第一篇:指数函数教学设计范文
指数函数的图象及其性质
一、教学内容分析
本节课是 《普通高中课程标准实验教科书·数学(1)》(人教A版)第二章第一节第二课(2.1.2)《指数函数及其性质》。根据我所任教的学生的实际情况,我将《指数函数及其性质》划分为两节课(探究图象及其性质,指数函数及其性质的应用),这是第一节课“探究图象及其性质”。指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。
二、学生学习况情分析
指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,是学生对函数概念及性质的第一次应用。教材在之前的学习中给出了两个实际例子(GDP的增长问题和炭14的衰减问题),已经让学生感受到指数函数的实际背景,但这两个例子背景对于学生来说有些陌生。本节课先设计一个看似简单的问题,通过超出想象的结果来激发学生学习新知的兴趣和欲望。
三、设计思想
1.函数及其图象在高中数学中占有很重要的位置。如何突破这个即重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。本节课,力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种的研究方法,以便能将其迁移到其他函数的研究中去。
2.结合参加我校组织的两个课题《对话——反思——选择》和《新课程实施中同伴合作和师生互动研究》的研究,在本课的教学中我努力实践以下两点:
⑴.在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式。
⑵.在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。
通过课堂教学活动向学生渗透数学思想方法。
四、教学目标
根据任教班级学生的实际情况,本节课我确定的教学目标是:理解指数函数的概念,能画出具体指数函数的图象;在理解指数函数概念、性质的基础上,能应用所学知识解决简单的数学问题;在教学过程中通过类比,回顾归纳从图象和解析式这两种不同角度研究函数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。
五、教学重点与难点
教学重点:指数函数的概念、图象和性质。
教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。
六、教学过程:
(一)创设情景、提出问题(约3分钟)师:如果让1号同学准备2粒米,2号同学准备4粒米,3号同学准备6粒米,4号同学准备8粒米,5号同学准备10粒米,„„按这样的规律,51号同学该准备多少米?
学生回答后教师公布事先估算的数据:51号同学该准备102粒米,大约5克重。师:如果改成让1号同学准备2粒米,2号同学准备4粒米,3号同学准备8粒米,4号同学准备16粒米,5号同学准备32粒米,„„按这样的规律,51号同学该准备多少米?
【学情预设】学生可能说很多或能算出具体数目
师:大家能否估计一下,51号同学该准备的米有多重?
教师公布事先估算的数据:51号同学所需准备的大米约重1.2亿吨。
师:1.2亿吨是一个什么概念?根据2007年9月13日美国农业部发布的最新数据显示,2007~2008年度我国大米产量预计为1.27亿吨。这就是说51号同学所需准备的大米相当于2007~2008年度我国全年的大米产量!【设计意图】用一个看似简单的实例,为引出指数函数的概念做准备;同时通过与一次函数的对比让学生感受指数函数的爆炸增长,激发学生学习新知的兴趣和欲望。
在以上两个问题中,每位同学所需准备的米粒数用y表示,每位同学的座号数用
x表示,y与x之间的关系分别是什么?
学生很容易得出y2x(xN*)和y2x(xN*)
【学情预设】学生可能会漏掉x的取值范围,教师要引导学生思考具体问题中x的范围。
(二)师生互动、探究新知
1.指数函数的定义
老师:其实,在本章开头的问题2中,也有一个与y2类似的关系x*y1.073(xN,x20)式
x⑴让学生思考讨论以下问题(问题逐个给出):(约3分钟)
x*x*y2(xN)y1.073(xN,x20)这两个解析式有什么共同特征?
①和②它们能否构成函数?
③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字?
【设计意图】 引导学生从具体问题、实际问题中抽象出数学模型。学生对比已经学过一次函数、反比例函数、二次函数,发现xy2,xy073.1是一个新的函数模型,再让学生给这个新的函数命名,由此激发学生的学习兴趣。
引导学生观察,两个函数中,底数是常数,指数是自变量。
老师:如果可以用字母a代替其中的底数,那么上述两式就可以表示成xay的形式。自变量在指数位置,所以我们把它称作指数函数。
⑵让学生讨论并给出指数函数的定义。(约6分钟)
对于底数的分类,可将问题分解为:
a2,x2则在实数范围内相应的函数值不存 ①若a0会有什么问题?(如
1在)
②若a0 会有什么问题?(对于x0,a都无意义)
③若a1又会怎么样?(1无论x取何值,它总是1,对它没有研究的必要.)
老师:为了避免上述各种情况的发生,所以规定a0且a1。在这里要注意生生之间、师生之间的对话。
xx【学情预设】
①若学生从教科书中已经看到指数函数的定义,教师可以问,为什么要求a0且a1。a1为什么不行?
xya②若学生只给出,教师可以引导学生通过类比一次函数ykxb(k0)、反比例函数
yk(k0)2yaxbxc(a0)中x,二次函数的限制条件,思
考指数函数中底数的限制条件。【设计意图 】
①对指数函数中底数限制条件的讨论可以引导学生研究一个函数应注意它的实际意义和研究价值;
②讨论出10aa,且,也为下面研究性质时对底数的分类做准备。
接下来教师可以问学生是否明确了指数函数的定义,能否写出一两个指数函数?教师也在黑板上写出一些解析式让学生判断,如y23x,y32x,y2x。
【学情预设】学生可能只是关注指数是否是变量,而不考虑其它的。【设计意图 】加深学生对指数函数定义和呈现形式的理解。
2.指数函数性质
⑴提出两个问题(约3分钟)
①目前研究函数一般可以包括哪些方面;
【设计意图】让学生在研究指数函数时有明确的目标:函数三个要素(对应法则、定义域、值域、)和函数的基本性质(单调性、奇偶性)。
②研究函数(比如今天的指数函数)可以怎么研究?用什么方法、从什么角度研究?
可以从图象和解析式这两个不同的角度进行研究;可以从具体的函数入手(即底数取一些数值);当然也可以用列表法研究函数,只是今天我们所学的函数用列表法不易得出此函数的性质,可见具体问题要选择适当的方法来研究才能事半功倍!还可以借助一些数学思想方法来思考。
【设计意图】
①让学生知道图象法不是研究函数的唯一方法,由此引导学生可以从图象和解析式(包括列表)不同的角度对函数进行研究;
②对学生进行数学思想方法(从一般到特殊再到一般、数形结合、分类讨论)的有机渗透。
⑵分组活动,合作学习(约8分钟)
老师:好,下面我们就从图象和解析式这两个不同的角度对指数函数进行研究。
①让学生分为两大组,一组从解析式的角度入手(不画图)研究指数函数,一组借助电脑通过几何画板的操作从图象的角度入手研究指数函数;
②每一大组再分为若干合作小组(建议4人一小组);
③每组都将研究所得到的结论或成果写出来以便交流。
【学情预设】考虑到各组的水平可能有所不同,教师应巡视,对个别组可做适当的指导。
【设计意图】通过自主探索、合作学习不仅让学生充当学习的主人更可加深对所得到结论的理解。
⑶交流、总结(约10~12分钟)师:下面我们开一个成果展示会!
教师在巡视过程中应关注各组的研究情况,此时可选一些有代表性的小组上台展示研究成果,并对比从两个角度入手研究的结果。
教师可根据上课的实际情况对学生发现、得出的结论进行适当的点评或要求学生分析。这里除了研究定义域、值域、单调性、奇偶性外,再引导学生注意是否还有其它性质?
师:各组在研究过程中除了定义域、值域、单调性、奇偶性外是否还得到一些有价值
1yax与y()xa的图象关于y轴对称)的副产品呢?(如过定点(0,1),【学情预设】
①首先选一从解析式的角度研究的小组上台汇报;
②对于从图象的角度研究的,可先选没对底数进行分类的小组上台汇报;
③问其它小组有没不同的看法,上台补充,让学生对底数进行分类,引导学生思考哪个量决定着指数函数的单调性,以什么为分界,教师可以马上通过电脑操作看函数图象的变化。
【设计意图】
①函数的表示法有三种:列表法、图象法、解析法,通过这个活动,让学生知道研究一个具体的函数可以也应该从多个角度入手,从图象角度研究只是能直观的看出函数的一些性质,而具体的性质还是要通过对解析式的论证;特别是定义域、值域更是可以直接从解析式中得到的。
②让学生上台汇报研究成果,让学生有种成就感,同时还可训练其对数学问题的分析和表达能力,培养其数学素养;
③对指数函数的底数进行分类是本课的一个难点,让学生在讨论中自己解决分类问题使该难点的突破显得自然。
师:从图象入手我们很容易看出函数的单调性、奇偶性、以及过定点(0,1),但定义域、值域却不可确定;从解析式(结合列表)可以很容易得出函数的定义域、值域,但对底数的分类却很难想到。
xya教师通过几何画板中改变参数a的值,追踪的图象,在变化过程中,让全体学生进一步观察指数函数的变化规律。
师生共同总结指数函数的图象和性质,教师可以边总结边板书。
(三)巩固训练、提升总结(约8分钟)
1.例:已知指数函数的值。
解:因为f(x)的图象经过点(3,)所以f(3)
3a,解得a3 即f(x)ax(a0且a1)的图象经过点(3,),求f(0),f(1),f(3)于是 f(x)x3
13 所以f(0)1,f(1),f(3)1.【设计意图】通过本题加深学生对指数函数的理解。
师:根据本题,你能说出确定一个指数函数需要什么条件吗?
师:从方程思想来看,求指数函数就是确定底数,因此只要一个条件,即布列一个方程就可以了。
【设计意图】让学生明确底数是确定指数函数的要素,同时向学生渗透方程的思想。
1y3和y3 的大致图2.练习:⑴在同一平面直角坐标系中画出
xx象,并说出这两个函数的性质;
⑵求下列函数的定义域:
y2x21y2
1x
3.老师:通过本节课的学习,你对指数函数有什么认识?你有什么收获?
【学情预设】学生可能只是把指数函数的性质总结一下,教师要引导学生谈谈对函数研究的学习,即怎么研究一个函数。【设计意图】
①让学生再一次复习对函数的研究方法(可以从也应该从多个角度进行),让学生体会本课的研究方法,以便能将其迁移到其他函数的研究中去。
②总结本节课中所用到的数学思想方法。
③强调各种研究数学的方法之间有区别又有联系,相互作用,才能融会贯通。
4.作业:课本59页习题2.1A组第5题。
七、教学反思
1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”。
2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,本课使用几何画板可以动态地演示出指数函数的底数的动态过程,让学生直观观察底数对指数函数单调性的影响。
3.在教学过程中不断向学生渗透数学思想方法,让学生在活动中感受数学思想方法之美、体会数学思想方法之重要,部分学生还能自觉得运用这些数学思想方法去分析、思考问题。
第二篇:指数函数教学设计
指数函数教学设计
一.教材分析
(1)指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究
(2)本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质.难点是对底数 在 和
时,函数值变化情况的区分.(3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.二.学情分析:学生在学习了函数概念和函数性质基础上对函数有了初步认识,但我所教班时平行班,学生学习兴趣不浓,积极性高,针对这种情况,教学时要总层层设问降低难度,用几何画板直观演示提高学生学习积极性,时学生主动学习。
三.教学目标:
知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。
过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。
情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
四、教学重点、难点: 教学重点:指数函数的概念、图象和性质。指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。指数函数是学生完全陌生的一类函数, 对于这样的函数应怎样进行较为系统的理论研究是学生面临的难题。五.教学用具
投影仪
六.教学方法
启发讨论研究式
七.教学过程
(一)创设情景
问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 x次后,得到的细胞分裂的个数 y与 x之间,构成一个函数关系,能写出 x与 y之间的函数关系式吗?
学生回答: y与 x之间的关系式,可以表示为y=2x。
问题2: 一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%.求出这种物质的剩留量随时间(单位:年)变化的函数关系.设最初的质量为1,时间变量用x表示,剩留量用y表示。
学生回答: y与 x之间的关系式,可以表示为y=0.84x。
(二)导入新课
引导学生观察,两个函数中,底数是常数,指数是自变量。设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源于生产生活实际。函数y=2x、y=0.84x 分别以01的数为底,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。
(三)新课讲授 1.指数函数的定义
一般地,函数是R。
叫做指数函数,其中x是自变量,函数的定义域的含义:
”如果不这样规定会出现什么情况? 问题:指数函数定义中,为什么规定“设计意图:教师首先提出问题:为什么要规定底数大于0且不等于1呢?这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相启发,补充,活跃气氛,激发兴趣的目的。
对于底数的分类,可将问题分解为:
(1)若a<0会有什么问题?(如(2)若a=0会有什么问题?(对于,则在实数范围内相应的函数值不存在)都无意义)
(3)若 a=1又会怎么样?(1x无论x取何值,它总是1,对它没有研究的必要.)师:为了避免上述各种情况的发生,所以规定a>0且
.在这里要注意生生之间、师生之间的对话。
设计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义域是R;并为学习对数函数,认识指数与对数函数关系打基础。
教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样才行,然后把问题引向深入。
1:指出下列函数那些是指数函数:
2:若函数是指数函数,则a=------3:已知y=f(x)是指数函数,且f(2)=4,求函数y=f(x)的解析式。设计意图 :加深学生对指数函数定义和呈现形式的理解。2.指数函数的图像及性质
在同一平面直角坐标系内画出下列指数函数的图象
画函数图象的步骤:列表、描点、连线 思考如何列表取值? 教师与学生共同作出
图像。
设计意图:在理解指数函数定义的基础上掌握指数函数的图像与性质,是本节的重点。关键在于弄清底数a对于函数值变化的影响。对于
时函数值变化的不同情况,学生往往容易混淆,这是教学中的一个难点。为此,必须利用图像,数形结合。教师亲自板演,学生亲自在课前准备好的坐标系里画图,而不是采用几何画板直接得到图像,目的是使学生更加信服,加深印象,并为以后画图解题,采用数形结合思想方法打下基础。
利用几何画板演示函数特征。由特殊到一般,得出指数函数的图象,观察分析图像的共同的图象特征,进一步得出图象性质:
教师组织学生结合图像讨论指数函数的性质。
设计意图:这是本节课的重点和难点,要充分调动学生的积极性、主动性,发挥他们的潜能,尽量由学生自主得出性质,以便能够更深刻的记忆、更熟练的运用。
师生共同总结指数函数的性质,教师边总结边板书。
特别地,函数值的分布情况如下:
设计意图:再次强调指数函数的单调性与底数a的关系,并具体分析了函数值的分布情况,深刻理解指数函数值域情况。3.简单应用(板书)
1.利用指数函数单调性比大小.(板书)
一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题.首先我们来看下面的问题.例1.比较下列各组数的大小
(1)与;(2)与;
(3)与1.(板书)
首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同.再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想指数函数,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小.然后以第(1)题为例,给出解答过程.解: 在 上是增函数,且
<.(板书)
教师最后再强调过程必须写清三句话:
(1)构造函数并指明函数的单调区间及相应的单调性.(2)自变量的大小比较.(3)函数值的大小比较.后两个题的过程略.要求学生仿照第(1)题叙述过程.例2.比较下列各组数的大小
(1)与;(2)与
;
(3)与.(板书)
先让学生观察例2中各组数与例1中的区别,再思考解决的方法.引导学生发现对(1)来说 可以写成 ,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说
可以写成 ,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决.(教师可提示学生指数函数的函数值与1有关,可以用1来起桥梁作用)
最后由学生说出 >1, <1, >.解决后由教师小结比较大小的方法
(1)构造函数的方法: 数的特征是同底不同指(包括可转化为同底的)
(2)搭桥比较法: 用特殊的数1或0.4.巩固练习
练习:比较下列各组数的大小(板书)
(1)与(2)与;
(3)5.小结 与;
(4)与.解答过程略
1.指数函数的概念
2.指数函数的图象和性质
3.简单应用.板书设计
教学反思:由于大部分学生基础较差,理解能力,运算能力,思维能力等方面参差不齐,同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中我注意面向全体,发挥学生主动性,引导学生积极的观察问题,分析问题,指导学生积极思考,主动获取知识。为了调动学生学习的积极性,使学生变被动学习为主动学习,教学中我引导学生从实例出发引出指数函定义,在概念理解上,用步步设问,课堂讨论来加深理解。在指数函数的画法上,借助几何画板可动态演示出指数函数图象随底数变化而变化的动态过程,让学生直观的观察到底数对函数图象和单调性的影响。很好地突破难点和提高教学效率,从而增大了教学的容量和直观性,准确性。总之,本堂课充分体现了“教师为主导,学生为主体”的教学原则。
由于对学生能力认识不够,过分追求学生的参与活动,时间分配上不够合理,在研究图象和性质时老师说的较多,学生课堂练习时间不够,以后还应多学习,准备更充分。
点评:从身边实例出发,很自然引出课题,明确本节教学目标,在讲解概念时,层层设问,降低难度,深化概念,在研究图象和性质时,让学生充分参与,调动学习积极性,同时使用几何画板辅助教学,提高课题教学的直观性和课题效率,突出重点,降低难点。教学活动中,充分调动学生,引导学生积极参与,认真思考,踊跃发言,课堂气氛融洽活跃,充分体现了以学生为主体的教学理念。教师教态自然,语言准确流利,思路清晰,板书工整,有扎实的教学基本功和教学理念。
点评人:
刘梅
葫芦岛市实验高中数学组教研组长
第三篇:指数函数及其性质教学设计[推荐]
指数函数及其性质教学设计
一、教学目标:
知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。
过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。
情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
二、教学重点、难点:
教学重点:指数函数的概念、图象和性质。
指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一。作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础;同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。
教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。
指数函数是学生完全陌生的一类函数, 对于这样的函数应怎样进行较为系统的理论研究是学生面临的难题。
三、教学过程:
(一)创设情景 折纸实验
学生准备一张纸依次对折,问折叠30次后纸的厚度?
y与 x之间的关系式,可以表示为y=2x。
截棍实验
一米长棍子依次截取一半,截33次后的长度? y与 x之间的关系式,可以表示为y()x。
(二)导入新课
引导学生观察,两个函数中,底数是常数,指数是自变量。设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源于生产生活实际。函数y=2x、y()x 分别以01的数为底,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。
(三)新课讲授 1.指数函数的定义 一般地,函数函数的定义域是R。
叫做指数函数,其中x是自变量,1212的含义:设计意图:为按
两种情况得出指数函数性质作铺垫。若学生回答不合适,引导学生用区间表示:(0,1)∪(1,+∞)问题:指数函数定义中,为什么规定“定会出现什么情况?
教师首先提出问题:为什么要规定底数大于0且不等于1呢?这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相启发,补充,活跃气氛,激发兴趣的目的。对于底数的分类,可将问题分解为:
”如果不这样规(1)若a<0会有什么问题?(如的函数值不存在)
(2)若a=0会有什么问题?(对于,则在实数范围内相应
,都无意义)
(3)若 a=1又会怎么样?(1x无论x取何值,它总是1,对它没有研究的必要.)
师:为了避免上述各种情况的发生,所以规定a>0且 在这里要注意生生之间、师生之间的对话。
设计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义域是R;并为学习对数函数,认识指数与对数函数关系打基础。教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样才行,然后把问题引向深入。
.1:指出下列函数那些是指数函数:
设计意图 :加深学生对指数函数定义和呈现形式的理解。2.指数函数的图像及性质
在同一平面直角坐标系内画出下列指数函数的图象
画函数图象的步骤:列表、描点、连线 思考如何列表取值? 教师与学生共同作出
图像。
设计意图:在理解指数函数定义的基础上掌握指数函数的图像与性质,是本节的重点。关键在于弄清底数a对于函数值变化的影响。对于时函数值变化的不同情况,学生往往容易混淆,这是教学中的一个难点。为此,必须利用图像,数形结合。教师亲自板演,学生亲自在课前准备好的坐标系里画图,而不是采用几何画板直接得到图像,目的是使学生更加信服,加深印象,并为以后画图解题,采用数形结合思想方法打下基础。
利用几何画板演示函数析图像的共同特征。由特殊到一般,得出指数函数进一步得出图象性质: 的图象,观察分的图象特征,教师组织学生结合图像讨论指数函数的性质。
设计意图:这是本节课的重点和难点,要充分调动学生的积极性、主动性,发挥他们的潜能,尽量由学生自主得出性质,以便能够更深刻的记忆、更熟练的运用。
师生共同总结指数函数的性质,教师边总结边板书。
特别地,函数值的分布情况如下:
设计意图:再次强调指数函数的单调性与底数a的关系,并具体分析了函数值的分布情况,深刻理解指数函数值域情况。
(四)课堂小结
通过本节课的学习,你学到了哪些知识? 你又掌握了哪些数学思想方法?
设计意图:让学生在小结中明确本节课的学习内容,强化本节课的学习重点,并为后续学习指数函数性质应用打下基础。
(六)布置作业
1、练习册55页1、2题 思考题
2、A先生从今天开始每天给你10万元,而你承担如下任务:第一天给A先生1元,第二天给A先生2元,第三天给A先生4元,第四天给A先生8元,依次下去,„,A先生要和你签定15天的合同,你同意吗?又A先生要和你签定30天的合同,你能签这个合同吗?
第四篇:《指数函数及其性质》教学设计
《指数函数及其性质》教学设计
尚义县第一中学 乔珺
一、指数函数及其性质教学设计说明
新课标指出: 学生是教学的主体,教师的教应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础对教学设计加以说明。数学本质:
探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图象突破,体会数形结合的思想。通过分类讨论,通过研究两个具体的指数函数引导学生通过观察图象发现指数函数的图象规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。引导学生探究出指数函数的一般性质,从而对指数函数进行较为系统的研究。
二、教材的地位和作用:
本节课是全日制普通高中标准实验教课书《数学必修1》第二章2.1.2节的内容,研究指数函数的定义,图像及性质。是在学生已经较系统地学习了函数的概念,将指数扩充到实数范围之后学习的一个重要的基本初等函数。它既是对函数的概念进一步深化,又是今后学习对数函数与幂函数 的基础。因此,在教材中占有极其重要的地位,起着承上启下的作用。此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。
三、教学目标分析:
根据本节课的内容特点以及学生对抽象的指数函数及其图象缺乏感性认识的实际情况,确定在理解指数函数定义的基础上掌握指数函数的图象和由图象得出的性质为本节教学重点。本节课的难点是指数函数图像和性质的发现过程。为此,特制定以下的教学目标: 1)知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用、能根据单调性解决基本的比较大小的问题.2)能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论思想,增强学生识图用图的能力。3)情感目标(可持续性目标): 通过学习,使学生学会认识事物的特殊性与一般性之间的关系,用联系的观点看问题。体会研究函数由特殊到一般再到特殊的研究学习过程;体验研究函数的一般思维方法。引导学生发现数学中的对称美、简洁美。善于探索的思维品质。
教学问题诊断分析: 学生知识储备:
通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构。
学情分析:
由于我所教学生数学的理解能力、运算能力、思维能力等方面有一部分是较好的,但整体是水平参差不齐。高一这个年龄段的学生思维活跃,求知欲强,能够勇于表现自我,展现自我,愿意合作交流。但在思维习惯上与方法上还有待教师引导。可能存在的问题与策略: 问题1.学生能够从具体的问题中抽象出数学的模型但对于指数函数的定义中底数的取值范围和指数函数形式的判断有困难。教学策略:
类比着二次函数,对于底数的范围的取值,引导学生回顾指数幂中当指数为全体实数时,底数怎样取值才能一直有意义,以问题的形式引发学生思考底数能否取负数、正数、0、1?从而得到底数的范围。
学生对: 1)y=-3x
2)y=31/x
3)y=31+x 4)y=(-3)x 5)y=3-x=(1/3)x
几种形式的函数的判断,加强对指数函数形解析式的理解和辨别:
问题2.学生初中阶段就接触过函数,但对于学生而言,指数函数是完全陌生的函数。学生列表时,数值的选取上可能会少取或是数值的选取不能照顾到全体实数,画图时,又容易受以前学过的函数图像的影响,把指数函数的图像画成已经学过的图像的形象。
教学策略:在列表格时自变量的取值以及如何画出指数函数的图像的问题上,采用启发式教学法,类比学过的函数图形的画法,引导学生画图,画完图后,又利用实物投影仪展示一位同学的图像,由全班同学进行提出意见纠错来补充画图的不足。
另外为了让学生增强识图、用图的能力可以让学生根据观察到的指数函数的图像,来画出底数不同取值范围内的的草图,以便于探究性质。问题3.
函数定义给出后,底数a如何分类讨论的情况学生难以做到,如果处理不好,这对于指数函数质探究时的分类讨论有很重要的意义。
教学策略:在定义中对于底数的取值范围的讨论后,得出了底数a>0且a≠1。此时,在数轴上把a的范围表示出来,这样学生很容易从数轴上的区间图看出底数分为两类情况进行讨论。这样为指数函数质探究时的分类讨论埋下了伏笔。问题4 .
通过两个具体的特殊的指数函数图像,来探究得出指数函数的性质。如何使学生能经历从特殊到一般的过程,这种由特殊到一般再到特殊的思想的领会,如何完成?
教学策略:教师利用几何画板分别画出了底数大于1的和底数在0到1之间的若干个不同的指数函数的图像,展现不同的底数的变化时图像的不同情况,从而让学生经历由特殊到一般的过程。问题5.
指数函数是学生在学习了函数基本概念和性质以后接触到得第一个具体函数,学生可能找不到研究问题的方法和方向.教学策略:在这部分的安排上,我更注意学生思维习惯的养成,即应从哪些方面,哪些角度去探索一个具体函数。问题6.学生得到的性质特点可能是杂乱的,如何梳理突出主要的性质?
教学策略:在学生识图、用图、合作探究的过程后,利用两个表格的填写,让学生感受由图象特征来得到函数的性质的过程。表格主要呈现五个方面的性质与特点。
五、教法分析:
为充分贯彻新课程理念,使教学过程真正成为学生学习过程,让学生体验数学发现和创造的历程,本节课拟采用直观教学法、启发发现法、课堂讨论法等教学方法。以多媒体演示为载体,启发学生观察思考,分析讨论为主,教师适当引导点拨,以动手操作、合作交流,自主探究的方式来让学生始终处在教学活动的中心。
六、预期效果分析:
1、教学环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动手操作,动眼观察,动脑思考,亲身经历了知识的生成和发展过程,使学生对知识的理解逐步深入。
2、简单实例的引入,顺利完成了知识的迁移,从得出指数函数的模型,符合学生认知规律的最近发展区。
3、而作业中完成指数函数性质的探究报告,弥补课堂时间有限探究和展示的局限性,带领学生进入对指数函数更进一步的思考和研究之中,从而达到知识在课堂以外的延伸。
4、在整个教学过程中,由于学生是自觉主动地发现结果,对所学知识应该能够较快接受。因此,我认为可以达到预定的教学目标。
第五篇:指数函数及其性质教学设计解读
《 2.1.2 指数函数及其性质(2 》 教学设计 【学习目标】 1.知识与技能
①.熟练掌握指数函数概念、图象、性质。②.掌握指数函数的性质及应用。
③.理解指数函数的简单应用模型 , 认识数学与现实生活及其他学科的联系。2.情感、态度、价值观
①让学生了解数学来自生活,数学又服务于生活的哲理.②培养学生观察问题,分析问题的能力.③体会具体到一般数学讨论方式及数形结合的思想;3.过程与方法
让学生通过观察函数图象,进而研究指数型函数的性质 , 主要通过小组讨论、小 组展示、及时评价完成整个导学过程
【学习重点】
熟练掌握指数函数的的概念,图象和性质及指数型增长模型.【学习难点】
用数形结合的方法从具体到一般地探索、指数型函数的图象,性质。【导学过程】
教学内容 师生互动 设计意图 互 查
每组两名同学互查识记 内容
教师提问记忆方法,学 生回答,其他同学可以 相互借鉴。
复习指 数 函 数 的图象及性质, 为 本 节 课 中 的 内 容 储 备 知 识 基础。展 系吗?→请用一句话概括 下 图 是 指 数 函 数 2x y =, 3x
y =, 0.3x y =, 0.5x y =的图象,请指出它们各 自对应的图象.教师随时点评,引导, 欣赏,鼓励.每组选派一名代表课堂 上展示交流成果,组内 同学补充。其他同学可
让 学 生 从 图 象 直 观 的 理 解 指 数函数, 从变化 中 找 到 不 变 的 规律, 提高学生 的 总 结 归 纳 能 示 交 流
结论: 针对展示交流成果提出 问题, 进一步加深理解.力 教学内容 师生互动 设计意图
展 示 交 流 探究二:指数形式的函数定义域、值域:
求下列函数的定义域、值域:(121 x y =+,(2y =,(3 1 4 2x y-=.首先提问给出的三个函 数是否是指数函数,加 深学生对指数函数概念 的理解。
学生小组讨论,交流。每组选派一名代表课堂 上展示交流成果,组内
同学补充。其他同学可 针对展示交流成果提出 问题, 进一步加深理解.所 给 函 数 虽 然 不是指数函数, 但 是 由 指 数 函 数 得 到 的 复 合 函数, 其性质与 指 数 函 数 密 切 相关, 通过训练 能 够 培 养 学 生 的 创 造 性 思 维 能力。
能 力 提 升 探 究 探究三:如何应用函数模型解决问题?→强 调数学应用思想
我国人口问题非常突出, 在耕地面积只占世 界 7%的国土上,却养育着 22%的世界人口。因此,中国的人口问题是公认的社会问题。1999年底中国人口已达到 13亿,年增长率 约为 1%。为了有效地控制人口过快增长, 实行计划生育成为我国一项基本国策。(Ⅰ 按照上述材料中的 1%的增长率,从 2000年初起, x 年后我国的人口 y 将达到多 少?(Ⅱ 从 2000年起 20年后到 2020年初我 国的人口将达到多少?(精确到亿 小结:类似上面此题,设原值为 N ,平
均增长率为 P ,则对于经过时间 x 后总量(1 ,(1 x x x y N p y N p y ka K R =+=+=∈ 像 等形如
=kax ,(a >0且 a ≠ 1,k ≠ 0的函数是一种 指数型函数.老师引导,鼓励学生上 台板演可以暴露学生存 在的问题,老师及时予 以纠正,并呈现学生的 思维过程
指 数 型 函 数 模 型 是 一 种 生 活, 生产中常见 的 非 常 重 要 的 函数模型, 通过 学习能 够 提 高 学 生 的 数 学 应 用思想 课 堂 检 测
1、函
数(f x =的 定 义 域 是。
2、当 x ∈[-2,0]时,函数 1 32 x y + =-的 值域是。
3、若函数 1
(3 x y m =+的图象不经过第一 象限,则 m 的取值范围是。
4、一片树林中现有木材 30000m 3,如果每 年增长 10%,经过 x 年树林中有木材 y m 3,(1写出 x , y 间的函数关系式;(2经过 2年,树林中木材有多少? 学生独立完成
通 过 课 堂 小 测快速反馈, 既 可 以 把 学 生 取 得 的 进 步 变 成 有形的事实, 使 之受到鼓励, 乐 于 接 受 下 一 个 任务, 又可以及 时 发 现 学 生 存 在的问题, 及时 矫 正 乃 至 调 节 教学的进度, 从 而 有 效 地 提 高 课 堂 教 学 的 效 率。
课 堂 小 结 1.知识内容 2.方法思想 师生共同完成
让 学 生 明 白 本 节 课 的 重 难 点 在哪, 同时使学 生 回 顾 本 节 课 的题型, 总结方 法思想, 提高自 学能力。
课 堂 评 价 表扬:优秀小组:;优秀 个人:。存在的问题:。
课 后 作 业
1、函数(1 x y a a =>的图象是(2、函数 y=|2x-2|的图象是(帮 助 学 生 巩 固 所学知识、反馈 课堂教学效果, 使 下 一 节 课 的 教学有的放矢, 将课堂延伸, 使 学 生 将 课 堂 所 学 内 容 再 认 识 和升华, 同时培 养 学 生 的 探 究 意识.3
3、已知函数 []9232, 1,2x x y x =-⋅+∈, 求这个函数的值域。
4、已知函数 21(21 x x f x-=+(1求 f(x的定义域和值域;(2判断函数 f(x的奇偶性;(3证明 f(x在(-∞, +∞ 上是增函数。
课 堂 反 思