新人教版小学数学六年级上册《鸡兔同笼》教学设计

时间:2019-05-12 19:29:45下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《新人教版小学数学六年级上册《鸡兔同笼》教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《新人教版小学数学六年级上册《鸡兔同笼》教学设计》。

第一篇:新人教版小学数学六年级上册《鸡兔同笼》教学设计

新人教版小学数学六年级上册《鸡兔同笼》

教学设计

教学目标:

1.使学生了解“鸡兔同笼”问题的结构特点,掌握用列表法、假设法、方程法解决问题,初步形成解决此类问题的一般性策略。

2、通过自主探索,合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,使学生体会解题策略的多样性。渗透化繁为简的思想。

3、使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。

教学重点:尝试用不同的方法解决鸡兔同笼问题,对尝试法有所了解和体验,并使学生体会假设方法解决此类问题的优越性。

教学难点:理解用假设法解决“鸡兔同笼”问题的算理。教具准备:电脑课件 教学过程:

一、创设情境、生成问题:

1、同学们,从你们端正的坐姿和专注的目光中,老师就能感觉到你们都是聪明的学生。今天,老师就来考考你们,请看大屏幕:

如果一个笼子里有4只鸡,3只兔,你能算出它们一共有多少条腿吗?你是怎样算的?

这4只鸡和3只兔还有一个有趣的小故事呢,鸡和兔在一起的时候,兔子发现鸡走路很有意思,就想学鸡走路,它怎么学才能像鸡?现在一共有多少条腿?为什么会少了6条腿?如果有5只兔子在学鸡,会少多少条腿?为什么?那如果少了14条腿,是几只兔子在学鸡?

后来,鸡发现兔子走路也很有趣,也想学兔子,怎么办?现在一共有多少条腿?为什么和原来相比会多出8条腿?假如有6只小鸡在学兔子,应多出几条腿?现在多了18条腿,是几只小鸡在学兔子?

2、其实,早在1500年前,我国古代数学家就已经开始研究《鸡兔同笼》问题,这节课我们也来研究《鸡兔同笼》问题。

板书课题。

二、探索交流,解决问题

1、课件出示主题图和原题:请同学们看大屏幕:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

指生读题。

你能说说这道题是什么意思吗?(说明:雉指鸡)

出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?

2、为了便于同学们寻找解决问题方法,我们先来研究一道数据较小的“鸡兔同笼”问题。出示:笼子里有若干只鸡兔。从上面数,有8个头,从下面数,有26只脚,鸡和兔各有几只?

指生读题,你知道了什么数学信息?

想一想,如何来解决这个问题?请同学们认真思考,然后在小组内汇报、交流,最后把你的想法写在本子上。

学生思考、分析、探索,讨论、交流。

谁能说一说你们小组研究的结果,鸡、兔各有几只?你们是怎样得出结论的?

学生汇报: A、列表法:

一下子就猜出来的。5只兔子,3只鸡。你们真是幸运,一下子就猜出来了。

有没有试了几次才找到答案的?你是怎样找到的?

请同学们回顾一下这个同学的思路,假如你猜的腿的数量多了,应该怎么办?那如果腿的数量少了,应该怎么办?

假设你计算多了4条腿,说明了什么? 如果少了4条腿呢?

看来大家都有一双善于发现的眼睛。大家都发现了在鸡和兔的总只数不变的情况下,每增加1只兔、减少1只鸡,腿的总只数增加2只;反之,每减少1只兔,增加1只鸡,腿的总只数减少2只。

刚才我们用列表法找到了答案,在找的过程中,需要我们一次又一次的调数。怎么调,要做到心中有数。B、假设法:

谁还有不同的方法?生说,师板书。

假设都看成鸡:8×2=16(条)26-16=10(条)4-2=2(条)

兔: 10÷2=5(只)鸡: 8-5=3(只)师讲解,课件演示。同桌互相说一说。

还能都假设成什么?(兔)请同学们自己试着做一做。谁来说一说你是怎样计算的? 都假设成兔子:8×4=32(条)32-26=6(条)4-2=2(条)

鸡: 6÷2=3(只)兔: 8-3=5(只)

不管都假设成鸡,还是都假设成兔,结果都是一样的。我们怎样才能知道这个结果对不对?检验

3×2+5×4=26(条)(板书)

这种检验方法是《鸡兔同笼》问题最好的验证方法。C、方程法

除了用列表法、假设法,谁还有不同的方法?

方程。如果列方程的话,首先要找等量关系,这道题的等量关系是什么? 鸡的腿+兔的腿=26条

那么就请同学们用列方程的方法试一试。(全班尝试,一名学生板演。)我们来听听这个同学的想法。解:设有x只兔,鸡就有(8-x)只。

列出方程4x+2(8-x)=26,解是x=5,即有5只兔,8-3=5只鸡。老师想问你,这里的 4x和2(8-x)分别表示是什么? 生:4x是兔脚的总数,2(8-x)是鸡脚的总数。师:方程解完了也要注意检验哦!

刚才,同学们运用列表法、假设法、方程法解决了这个问题,真是了不起。

3、现在,请同学们用自己喜欢的方法来解决《孙子算经》中的问题。汇报:

有没有同学运用列表法?为什么?对于较大的数,列表法比较麻烦,而假设法和列方程是一种普遍的、基本的方法。

同学们真聪明,不但自己能研究出解决问题的方法,而且还能运用其他小组的方法,老师真为你们感到骄傲。

其实,解决《鸡兔同笼》问题还有其它的方法,我们的祖先就运用了“抬腿法”解决了这一问题,有兴趣的同学课下可以阅读课本“你知道吗”。

三、巩固应用,内化提高

今天我们研究的这类“鸡兔同笼”问题,不仅仅只解决鸡和兔的问题,而且还能解决生活中类似的“鸡兔同笼”问题。<1>.动物园中的问题。

动物园有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只? <2>.游乐园中的问题。

有38个同学去游乐园划船,共租了8条船,每条船都坐满了。大船每条各乘6人,小船每条各乘4人。大小船各租了几条。

你能举出一些生活中这样的例子吗?

四、回顾整理,反思提升:

上完了这节课,同学们也已经知道课前我们做的“猜一猜”游戏的秘密了。

通过今天的学习,你有哪些收获?

第二篇:六年级数学鸡兔同笼教学设计

六年级数学鸡兔同笼问题教学设计

一、教学目标:

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、在解决“鸡兔同笼”的活动中,尝试通过列表举例、画图分析、尝试计算、列方程等方法解决鸡兔的数量问题。

3、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

二、教材分析:

(一)设计意图:

通过向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,从多角度思考,运用多种方法解题,学生可以应用作图法、假设法、列方程解决问题。学生根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

(二)设计思路:

遵照《新课程标准》的精神,在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。通过教师创设的现实情景,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。

教学重点:体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。

三、教学设计:

<一>、提出问题

师:(出示主题图)大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”

问:这段话是什么意思?(生试说)

师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中鸡和兔各有几只? 这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。

(板书课题:鸡兔同笼问题)

<二>、解决问题

师:说明为了研究方便,我们不妨先将题目的条件做一个简化。

(课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?(同时出示鸡兔同笼情境图)

师:同学们不妨先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)

学生初步交流,教师提炼:可以用画图的方法、可以用列表法、可以用假设法、还可以用方程的方法。

师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。

学生思考、分析、探索,接下来小组讨论、交流、争辩。(老师参与其中,启发、点拔、引导适当,师生互动。)

小组活动充分后进入小组汇报、集体交流阶段。

师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?

学生汇报探究的方法和结论:

1:画图法:(学生展示画图方法及步骤)

①先画8个头。

②每个头下画上两条腿。

数一数,共有16条腿,比题中给出的腿数少26-16=10条腿。

③给一些鸡添上两条腿,叫它变成兔.边添腿边数,凑够26条腿。

每把一只鸡添上两条腿,它就变成了兔,显然添10条腿就变出来5只兔.这样就得出答案,笼中有5只兔和3只鸡。

师:同学们的探索精神和方法都很好,都能用自己的方法成功地解决“鸡兔同笼问题”。不过上面的两种方法,老师还是觉得比较麻烦,又是画图,又是列表的,有没有更方便简洁的方法来解决这个问题?

2.假设法:

教师引导:观察上面的表格我们发现。如果8只都是鸡,则一共只有16条腿这样就比26条腿少10条腿,这是因为实际每只兔子比每只鸡多2条腿。一共多了10条腿,于是兔就有10÷2=5(只),所以我们还可以这样去想:

板书:方法一:假设8只都是鸡,那么兔有:

(26-8×2)÷(4-2)=5(只)

鸡有8-5=3(只)

同样如果8只都是兔,则一共只有32条腿这样就比26条腿多6条腿,这是因为实际每只鸡比每只兔子少2条腿。一共多了6条腿,于是鸡就有6÷2=3(只),所以我们还可以这样去想:

板书:方法二:假设8只都是兔,那么鸡有:

(4×8-26)÷(4-2)=3(只)

兔有8-3=5(只)

3、列方程:

我们还可以根据“鸡的腿+兔的腿=26条”列方程解答:

解:设兔有X只,那么鸡有(8-X)只。

4X+2(8-X)=26,16+2X=26

2X=26-16

X=3

8-3=5(只)

即鸡有3只,兔有5只。

师:通过以上的学习,你有什么发现,有什么想法吗?

生:解决一个问题可以有不同的方法。

<三>、想一想,做一做:

1.尝试解答课前提出的古代《孙子算经》中记载的鸡兔同笼问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?

2.完成书中练一练中的4道题,<四>、小结:

我们今天学习了鸡兔同笼问题,发现这类问题可以用画图的方法解决、可以用列表的方式进行分析,还可以用假设的方法(亦可称作置换法)。可以先假设都是同一种事物(换成另一种事物),再根据题中给出的条件进行修正、推算。有的同学还用方程来解决这个问题。一个问题可以用多种方法来解决,真是条条大路通罗马呀!希望同学们今后在学习中也能象今天一样肯于动脑,勤于思考,使我们每一个同学都越学越聪明。

第三篇:《鸡兔同笼》人教版小学数学六年级上册

《鸡兔同笼》教学设计与意图

城厢区教师进修学校

林国忠

设计理念:

“鸡兔同笼”是我国古代数学的经典趣题,教材借助这个问题向学生提供了有趣、富有挑战性的学习素材,旨在通过教师启发讲解和学生独立思考、自主探索、合作交流等方式,帮助学生积累解决问题的经验,掌握解决问题的策略。本节课的设计我们力求体现以下几个方面:

1、注重解决问题策略的多样化。教学中,教师努力引导学生通过多手段、多角度的探索,运用猜想与列表的尝试法、假设法、代数法等多种方法分析问题、解决问题,体验解决问题策略的多样性,发展创新意识。在学生获得解决问题的基本策略后,教师适时引导学生观察、比较,通过例题与生活中类似问题的比较,帮助学生建立“鸡兔同笼”问题的数学模型,从而实现解决问题策略的自主优化。

2、注重数学思想方法的渗透。“数学广角”是人教版课程标准实验教科中新增的教学内容之一,主要渗透一些基本的数学思想方法。本节课作为本册教材“数学广角”中唯一的教学内容,教学中教师有意识地渗透转化、函数、假设、代数和模型思想,为学生的可持续发展奠定坚实的基础。

3、注重数学文化的传承。数学是人类的一种文化,“鸡兔同笼”问题是《孙子算经》中的一道名题,它流传广泛,影响深远,引起了许多国家众多数学爱好者的广泛关注。教学中,教师应注意做好经典数学文化遗产的传承和弘扬。

教学内容:

人教版义务教育课程标准实验教科书数学六年级上册P112-115

学情与教材分析:

“鸡兔同笼”集题型的趣味性、解题策略的多样性、应用的广泛性于一体,具有训练智能的教育功能和价值,是实施开放式教学的好题材。教材呈现三种基本的解题思路:列表尝试法、假设法和代数法。列表尝试法能直观反映数据的变化,学生容易接受,但数据较大时比较繁琐,适用性有限;假设法是一种算术方法,计算比较简便,是解决此类问题的一般策略,但算理抽象,理解有一定难度;代数法等量关系较明显,学生理解数学关系简单,并有利于中小学的接轨,但求解过程对多数小学生而言较难。

课前,调查发现:对于“鸡兔同笼”问题,一部分学生在“奥数”中接触过,但多数学生还缺少独立解决本问题的策略,没有体会到解决问题策略的多样化。所以,教学中主要采用教师启发讲解与学生自主探究相结合的教学方式,让学生在尝试、探索、交流、比较中弄清“鸡兔同笼”问题的结构特征、数量关系和解题策略,经历多样化解题的过程,初步形成解决此类问题的一般性策略。

教学目标:

1.了解“鸡兔同笼”问题的结构特点和数量关系,尝试用不同的策略解决“鸡兔同笼”问题,使学生体会用假设法和代数法的一般性。

2、在解决问题的过程中,培养学生的思维能力,并向学生渗透化繁为简、转化、函数等数学思想和方法。

3、使学生感受古代数学问题的趣味性,体会“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。

教学重点:

让学生经历用不同的方法解决“鸡兔同笼”问题的策略,体会其中所蕴涵的数学思想方法。

教学难点:

理解假设法中各步的算理。教学过程:

(一)解读原题,直奔主题。

1、问:鸡兔同笼是什么意思?以前接触过这种问题的同学举个手。

2、出示古趣题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

3、原题解读,并出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。鸡和兔各有几只?。

[设计意图:从我国古代数学趣题直接导入,让学生感受到我国数学文化历史的悠久与魅力,增强民族自豪感,激发学生探究的欲望。]

(二)合作探究,寻找策略

1、改编原题,出示例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数有26只脚。鸡和兔各有几只?

2、理解题意:从题中你知道了那些信息?

3、探索策略。(1)列表尝试法

①猜一猜:笼子里可能有几只鸡,几只兔?

②说一说:他猜得对吗?你是怎么判断的?该怎样调整鸡和兔的只数?为什么?

③试一试:在答题卡上自主尝试,如果答案不对,自主调整,直到找到正确答案。

④反馈交流。

A、按顺序列表。数一数试了几次?从表中你发现了什么规律? B、取中或跳跃列表。数一数试了几次?有什么秘诀? ⑤比一比:以上各种列表尝试的思考策略分别有什么特点? [设计意图:列表尝试法虽然烦琐,但这是解决问题一种重要的

策略和方法。让学生通过列表尝试的方法初步体验在总只数不变的情况下,随着鸡(或兔)只数的调整,脚的总数也发生变化,为下面学习假设法和代数法做好铺垫。]

(2)假设法

①学生独立尝试列式解答。

②小组讨论,说一说算式表示的意义。③汇报反馈。

A.假设笼子里都是鸡,兔即是:(26-8×2)÷(4-2)=5(只)B.假设笼子里都是兔,鸡即是:(8×4-26)÷(4-2)=3(只)④比较:以上这两种解决问题的方法有什么相同点?

⑤思考:为什么假设全是鸡,先求出的是兔?为什么假设全是兔,先求出的是鸡?

[设计意图:让学生认识、理解、运用假设法是本课的重点,也是教学难点。老师以列表尝试法为基础,放手让学生在独立尝试的基础上独立思考、自主探究,学生从自主尝试到讨论、汇报、互动,结合课件的动态演示,巧妙地将学生个人或集体的认知经验、思维过程转化成数学语言(数学算式),从而形成了解决问题的新策略,发展了学生的思维水平,获得了新的数学思想方法。]

(3)代数法(略)

[代数法是学生在五年级已学过的解决问题的一种基本方法,运用它解决“鸡兔同笼”问题便于学生清楚地理解数量关系,不失为解决此类问题的一种好方法,也让学生体验、领悟解决“鸡兔同笼”问题策略的多样化。]

4、梳理小结,比较优化。

(三)推广应用,建立模型。

1、选择自己喜欢的方法解决《孙子算经》中的原题。

2、生活中“鸡兔同笼”的问题。(学生自选一道题独立解答)

(1)动物园中的问题。

动物园有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?

(2)游乐园中的问题。

有38个同学去游乐园划船,共租了8条船,每条船都坐满了。大船每条乘6人,小船每条乘4人。大小船各租了几条?

3、对比联系,建立模型。

引导学生比较两道生活中的“鸡兔同笼”问题与例1有那些相同点,帮助学生初步建立“鸡兔同笼”问题的数学模型。

[设计意图:放手让学生运用学到的“策略”解决生活中类似的“鸡兔同笼”问题,既巩固了新知,又使学生体会到“鸡兔同笼”问题在生活中的广泛存在,凸显了本节课的学习价值。在此基础上进一步引导学生观察、比较、总结,提炼出此类问题的结构特征和解决的一般性策略,为学生的学习奠定了可持续发展的坚实基础。]

四、引导阅读,课外延伸

1、阅读并思考课本114页的“阅读资料”。

2、完成练习二十六的1-3题。

[设计意图:“抬脚法”是一种特殊而巧妙的解法,学生不容易理解,课后的阅读给学生一个自主探究、交流的空间,又让学生进一步感受到我国古代数学的魅力。练习作业设计的层次性、挑战性,满足了学生个性化学习的需要,为学生的课外发展提供平台。]

第四篇:六年级上册数学第七单元鸡兔同笼教学设计

六年级上册数学第七单元鸡兔同笼教学设计

一、教学目标:

1、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

2、应用假设的数学思想,在解题中数形结合,提高学生分析问题和解决问题的能力;

3、在解决“鸡兔同笼”的活动中,通过列表举例、画图分析、尝试计算等方法解决鸡兔的数量问题。

二、教材分析

本课时向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用逐一列表法、跳跃式列表法、取中列表法等来解决问题。学生在具体的解决问题过程中,他们可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

三、学校及学生状况分析

学生在三年级时已初步学习了简单的“鸡兔同笼”问题,他们已经初步尝试了应用逐一列表法解决问题,还有一些学生在校外的奥数班中已经学习了相关的内容。因此,教学在这一内容时,学生的程度参差不齐。本班的学生思维活跃,敢想,敢说,有一定的小组合组经验。

四、教学设计

(一)创设情境

师:今天这一节课,我们要共同研究鸡兔同笼问题。(板书:鸡兔同笼)你们知道鸡兔同笼是什么意思?

生:鸡兔同笼就是鸡兔在一个笼子里。

(媒体出示课本第80页的情景图)

师:请你猜一猜,图中大约有几只兔子,几只鸡?

生1:我猜大约是7只,兔子5只鸡。

生2:不一定。因为有一棵树把鸡和兔子挡住了,所以我不知道各有几只。

(二)探求新知

师:如果告诉你:鸡兔同笼,有20个头,54条脚,鸡、兔各多少?能求出几只兔子,几只鸡吗?(媒体出示题目的条件)

师:想一想,要解决这个问题可以用什么方法?想好了,可以写在作业纸上。

师:请同学们把自己的想法在小组内交流一下,看那个小组的方法多样。

师:哪个小组说说你们的想法?

小组1:我们采用列表法得出的答案。(实物投影展示小组的成果)先假设有1只鸡,19只兔子,脚就有78条。脚太多,然后又假设有2只鸡,18只兔子,脚还是太多了。这样试下去就得到了有13只鸡,7只兔子。

师:还有哪些小组采用不同的列表法?

小组2:我们也采用列表法得出的答案,我们发现鸡增加1只,兔子减少1只,腿就减少2条,所以我们没有一个一个的试,那样太麻烦,而是从2只鸡,18只兔直接跳到10只鸡,10只兔。最后也得到了13只鸡,7只兔。

小组3:我们小组也是列表法。我们是先假设鸡有10只,兔子也有10只。这样比较简便。

师:这三个小组的同学都采用了列表的方法来解决问题,但同学们想一想,为什么要列表呢?

生1:列表可以帮助我们一一举例,从中找出需要的答案。

生2:列表也就是运用假设法,通过逐步的假设,最终找到符合条件的答案。

师:那么,这三种列表的方法有什么不同呢?

生3:我认为第一小组的列表方法的特点是逐一列表,这样不容易遗漏答案。

生4:虽说第一小组的方法可以完全地列出全部的答案,但比较麻烦。我认为第三组的方法比较好,可以根据题目的根据情况,确定假设的范围,这样可以很快寻找到需要的答案。

师:这两位同学说得都很有道理,其实同样选择列表的方法,我们因根据题目的实际条件,选择适当的方法,这样可以既快又准确地寻找到我们需要的答案。

(三)解决问题

师:根据刚才的讨论,下面两道题目,同学们可以用列表的方法独立地尝试解决。

媒体出示两道题

1、鸡兔同笼,有23个头,66条腿,鸡、兔各几只?请你列表的方法解决。

2、老师带51名学生到公园划船。一条大船坐6人,一条小船坐4人,他们租了大船、小船各几条?

(学生练习后,教师组织全班进行交流。交流过程略)

(四)学习总结

师:通过今天的学习,你有哪些收获?

五、教学反思

1、充分调动学生的积极性

当新的问题提出后,我并没有急于讲解如何做的方法,而是先让学生独立思考,再在小组内交流,最后全班共同研究讨论。使同学们在民主、和谐的氛围中开拓了思维,实现了运用多种方法解决问题的目的。

2、关注每一个同学的发展。

由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在同样的列表中,学生的认知水平也有一定的层次。但在教学的过程中,我并没有提出统一的要求,允许不同的学生采用不同的解题方法。在交流时,有些学生用逐一列表的方法,也没去指责他们,而是肯定他们想出好的方法;对于

比较优秀的学生,则在课中请他们总结根据题目的条件选择适当方法的优点。这样做的目的,不同的学生在同一节课中就会都有不同程度地提高。

六、案例点评

本节课有以下几个特点:

1、本节课从学的角度安排教学过程、呈现学习内容、提供操作材料,把学习的主动权交给学生,让学生在合作学习的活动中主动完成认知结构的建构过程。因此,使学生的主体意识和探究精神得到培养,创新潜能得到开发。

2、让学生获得亲自参与探究学习的积极体验。探究性学习的过程是情感活动的过程,让学生自主参与类似于科学家研究的学习活动,获得亲身体验,逐步形成一种在日常学习与生活中喜爱质疑、乐于探究、努力求知的心理倾向,激发探究和创新的积极欲望。

第五篇:六年级上册数学第七单元鸡兔同笼教学设计

六年级上册数学第七单元鸡兔同笼教学设计

一、教学目标:

1、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

2、应用假设的数学思想,在解题中数形结合,提高学生分析问题和解决问题的能力;

3、在解决“鸡兔同笼”的活动中,通过列表举例、画图分析、尝试计算等方法解决鸡兔的数量问题。

二、教材分析

本课时向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用逐一列表法、跳跃式列表法、取中列表法等来解决问题。学生在具体的解决问题过程中,他们可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

三、学校及学生状况分析

学生在三年级时已初步学习了简单的“鸡兔同笼”问题,他们已经初步尝试了应用逐一列表法解决问题,还有一些学生在校外的奥数班中已经学习了相关的内容。因此,教学在这一内容时,学生的程度参差不齐。本班的学生思维活跃,敢想,敢说,有一定的小组合组经验。

四、教学设计

(一)创设情境

师:今天这一节课,我们要共同研究鸡兔同笼问题。(板书:鸡兔同笼)你们知道鸡兔同笼是什么意思?

生:鸡兔同笼就是鸡兔在一个笼子里。

(媒体出示课本第80页的情景图)

师:请你猜一猜,图中大约有几只兔子,几只鸡?

生1:我猜大约是7只,兔子5只鸡。

生2:不一定。因为有一棵树把鸡和兔子挡住了,所以我不知道各有几只。

(二)探求新知

师:如果告诉你:鸡兔同笼,有20个头,54条脚,鸡、兔

各多少?能求出几只兔子,几只鸡吗?(媒体出示题目的条件)

师:想一想,要解决这个问题可以用什么方法?想好了,可以写在作业纸上。

师:请同学们把自己的想法在小组内交流一下,看那个小组的方法多样。

师:哪个小组说说你们的想法?

小组1:我们采用列表法得出的答案。(实物投影展示小组的成果)先假设有1只鸡,19只兔子,脚就有78条。脚太多,然后又假设有2只鸡,18只兔子,脚还是太多了。这样试下去就得到了有13只鸡,7只兔子。

师:还有哪些小组采用不同的列表法?

小组2:我们也采用列表法得出的答案,我们发现鸡增加1只,兔子减少1只,腿就减少2条,所以我们没有一个一个的试,那样太麻烦,而是从2只鸡,18只兔直接跳到10只鸡,10只兔。最后也得到了13只鸡,7只兔。

小组3:我们小组也是列表法。我们是先假设鸡有10只,兔子也有10只。这样比较简便。

师:这三个小组的同学都采用了列表的方法来解决问题,但

同学们想一想,为什么要列表呢?

生1:列表可以帮助我们一一举例,从中找出需要的答案。生2:列表也就是运用假设法,通过逐步的假设,最终找到符合条件的答案。

师:那么,这三种列表的方法有什么不同呢?

生3:我认为第一小组的列表方法的特点是逐一列表,这样不容易遗漏答案。

生4:虽说第一小组的方法可以完全地列出全部的答案,但比较麻烦。我认为第三组的方法比较好,可以根据题目的根据情况,确定假设的范围,这样可以很快寻找到需要的答案。

师:这两位同学说得都很有道理,其实同样选择列表的方法,我们因根据题目的实际条件,选择适当的方法,这样可以既快又准确地寻找到我们需要的答案。

(三)解决问题

师:根据刚才的讨论,下面两道题目,同学们可以用列表的方法独立地尝试解决。

媒体出示两道题

1、鸡兔同笼,有23个头,66条腿,鸡、兔各几只?请你列表的方法解决。

2、老师带51名学生到公园划船。一条大船坐6人,一条小船坐4人,他们租了大船、小船各几条?

(学生练习后,教师组织全班进行交流。交流过程略)

(四)学习总结

师:通过今天的学习,你有哪些收获?

五、教学反思

1、充分调动学生的积极性

当新的问题提出后,我并没有急于讲解如何做的方法,而是先让学生独立思考,再在小组内交流,最后全班共同研究讨论。使同学们在民主、和谐的氛围中开拓了思维,实现了运用多种方法解决问题的目的。

2、关注每一个同学的发展。

由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在同样的列表中,学生的认知水平也有一定的层次。但在教学的过程中,我并没有提出统一的要求,允许不同的学生采用不同的解题方法。在交流时,有些学生用逐一列

表的方法,也没去指责他们,而是肯定他们想出好的方法;对于比较优秀的学生,则在课中请他们总结根据题目的条件选择适当方法的优点。这样做的目的,不同的学生在同一节课中就会都有不同程度地提高。

六、案例点评

本节课有以下几个特点:

1、本节课从学的角度安排教学过程、呈现学习内容、提供操作材料,把学习的主动权交给学生,让学生在合作学习的活动中主动完成认知结构的建构过程。因此,使学生的主体意识和探究精神得到培养,创新潜能得到开发。

2、让学生获得亲自参与探究学习的积极体验。探究性学习的过程是情感活动的过程,让学生自主参与类似于科学家研究的学习活动,获得亲身体验,逐步形成一种在日常学习与生活中喜爱质疑、乐于探究、努力求知的心理倾向,激发探究和创新的积极欲望。

下载新人教版小学数学六年级上册《鸡兔同笼》教学设计word格式文档
下载新人教版小学数学六年级上册《鸡兔同笼》教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    小学数学六年级上册数学广角之《鸡兔同笼》教学设计及说课稿。

    新人教版小学数学六年级上册《数学广角--鸡兔同笼》教案 峰头小学 方敏勇 教学内容:人教版数学六年级上册P112-114 学情分析: 鸡兔同笼问题是我国民间流传下来的一类数学妙题,......

    六年级数学《鸡兔同笼》教学设计(最终5篇)

    六年级数学《鸡兔同笼》教学设计作为一位杰出的教职工,常常需要准备教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。教......

    人教版小学数学鸡兔同笼教学设计[范文模版]

    鸡兔同笼,是中国古代著名典型趣题之一,记载于《孙子算经》之中。鸡兔同笼问题,是小学奥数的常见题型。接下来小编搜集了人教版小学数学鸡兔同笼教学设计,欢迎查看,希望帮助到大家......

    新课标人教版小学数学六年级上册《鸡兔同笼》精品教案

    新课标人教版小学数学六年级上册《鸡兔同笼》精品教案 教学目标: 1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。 2、尝试用不同的方法解决“鸡兔同笼”问题,使学生体会......

    六年级上册数学广角--鸡兔同笼教学设计(卓业伟)

    数学广角 ——《鸡兔同笼》教学设计 万宁市和乐中心学校卓业伟 教学内容:五年级数学广角—鸡兔同笼的内容(第129—130页) 教学要求: 1.通过学习使学生初步认识“鸡兔同笼”的数......

    小学六年级鸡兔同笼数学问题(5篇)

    数学广角 鸡兔同笼问题 解题技巧:“鸡兔同笼问题”通常采用假设法和方程解法。 假设法:(总只数—总头数×鸡足数)÷兔鸡足数差=兔数总头数—兔数=鸡数 (总头数×兔足数—总只数)÷......

    小学数学六年级上册:《图案设计》教学设计

    【教具、学具准备】 1、三角尺、直尺、彩笔、圆规、硬纸板、剪刀、图钉、胶带。 【教学设计】 教 学 过 程 一、创设情境 欣赏生活中美丽的图案: 2、你看到的这些生活......

    六年级数学《鸡兔同笼》教案

    《鸡兔同笼》教案 教学目标: 1、知识与技能 1)了解“鸡兔同笼”问题,感受古代数学问题的趣味性。 2)尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。 2......