快
t慢。
(2)当磁通量很大时,磁通量的变化量△Φ可能很小。同理,当磁通量的变化量△Φ很大时,若经历的时间很长,则磁通量的变化率也可能较小。(3)磁通量Φ和磁通量的变化量△Φ的单位是Wb,磁通量变化率的单位是Wb/s。(4)磁通量的变化量△Φ与电路中感应电动势大小没有必然关系,穿过电路的△Φ≠0是电路中存在感应电动势的前提;而磁通量的变化率与感应电动势的大小相联系,大,电路中的感应电动势越大,反之亦然。
空间网址:http://hi.baidu.com/splow
t越百度空间“稚子居”整理收集——稚言智语志敛于中,中庸为道
(5)磁通量的变化率,是Φ-t图象上某点切线的斜率。
t三.导线切割磁感线时的感应电动势
导体切割磁感线时,感应电动势如何计算呢?如图所示电路,闭合电路一部分导体ab处于匀强磁场中,磁感应强度为B,ab的长度为L,以速度v匀速切割磁感线,求产生的感应电动势?
解析:设在Δt时间内导体棒由原来的位置运动到a1b1,这时线框面积的变化量为
ΔS=LvΔt
穿过闭合电路磁通量的变化量为
ΔΦ=BΔS=BLvΔt
据法拉第电磁感应定律,得
E=
t=BLv
问题:当导体的运动方向跟磁感线方向有一个夹角θ,感应电动势可用上面的公式计算吗?
如图所示电路,闭合电路的一部分导体处于匀强磁场中,导体棒以v斜向切割磁感线,求产生的感应电动势。
解析:可以把速度v分解为两个分量:垂直于磁感线的分量v1=vsinθ和平行于磁感线的分量v2=vcosθ。后者不切割磁感线,不产生感应电动势。前者切割磁感线,产生的感应电动势为
E=BLv1=BLvsinθ
[强调]在国际单位制中,上式中B、L、v的单位分别是特斯拉(T)、米(m)、米每秒(m/s),θ指v与B的夹角。比较:公式E=nt与E=BLvsinθ的区别与联系
tt(1)研究对象不同:E=n动的一段导体。(2)物理意义不同:E=n的研究对象是一个回路,而E=BLvsinθ研究对象是磁场中运
求得是Δt时间内的平均感应电动势,当Δt→0时,则E为瞬时感应电动势;而E=BLvsinθ,如果v是某时刻的瞬时速度,则E也是该时刻的瞬时感应电动势;若v为平均速度,则E为平均感应电动势。
(3)E=n求得的电动势是整个回路的感应电动势,而不是回路中某部分导体的电动势。t整个回路的电动势为零,其回路中某段导体的感应电动势不一定为零。
(4)E=BLvsinθ和E=n本质上是统一的。前者是后者的一种特殊情况。但是,当导体
t做切割磁感线运动时,用E=BLvsinθ求E比较方便;当穿过电路的磁通量发生变化,用E=求E比较方便。
t四.反电动势
引导学生讨论教材图4.3-3中,电动机线圈的转动会产生感应电动势。这个电动势是加强了电源产生的电流,还是削弱了电源的电流?是有利于线圈转动还是阻碍线圈的转动?
空间网址:http://hi.baidu.com/splow 百度空间“稚子居”整理收集——稚言智语志敛于中,中庸为道
学生讨论后发表见解。
教师总结点评。电动机转动时产生的感应电动势削弱了电源的电流,这个电动势称为反电动势。反电动势的作用是阻碍线圈的转动。这样,线圈要维持原来的转动就必须向电动机提供电能,电能转化为其它形式的能。
讨论:如果电动机因机械阻力过大而停止转动,会发生什么情况?这时应采取什么措施?
学生讨论,发表见解。电动机停止转动,这时就没有了反电动势,线圈电阻一般都很小,线圈中电流会很大,电动机可能会烧毁。这时,应立即切断电源,进行检查。
若条件许可,尽可能演示p13“做一做”,进而得出:I=【典型例题】
【例1】如图所示,有一夹角为θ的金属角架,角架所围区域内存在匀强磁场中,磁场的磁感强度为B,方向与角架所在平面垂直,一段直导线ab,从角顶c贴着角架以速度v向右匀速运动,求:
(1)t时刻角架的瞬时感应电动势;(2)t时间内角架的平均感应电动势? 解:(1)E=BLv=Bv2tanθ·t(2)tBStB·12vt·vt·tanθt12Bvtanθ·t
2EE反RER
E=【例2】有一面积为S=100cm2的金属环,电阻为R=0.1Ω,环中磁场变化规律如图所示,磁场方向垂直环面向里,则在t1-t2时间内通过金属环的电荷量为________C.(10-2C)
【当堂反馈】
教材p13(1)、(4)【课堂小结】
1.法拉第电磁感应定律:E=n
t
2.导线切割磁感线时的感应电动势:E=BLvsinθ,当v⊥B时:E=BLv 3.电动机转动时产生的感应电动阻碍线圈的转动,I=【课后作业】
教材p13~14(2)(3)(5)(6)(7)
EE反RER
空间网址:http://hi.baidu.com/splow
第二篇:高二物理法拉第电磁感应定律教案
课题 4.3 法拉第电磁感应定律
第3时
一、教学目标:
(一)知识与技能
1.知道什么叫感应电动势。
2.知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、En3.理解法拉第电磁感应定律内容、数学表达式。4.知道E=BLvsinθ如何推得。
5.会用En和E=BLvsinθ解决问题。
t
(二)过程与方法
通过推导到线切割磁感线时的感应电动势公式E=BLv,掌握运用理论知识探究问题的方法。
(三)情感、态度与价值观
1.从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想。
2.了解法拉第探索科学的方法,学习他的执著的科学探究精神。
二、教具准备:
。t
多媒体电脑、投影仪、投影片。
三、教学过程:
① 复习提问(课堂导入):
(一)引入新课
在电磁感应现象中,产生感应电流的条件是什么?
在电磁感应现象中,磁通量发生变化的方式有哪些情况? 恒定电流中学过,电路中存在持续电流的条件是什么?
在电磁感应现象中,既然闭合电路中有感应电流,这个电路中就一定有电动势。在电磁感应现象中产生的电动势叫感应电动势。下面我们就来探讨感应电动势的大小决定因素。
② 出示本堂课教学目标:
1.知道什么叫感应电动势。
2.知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、En3.理解法拉第电磁感应定律内容、数学表达式。4.知道E=BLvsinθ如何推得。
5.会用En和E=BLvsinθ解决问题。
t
③ 重点、难点化解(探求新知、质疑导学、课堂反馈): 学生活动内容 实验甲中,将条形磁铁快插入(或拔出)比慢插入或(拔出)时,大,tI感大,E感大。实验乙中,导体棒运动越快,越t大,I感越大,E感越大。
实验丙中,开关断开或闭合,比开关闭合时移动滑动变阻器的滑片时t大,I感大,E感大。
从上面的三个、感应电动势
老师活动内容
。t
在图a与图b中,若电路是断开的,有无电流?有无电动势? 电路断开,肯定无电流,但有电动势。
电动势大,电流一定大吗?电流的大小由电动势和电阻共同决定。图b中,哪部分相当于a中的电源?螺线管相当于电源。图b中,哪部分相当于a中电源内阻?线圈自身的电阻。
在电磁感应现象中,不论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就有感应电动势.有感应电动势是电磁感应现象的本质。
2、电磁感应定律 实验我们可以发现,感应电动势跟什么因素有关?现在演示前节课中三个成功实验,用CAI课件展越大,E感越大,示出这三个电路图,同时提出三个问题供学生思考: t即感应电动势的大小完全由磁通量的变化率决定。精确的实验表明:电路中感应电动势的大小,跟穿过这一电路磁通量的变化率成正比,即E∝。这就是t法拉第电磁感应定律。
(师生共同活动,推导法拉第电磁感应定律的表达式)
设t1时刻穿过回路的磁通量为Φ1,t2时刻穿过回路的磁通量为Φ2,在时间Δt=t2-t1内磁通量的变化量为ΔΦ=Φ2-Φ1,磁通量的变化率为,感应电动势t为E,则
E=n t
甲
丙
问题1:在实
乙
验中,电流表指针偏转原因是什么?
问题2:电流表指针偏转程度跟感应电动势的大小有什么关系?
问题3:第一个成功实验中,将条形磁铁从同一高度插入线圈中,快插入和慢插入有什么相同和不同?
穿过电路的Φ变化产生E感产生I感.E由全电路欧姆定律知I=,当电路中的总电阻一定时,E感越大,I越大,Rr指针偏转越大。
磁通量变化相同,但磁通量变化的快慢不同。
教师:磁通量变化的快慢用磁通量的变化率来描述,即单位时间内磁通量的变在国际单位制中,电动势单位是伏(V),磁通量单位是韦伯(Wb),时间单位是秒(s),可以证明式中比例系数k=1,(同学们可以课下自己证明),则上式可写成
E=
t化量,用公式表示为
。从上面的三个实验,同学们可归纳出什么结论呢? t设闭合电路是一个n匝线圈,且穿过每匝线圈的磁通量变化率都相同,这时相当于n个单匝线圈串联而成,因此感应电动势变为
E=n
t
问题:当导体的运动方向跟磁感线
3、导线切割磁感线时的感应电动势
导体切割磁感线时,感应电动势如何计算呢?用CAI课件展示如图所示电路,方向有一个夹角θ,闭合电路一部分导体ab处于匀强磁场中,磁感应强度为B,ab的长度为L,以速感应电动势可用上面的公式计算吗? 度v匀速切割磁感线,求产生的感应电动势?
解析:设在Δt时间内导体棒由原来的位置运动到a1b1,这时线框面积的变化量为
ΔS=LvΔt
穿过闭合电路磁通量的变化量为
ΔΦ=BΔS=BLvΔt
据法拉第电磁感应定律,得
如图所示电路,闭合电路的一部分导体处于匀强磁场中,导体棒以v斜向切割磁感线,求产生的感应电动势。
解析:可以把速度v分解为两个分量:垂直于磁感线的分量v1=vsinθ和平行于磁感线的分量
E=
=BLv t问题:当导体的运动方向跟磁感线方向有一个夹角θ,感应电动势可用上面的公式计算吗?
[强调]在国际单位制中,上式中B、L、v的单位分别是特斯拉(T)、米(m)、米每秒(m/s),θ指v与B的夹角。v2=vcosθ。后者不切割磁感线,不产生感应电动势。前者切割磁感线,产生的感应电动势为 E=BLv1=BLvsinθ
讨论:如果电动机因机械阻力过大而停止转动,会发生什么情况?这时应采取什么措施?
学生讨论,发表见解。电动机停止转动,这时就没有了反电动势,线圈电阻一般都很小,线圈中电流会很大,电动机可能会烧毁。这时,应立即切断电源,进行检查。
④ 系统归纳: 感应电动势为E
E=n
t4、反电动势
引导学生讨论教材图4.3-3中,电动机线圈的转动会产生感应电动势。这个电动势是加强了电源产生的电流,还是削弱了电源的电流?是有利于线圈转动还是阻碍线圈的转动?
学生讨论后发表见解。
教师总结点评。电动机转动时产生的感应电动势削弱了电源的电流,这个电动势称为反电动势。反电动势的作用是阻碍线圈的转动。这样,线圈要维持原来的转动就必须向电动机提供电能,电能转化为其它形式的能。
在国际单位制中,电动势单位是伏(V),磁通量单位是韦伯(Wb),时间单位是秒(s),E=BLv1=BLvsinθ
[强调]在国际单位制中,上式中B、L、v的单位分别是特斯拉(T)、米(m)、米每秒(m/s),θ指v与B的夹角。⑤ 练习巩固(课堂作业):
【例1】如图所示,有一弯成θ角的光滑金属导轨POQ,水平放置在磁感应强度为B的匀强磁场中,磁场方向与导轨平面垂直,有一金属棒MN与导轨的OQ边垂直放置,当金属棒从O点开始以加速度a向右匀加速运动t秒时,棒与导轨所构成的回路中的感应电动势是多少? 解:由于导轨的夹角为θ,开始运动t秒时,金属棒切割磁感线的有效长度为: L=stanθ=12attanθ 2据运动学公式,这时金属棒切割磁感线的速度为v=at 由题意知B、L、v三者互相垂直,有 E=BLv=B121attanθ·at=Ba2t3tanθ 2212
3Battanθ.2即金属棒运动t秒时,棒与导轨所构成的回路中的感应电动势是E= 【例2】(2001年上海)如图所示,固定于水平面上的金属框cdef,处在竖直向下的匀强磁场中,金属棒ab搁在框架上,可无摩擦滑动.此时abed构成一个边长l的正方形,棒电阻r,其余电阻不计,开始时磁感应强度为B。
(1)若以t=0时起,磁感应强度均匀增加,每秒增加量k,同时保持棒静止,求棒中的感应电流。
(2)在上述情况中,棒始终保持静止,当t=t1时需加垂直于棒水平外力多大?(3)若从t=0时起,磁感应强度逐渐减小,当棒以恒定速度v向右匀速运动,可使棒中不产生I感,则磁感应强度应怎样随时间变化?(写出B与t的关系式)
解析:(1)据法拉第电磁感应定律,回路中产生的感应电动势为
E==kl2
t回路中的感应电流为
Ekl2I= rr(2)当t=t1时,B=B0+kt1 金属杆所受的安培力为
kl2kl3F安=BIl=(B0+kt1)l(B0kt1)rr据平衡条件,作用于杆上的水平拉力为
kl3F=F安=(B0+kt1)
r(3)要使棒中不产生感应电流,则通过闭合回路的磁通量不变,即
B0l2=Bl(l+v t)
解得
B=★巩固练习
1.法拉第电磁感应定律可以这样表述:闭合电路中感应电动势的大小
()A.跟穿过这一闭合电路的磁通量成正比 B.跟穿过这一闭合电路的磁感应强度成正比 C.跟穿过这一闭合电路的磁通量的变化率成正比 D.跟穿过这一闭合电路的磁通量的变化量成正比 答案:C 点评:熟记法拉第电磁感应定律的内容
2.将一磁铁缓慢地或迅速地插到闭合线圈中同样位置处,不发生变化的物理量有
()
A.磁通量的变化率
B.感应电流的大小 C.消耗的机械功率
D.磁通量的变化量 E.流过导体横截面的电荷量
答案:DE 点评:插到同样位置,磁通量变化量相同,但用时不同
3.恒定的匀强磁场中有一圆形闭合导线圈,线圈平面垂直于磁场方向,当线圈在磁场中做下列哪种运动时,线圈中能产生感应电流
()
A.线圈沿自身所在平面运动 B.沿磁场方向运动
C.线圈绕任意一直径做匀速转动 D.线圈绕任意一直径做变速转动
答案:CD 点评:判断磁通量是否变化
4.一个矩形线圈,在匀强磁场中绕一个固定轴做匀速运动,当线圈处于如图所示
四、作业布置:
B0l lvt① 课后作业
1、学习小组课下做一做教材13页上“说一说”栏目中的小实验,思考并回答该栏目中的问题。
2、将“问题与练习”中的第2、3、6、7题做在作业本上,思考并完成其他题目。:
② 家庭作业:
课课练
五、其它资料(除板书设计):
第三篇:选修3-2 法拉第电磁感应定律教案1
法拉第电磁感应定律
一、教学目标
1.在物理知识方面的要求.
(1)掌握导体切割磁感线的情况下产生的感应电动势.
(2)掌握穿过闭合电路的磁通量变化时产生的感应电动势.
(3)了解平均感应电动势和感应电动势的即时值.
2.通过推理论证的过程培养学生的推理能力和分析问题的能力.
3.运用能的转化和守恒定律来研究问题,渗透物理思想的教育.
二、重点、难点分析
1.重点是使学生掌握动生电动势和感生电动势与哪些因素有关.
2.在论证过程中怎样运用能的转化和守恒思想是本节的难点.
三、主要教学过程
(一)引入新课
复习提问:在发生电磁感应的情况下,用什么方法可以判定感应电流的方向?要求学生回答出:切割磁感线时用右手定则;磁通量变化时用楞次定律.
(二)教学过程设计
1.设问.
既然会判定感应电流的方向,那么,怎样确定感应电流的强弱呢?既然有感应电流,那么就一定存在感应电动势.只要能确定感应电动势的大小,根据欧姆定律就可以确定感应电流了.
2.导线切割磁感线的情况.
(1)如图所示,矩形闭合金属线框abcd置于有界的匀强磁场B中,现以速度v匀速拉出磁场,我们来看感应电动势的大小.
在水平方向ab边受到安培力Fm=BIl的作用.因为金属线框是做匀速运动,所以拉线框的外力F的大小等于这个安培力,即F=BIl.
在匀速向外拉金属线框的过程中,拉力做功的功率P=F·v=BIlv.
拉力的功并没有增加线框的动能,而是使线框中产生了感应电流I.根据能的转化和守恒定律可知,拉力F的功率等于线框中的电功率P′.
闭合电路中的电功率等于电源电动势ε(在这里就是感应电动势)与电流I的乘积.
显然 Fv=εI,即 BIv=εI.
得出感应电动势 ε=Blv.(1)
式中的l是垂直切割磁感线的有效长度(ab),v是垂直切割磁感线的有效速度.
(2)当ab边与磁感线成θ角(如图2)做切割磁感线运动时,可以把速度v分解,其有效切割速度v⊥=v·sinθ.那么,公式(1)可改写为:
ε=Blvsinθ.(2)
这就是导体切割磁感线时感应电动势的公式.在国际单位制中,2它们的单位满足:V=Tm/s.
3.穿过闭合电路的磁通量变化时.
(1)参看前图,若导体ab在Δt时间内移动的位移是Δl,那么
式中lΔl是ab边在Δt时间内扫过的面积.lΔlsinθ是ab边在Δt时间内垂直于磁场方向扫过的有效面积.BlΔlsinθ是ab边在Δt时间内扫过的磁通量(磁感线的条数),对于金属线框abcd来说这个值也就是穿过线框磁通量在Δt时间内的变化量ΔФ.这样(3)式可简化为
(2)在一般情况下,线圈多是由很多匝(n匝)线框构成,每匝产生的感应电动势均为(4)式的值,串联起来n匝,则线圈产生的感应电动势可用
表示.这个公式可以用精密的实验验证.这就是法拉第电磁感应定律的表达式.
(3)电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.这就是法拉第电磁感应定律.
4.几个应该说明的问题.
(1)在法拉第电磁感应定律中感应电动势ε的大小不是跟磁通量Ф成正比,也不是跟磁通量的变化量ΔФ成正比,而是跟磁通量的变化率成正比.
(2)法拉第电磁感应定律反映的是在Δt一段时间内平均感应电动势.只有当Δt趋近于零时,才是即时值.
(3)公式ε=Blvsinθ中,当v取即时速度则ε是即时值,当v取平均速度时,ε是平均感应电动势.
(4)当磁通量变化时,对于闭合电路一定有感应电流.若电路不闭合,则无感应电流,但仍然有感应电动势.
(5)感应电动势就是电源电动势,是非静电力使电荷移动增加电势能的结果.电路中感应电流的强弱由感应电动势的大小ε和电路总电阻决定,符合欧姆定律.
(三)课堂小结
1.导体做切割磁感线运动时,感应电动势可由ε=Blvsinθ确定.
2.穿过电路的磁通量发生变化时,感应电动势由法拉第电磁感应定
3.感应电动势就是电源电动势.有关闭合电路相关量的计算在这里都适用.
4.同学们应该会证明单位关系:V =Wb/s.
五、教学说明
1.这一节课是从能的转化和守恒定律入手展开的,其目的在于渗透一点物理思想.
2.这一节课先讲动生电动势再过渡到感生电动势,其目的是隐含地告诉学生在某些情况下两者是一致的、统一的.
3.建议本节课后安排一节习题课来加以巩固.
第四篇:《法拉第电磁感应定律》教学设计
《法拉第电磁感应定律》教学设计
课程背景:
“法拉第电磁感应定律”是电磁学的核心内容,从知识的发展来看,它既能与电场、磁场和恒定电流有紧密的联系,又是学习交流电、电磁振荡和电磁波的重要基础。从能力的发展来看,它既能在与力、热知识的综合应用中培养综合分析能力,又能全面体现能量守恒的观点。因此,它既是教学的重点,又是教学的难点。
鉴于此部分知识较抽象,而我的学生的抽象思维能力较弱。所以在这节课的教学中,我注重体现新课程改革的要求,注意新旧知识的联系,同时紧扣教材,通过实验、类比、等效的手段和方法,来化难为简,力求通过诱导、启发,使同学们艰利用已掌握的旧知识,来理解所要学习的新概念,力求通过明显的实验现象诱发同学们真正的主动起来,从而活跃大脑,激发兴趣,变被动记忆为主动认识。课程详述: 教学目标:
1、知道感应电动势的含义,能区分磁通量、磁通量的变化量和磁通量的变化率。
2、通过演示实验,定性分析感应电动势的大小与磁通量变化快慢之间的关系。培养学生对实验条件的控制能力和对实验的观察能力。
3、通过法拉第电磁感应定律的建立,进一步定量揭示电与磁的关系,培养学生类比推理能力和通过观察、实验寻找物理规律的能力。
4、使学生明确电磁感应现象中的电路结构,通过对公式E=nΔφ/Δt的理解,引导学生推导出E=BLv,并学会初步的应用,提高推理能力和综合分析能力。
5、通过介绍法拉第的生平事迹,使学生了解法拉第探索科学的方法和执著的科学研究精神,教育学生加强学习的毅力和恒心。教学重点:
法拉第电磁感应定律的建立。教学难点:
1、磁通量、磁通量的变化量、磁通量的变化率三者的区别。
2、理解E=nΔφ/Δt是普遍意义的公式,计算结果是感应电动势相对于Δt时间内的平均值,而E=BLv是特殊情况下的计算公式,计算结果是感应电动势相对于速度v的瞬时值。教具:
1、演示用的电流表,螺线管,条形磁铁(磁性强弱各一条),直流电源,滑动变阻器,导线若干。
2、多媒体大屏幕投影仪,自制的幻灯片。课前准备:
要求学生复习上节课的三个演示实验,预习本节课的内容,通过复印资料阅读《教案》中的参考资料《法拉第的划时代发现》一文。教学设计:
本节课的教学过程在于要求学生掌握法拉第电磁感应定律中的各个物理量内涵,要求学生理解并能运用E=nΔφ/Δt和E=BLv这两个公式。由于我的学生的分析能力与抽象思维能力较弱,因此我运用实验教学的方法来进行教学。通过比较实验装置的差异,引导学生得出相同的原因,帮助学生理解感应电动势的概念(如实验一);通过比较实验中个别因素的差异而引起的变化,引导学生定性得出E与Δφ、Δt、Δφ/Δt的关系,从而为进一步学习法拉第电磁感应定律打下基础(如实验二、三、四)。在教学过程运用观察、比较与设计的手段,充分调动学生这个主体,使他们有强烈的兴趣去思考、去推理、去学习课程内容。1.感应电动势:
将图<1>,图<2>用投影仪展示,并设问:图中电键S均闭合,电路中是否都有电流?为什么?
演示实验一:对照图<1>安培表指针偏转;对照图<2>电流计指针不动,但当条形磁铁位置变动时,电流计指针偏转,表明回路中有电流。
启发学生回答:图<1>中产生的电流是由电源提供的,图<2>中产生的是感应电流。教师引导:由恒定电流的知识可知,闭合电路中有电流,电路中必有电源。对比图<1>,图<2>提问,图<2>中的电源在哪里?用投影仪展示图<3>,启发学生回答:图<2>中的线圈就相当于是电源,在磁铁插入线圈的过程中产生了电动势。教师总结:(用图把电磁感应现象生的电动势叫感动势。
2.影响感应电动势大小的因素:
演示实验二:按图<2>所示装置将相同的磁铁以不同的速度从同一位置插入线圈中,观察并比较电流计指针的偏转情况。
诱导学生观察与思考:两次插入过程穿过线圈的磁通量变化是否相同?电流计指针偏角是否相同?偏角大说明什么?原因是什么?
引导学生归纳:电流计的指针偏角大,说明产生的电流大,而电流大的原因是电路中产生的感应电动势大。由于两次穿过磁通量变化相同,穿过越快,时间越短,产生的感应电动势越大,说明感应电动势大小与发生磁通量变化所用的时间有关,且在磁通量变化相同的情况下,所需时间越短,产生的感应电动势越大。
演示实验三:按图<2>所示装置用两个磁性强弱不同的条形磁铁分别从同一位置以相同的速度插入线圈中,观察并比较电流计指针的偏转情况。
诱导思维:两次插入过程中磁通量变化是否相同?所用时间是否相同?电流计指针偏角是否相同?偏转角大说明什么?原因是什么?
引导学生归纳:两种情况所用时间相同,但穿过线圈扔磁通量变化不同,电流表的偏转角不同,而产生的感应电动势大小不同。说明感应电动势的大小还与磁通量的变化有关,即在相同的变化时间情况下,磁通量变化越大,产生的感应电动势越大。
演示实验四:按图<4>所示装置连接电路,将滑动变阻器的滑动头以大小不同的速度从一侧滑至另一侧,观察电流计指针的偏转情况。(教师介绍实验装置)
<1>,图<2>装置进行演示说明)我们
中产应电诱导学生思维:两次滑动过程中穿过线圈的磁通量的变化量是否相同?所用时间是否相同?电流表的指转角是否相同?偏转角大说明什么?其原因是什么? 引导学生分析与归纳:
(1)快滑比慢滑在相同的时间里流过线圈L1的电流变化大,引起穿过线圈L2的磁通量变化大,即ΔΦ大;
(2)快滑比慢滑所用的时间短,即Δt小;(3)快滑与慢滑相大而所用时间短,即变化多;
(4)快滑与慢滑相
比,电流计指针的偏角不同,即产生的比,磁通量单位时间磁
变化通量感应电动势不同,即在单位时间内磁通量变化越多,产生的感应电动势越大。
以上现象的分析与归纳都应在教师的引导下,由学生主动的观察实验结果,分析实验现象,归纳出有关的结论,切忌由教师讲解。教师概括、归纳、总结学生的结论,使学生清晰思路。
通过以上三组实验可知:当穿过线圈的磁通量变化量与时间之比越大,即单位时间内磁通量的变化越多,或者说磁通量的变化率越大时,线圈中产生的感应电动势就越大。
3、法拉第电磁感应定律
内容:电路中产生的感应动势大小,跟穿过这一电路的磁通量的变化率成正比。要求学生写出表达式:E=kΔΦ/Δt
启发学生运用学过的知识来处理比例系数k,使k=1(1v=1wb/s)这样上式可写成: E=ΔΦ/Δt
问题情景一:如图<5>示。线圈L由导线绕制成n匝,当穿过L的磁通量变化率为ΔΦ/Δt时,则线圈L中产生的感应电动势为多少?
启发学生得出计算感应电动势的普遍意义的公式E=nΔΦ/Δt。
问题情景二:如图<6>示,把矩形单匝线圈abcd放在磁感应强度为B的匀强磁场中,线框平面和磁感线垂直。设线圈可动部ab的长度为L,以速度v向右匀速平动,则线框中产生的感应电动势为多少?
问题研究:(启发学生推导)导体ab向右运动时,ab棒切割磁感线,同时穿过abcd面的磁通量增加,线框中必然要产生感应电动势。设经过极短的时间Δt,导体ab运动的距离为vΔt,穿过线框abcd的磁通量的变化量为BLvΔt,线圈匝数n=1,代入公式:E=nΔΦ/Δt中,得到E=BLv。问题讨论:
(a)图<6>的电路中,哪部分导体相当于电源?与磁感线方向B有何关系?
(b)若导体运动方向与导体本身垂直,但与设v与B夹角为θ,又如何计算感应电动势的大引导分析:(启发同学们得出计算结论)将速
磁感方向不垂直,小呢?
度v沿垂直于磁ab导体的运动v感线方向的速度分量v1=vsinθ---在切割磁感线,产生感应电动势,而平行于磁感线方向的分量v2=vcosθ---不切割磁感线,不产生感应电动势。此时,导体产生的感应电动势E=BLv1=BLvsinθ
以上结论都应当是教师启发学生进行推导与演算,可请基础好的、思维能力强的学生在黑板上演示推导过程与结论,切不可教师包办。
课后补课的作业,旨在要求学生能在课后认真复习,挖掘课程内容的更深刻的意义,同时又可培养学习的兴趣。
探究题:试讨论法拉第电磁感应定律的计算公式E=nΔΦ/Δt和推导公式E=BLv各有什么特点?
复习题:请在探究题的基础上,写一篇关于本节课所学知识的小结。课后反思:
1、本课题内容应安排二课时,课后应视同学们的作业情况再安排一课时的整理与习题,力求使学生真正理解与掌握知识的内涵。
2、课程教学过程中,应做到通过学生自己的实验观察、探究知识的结构和内容,教师应起到引导、纠正学生的思路,同时创造实验环境、大胆鼓励学生进行思考、分析,从而理解教学内容。
3、实验过程中,教学要求应清楚明确,应做到: 提示学生仔细观察实验现象,完整地分析实验的现象。
提醒学生在实验过程思考哪些因素保持不变,哪些因素发生变化,对实验现象与结果有什么影响。
鼓励学生大胆与分析和总结。教师实验以前要考虑到实验过程中的一些负面因素,尽可能减少负面影响。如实四中滑动变阻器滑动头滑动时可能现象不明显等。所以课前准备要充分。
4.教学过程中没有强调
与E=BLvcosθ这两个关系式 的适用范围,而是布置了课后作业。我想这不但不会影响教学的完整性,反而能提高课后继续探究的兴趣。而且凭学生的数学能力和物理知识,完全能够得出正确结论,从而能提高大多数学生的学习兴趣。
5、本课程内容多,对学生实验与分析能力和综合素质要求高,可能有一部分同学不能很好地跟住教学进度。这在课后作业中也会有所反映。我应在课后要更好的关心这部份同学,同时应尽可能简化教学过程但又不降低教学要求。
第五篇:法拉第电磁感应定律教学设计
教学设计模式
第四章电磁感应
法拉第电磁感应定律
主备教师:李世仙
一、内容及其解析:
本节课要学的内容法拉第电磁感应定律指的是感应电动势大小的计算,其核心(或关键)是En是要正确理解什么是磁通量的变化率。
二、目标及其解析
(1)、知道感应电动势,及决定感应电动势大小的因素。(2)、知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、tt, 理解它关键就。
(3)、理解法拉第电磁感应定律内容、数学表达式。(4)、知道E=BLvsinθ如何推得。(5)、会用En解决问题。
t
三、问题诊断分析的一般模式
在本节课的教学中,学生可能遇到的问题是如何运用Ent解决实际问题,产生这一问题是学生没有正确理解“变化量”与“变化率”。
四、教学支持条件分析
在本节课的教学中,准备使用多媒体课件。
五、教学过程设计的一般模式
一、学习目标
(1)、知道感应电动势,及决定感应电动势大小的因素。
(2)、知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、(3)、理解法拉第电磁感应定律内容、数学表达式。(4)、知道E=BLvsinθ如何推得。(5)、会用Entt。
解决问题。
(6)、经历探究实验,培养动手能力和探究能力。
(7)、通过推导导线切割磁感线时的感应电动势公式E=BLv,掌握运用理论知识探究问题
二、问题与例题
问题一:探究影响感应电动势大小的因素
结论:电动势的大小与磁通量的变化
有关,磁通量的变化越
电动势越大,磁通量的变化越
电动势越小。
例题:下列说法正确的是()
A、线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B、线圈中的磁通量越大,线圈中产生的感应电动势一定越大 C、线圈处在磁场越强的位置,线圈中产生的感应电动势一定越大 D、线圈中磁通量变化得越快,线圈中产生的感应电动势越大
问题二:法拉第电磁感应定律
1.内容:电动势的大小与磁通量的变化率成正比 2.公式 Ent
3.定律的理解: ⑴磁通量、磁通量的变化量、磁通量的变化量率的区别Φ、ΔΦ、ΔΦ/Δt ⑵感应电动势的大小与磁通量的变化率成 ⑶感应电动势的方向由 来判断 例题一:一个匝数为100、面积为10cm2的线圈垂直磁场放置,在0.5s内穿过它的磁场从1T增加到9T。求线圈中的感应电动势。
问题三:导线切割磁感线时的感应电动势
闭合电路一部分导体ab处于匀强磁场中,磁感应强度为B,ab的长度为L,以速度v匀速切割磁感线,求产生的感应电动势
EBlv
需要理解
(1)B,L,V两两
(2)导线的长度L应为
长度
(3)导线运动方向和磁感线平行时,E=
(4)速度V为平均值(瞬时值),E就为
()
问题:当导体的运动方向跟磁感线方向有一个夹角θ,感应电动势可用上面的公式计算吗?
例题:如图所示,闭合电路的一部分导体处于匀强磁场中,导体棒以v斜向切割磁感线,求产生的感应电动势。
解析:可以把速度v分解为两个分量:垂直于磁感线的分量v1=vsinθ和平行于磁感线的分量v2=vcosθ。后者不切割磁感线,不产生感应电动势。前者切割磁感线,产生的感应电动势为
E=BLv1=BLvsinθ
强调:在国际单位制中,上式中B、L、v的单位分别是特斯拉(T)、米(m)、米每秒(m/s),θ指v与B的夹角。
反电动势:电动机线圈的转动产生感应电动势是反电动势。这个电动势是削弱了电源电流, 阻碍线圈的转动.正因为反电动势的存在,所以对电动机,欧姆定律不成立。
三、目标检测
1、一个200匝、面积200cm2的圆线圈,放在匀强磁场中,磁场的方向与线圈平面垂直,磁感应强度在0.05s内由0.1T增加到0.5T,在此过程中,穿过线圈的磁通量变化量是,磁通量的变化率是,线圈中感应电动势的大小是。
2、一导体棒长为40cm,在磁感应强度为0.1T的匀强磁场中做切割磁感线运动,速度为5m/s,棒在运动中能产生的最大感应电动势为。
四、配餐作业
A组题:
1、关于某一闭合电路中感应电动势的大小E,下列说法中正确的是()
A、E跟穿过这一闭合电路的磁通量的大小成正比
B、E跟穿过这一闭合电路的磁通量的变化大小成正比
C、E跟穿过这一闭合电路的磁通量的变化快慢成正比
D、E跟穿过闭合电路所在处的磁感应强度的大小成正比
2、关于电磁感应,下列说法中正确的是()
A、导体相对磁场运动,一定会产生电流
B、导体切割磁感线,一定会产生电流
C、闭合电路切割磁感线就会产生电流
D、穿过电路的磁通量发生变化,电路中就一定会产生感应电动势
B组题:
1、图4-4-1中abcd是一个固定的U形金属框架,ab和cd边都很长,bc边长为L,框架的电阻可不计,ef是放置在框架上与bc平行导体杆,它可在框架上自由滑动(摩擦可忽略)。它的电阻为R,现沿垂直于框架平面的方向加一恒定的匀强磁场,磁感应强度为B,方向垂直于纸面向里。已知当以恒力F向右拉导体杆ef时,导体杆最后匀速滑动,求匀速滑动时的速度。
2、如图4-4-2所示,边长为0.1m正方形线圈ABCD在大小为0.5T的匀强磁场中以AD边为轴匀速转动。初始时刻线圈平面与磁感线平行,经过1s线圈转了90°,求:(1)线圈在1s时间内产生的感应电动势平均值。(2)线圈在1s末时的感应电动势大小。
3、矩形线圈abcd,长ab=20cm ,宽bc=10cm,匝数n=200,线圈回路总电阻R= 50Ω,整个线圈平面均有垂直于线框平面的匀强磁场穿过,磁感应强度B随时间的变化规律如图4-4-3所示,求:
(1)线圈回路的感应电动势。
(2)在t=0.3s时线圈ab边所受的安培力。
4、如图4-4-4所示,M为一线圈电阻r=0.4Ω的电动机,R=24Ω,电源电动势E=40V。当S断开时,电流表的示数,I1=1.6A,当开关S闭合时,电流表的示数为I2=4.0A求开关S闭合时电动机发热消耗的功率和电动机线圈的反电动势E反。
C组题:
1、在磁感应强度为B的匀强磁场中,有一矩形线框,边长ab=L1,bc=L2线框绕中心轴以角速度ω由图示位置逆时针方向转动。
求:(1)线圈转过1/4周的过程的感应电动势(2)线圈转过1/4周时的感应电动势(3)转过半周、一周的感应电动势
2、如图,放置在水平面内的平行金属框架宽为L=0.4m,金属棒ab置于框架上,并与两框架垂直.整个框架位于竖直向下、磁感强度B=0.5T的匀强磁场中,电阻R=0.09Ω,ab电阻为r=0.01Ω,阻力忽略不计,当ab在水平向右的恒力F作用下以v2.5m/s的速度向右匀速运动时,求:
(1)画出等效电路图,标明a、b哪点电势高.(2)求回路中的感应电流.(3)电阻R上消耗的电功率.(4)恒力F做功的功率.六、本课小结
法拉第电磁感应定律
1.内容:电动势的大小与磁通量的变化率成正比 2.公式 Ent
3.定律的理解: 导线切割磁感线时的感应电动势
闭合电路一部分导体ab处于匀强磁场中,磁感应强度为B,ab的长度为L,以速度v匀速切割磁感线,求产生的感应电动势
EBlv