个人论文:指数函数教学设计改进案例2012

时间:2019-05-12 17:20:05下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《个人论文:指数函数教学设计改进案例2012》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《个人论文:指数函数教学设计改进案例2012》。

第一篇:个人论文:指数函数教学设计改进案例2012

指数函数教学设计改进案例 金昌市职业技术学校 秦红

摘要:在深入学习领会新课程理念的基础上,本文通过三个教学案例论述了在进行指数函数教学设计时,如何改进新课引入、多媒体使用和指数函数性质发现过程以及相应的教学效果。

关键词:指数函数;教学设计;教学案例;多媒体;有效教学

指数函数是中职数学的重点内容之一,从教学要求看,一是理解指数函数的定义;二是掌握指数函数的图像与性质。下面是我在教学中对指数函数教学设计的三处改进。

案例一:新课引入的改进

(一)原始设计

1.复习旧知:

②函数y=x的定义域是

2.引入新课:师问:函数y=x与函数y=a从形式上看有什么不同?生答:从形式上看,前者指数是自变量,后者底数是自变量。(引入课题)

(二)改进设计

1.创设情境:有人说,将一张白纸对折50次以后,其厚度超过地球到月球的距离,你认为可能吗?设白纸每张厚度为0.01mm,已知地球到月球的距离约为380000千米。

对折的层数y与对折次数x的函数关系式是什么?

学生思考片刻,教师提示:从形式上,有什么特点?并用红粉笔标出指数x。

生答:指数x是自变量,底数是大于0且不等于1的常数。(引入课题)

(三)教学反思

凯洛夫的“五环节”教学理论:“复习旧课-导入新课-讲授新课-巩固-作业” 目前还深深地影响着我们的教学。但如果总是这样一成不变,就显得呆板与程式化。我们现在上课总喜欢说:“今天我们学习......”。教师不说,学生不问,教师怎么讲,学生就怎么学。我们知道,数学来源于生活,又应用于实践。在原始设计中,先复习与新授知识相关的内容,然后再从实际引入新课,与教材编排相一致,这样就数学讲数学,显得枯燥无味,很难调动学生的学习兴趣。为此,从学生感兴趣的一个生活实例出发,引起学生注意与争议,教师再创设实际问题情境,就激发了学生的学习兴趣,牢牢地吸引了学生的注意力,增强了学生的求知欲望,强化了学生内在的学习需求,巧妙地导入了新课。

案例二:多媒体使用的改进

(一)原始设计

1.电脑作图:教师用多媒体演示y=2x、y=()x的作图过程。

2.观察猜想:教师引导学生观察y=2x、y=()x的图像,猜想y=3x的图像形状。

3.电脑验证:教师用几何画板做出y=3x的图像,验证猜想。

4.归纳猜想:由特殊到一般,给出指数函数的图像分为01两类,并用多媒体演示它们的图像特征和性质。

(二)改进设计

1.学生作图:在教师的指导下学生分组后用几何画板作y=2x、y=()x的图像。然后,让学生在电脑上作y=3x,y=5x y=10x,y=0.2x,y=0.7x等函数的图像,并对图像形状的变化加以观察与讨论。

2.猜想形状:让学生猜想函数y=8x,y=0.3x的图像形状,师生讨论,并列出有关观察结论。

3.分组探究1:一般地指数函数的图像大致有几类(几种走势)?

4.分组探究2:分别满足什么条件的指数函数图像大致是图

1、图2?

5.电脑验证:用几何画板作y=ax(a>0且a≠1)图像,任意改变a的值,展示底变化对图像的影响。

(三)教学反思

原始设计,多媒体演示放在猜想之后,仅仅起了一个验证的作用,体现不了计算机辅助教学的目的,有点画蛇添足,成了一种花架子。

改进之后,按照“动手操作-创设情境-观察猜想-验证证明”的思路设计,首先电脑作图,为学生观察、交流创设情境;然后,引导学生深入细致地观察图像,学生在相互争论、研讨的过程中进行民主交流,倾听他人意见,分享研究成果,猜想出图像分两种情形;最后,再用多媒体验证猜想。这样设计符合学生的认知规律和思维习惯,激发了学生的求知欲,增强了学习的自信心,张扬了学生的个性,顺利地解决了这一教学难点。

我们在使用计算机辅助教学时,千万不要忘记“辅助”二字,辅助在不用多媒体教学时的难点处,辅助在点子上,而不能为了用多媒体而用多媒体。

案例三:指数函数的性质发现过程的改进

(一)原始设计

1.师生作图:教师作y=2x的图像,以作示范。然后学生模仿作y=()x的图像,以巩固作图方法。

2.电脑演示:教师用多媒体演示y=2x、y=()x的作图过程。

3.观察特征:教师引导学生观察上述两个图像的特征,并推广到一般情形。

4.归纳性质:根据图像特征,写出它们的性质。

(二)改进设计

在前面学生分组用多媒体做出y=2x,y=()x,y=3x,y=5x,y=10x,y=0.2x,y=0.7x等函数图像的基础上,教师引导学生观察、讨论、归纳得出性质。

1.自主观察:对一般的指数函数,图像有哪些特征?

2.分组讨论:学生分组讨论后,展示讨论的结果。除得到图像的一般特征,更值得一提的是,有的学生还说出了函数y=2x与y=()x的图像关于y轴对称等特征。

3.归纳性质:根据图像特征,写出它们的性质。

4.作示意图:根据指数函数的性质,教师让学生作出y=8x,y=0.6x等函数图像的示意图。

师:观察与猜想是一种感性认识,并不表示结论一定正确,还需要进行理性证明......(三)教学反思

新课程标准指出:要改变课程实施过于强调接受学习、死记硬背、机械训练的现象,倡导主动学习、乐于探究,勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析解决问题的能力及交流合作的能力。因此,教师要把学习过程中的发现、探究、研究等认知活动突显出来,使学习过程更多地成为学生发现问题、研究问题及解决问题的过程。

上述两种设计都注重让学生从事有意义的数学活动,都涉及了学生的探索活动和经常使用的研究方法,如从特殊到一般,再由一般到特殊,类比、联想、猜想等。

原始设计在实际教学中,活动缺乏内在联系,加上教师的束缚,活动单一,学生得出图像分两类显得较为生硬,接着研究的一般情形又似乎来得“突然”,从特例到一般情形并未起到搭桥引渡的作用,形成了一个认知难点。这样的设计没有真正发挥学生的主体作用,实际上还是教师主导着课堂,牵着学生走,还是在教知识、教教材,是一种主导性教学模式。

改进后,改变了教学方法,教师放弃了全程主导,把学习的主动权交给了学生,由他们自己去观察、去发现,在学生交流、研讨、互动的过程中,学生观察深入,思维活跃,富有创造性。教师则以学生伙伴的角色参与学生的认知学习,在与学生的互动交流中指导学生,并积极地关注、倾听学生的交流。这样设计符合学生的认知规律和思维习惯,为学生营造了安全的心理环境,学生非常顺利地学习了指数函数的性质,而且学生觉得这些思想方法是非常自然的,可以学到手且以后能用得上,为今后的学习作了必要的铺垫,这是一种典型的指导性教学模式。

学生是学习的主人,自主学习是他们的天然权利,任何硬性灌输和强制训练都是侵犯学生学习主权的行为。

参考文献:

[1]罗文杰.指数函数的教学设计[J].广东教育,2007,(7):205-207.[2]高文.现代教学的模式化研究[M].济南:山东教育出版社,2003.[3]张丽珍.浅析优化课堂教学的若干措施[J].中学数学研究,2001,(8).

第二篇:指数函数教学设计的三个改进案例

指数函数教学设计的三个改进案例(1)摘要:在深入学习领会新课程理念的基础上,本文通过三个教学案例论述了在进行指数函数教学设计时,如何改进新课引入、多媒体使用和指数函数性质发现过程以及相应的教学效果。

关键词:指数函数;教学设计;教学案例;多媒体;有效教学

指数函数是高中数学的重点内容之一,从教学要求看,一是理解指数函数的定义;二是掌握指数函数的图像与性质。下面是笔者在公开教学中对指数函数教学设计的三处改进。

案例一:新课引入的改进

原始设计

1.复习旧知:

②函数y=x的定义域是

2.引入新课:师问:函数y=与函数y=x,从形式上看有什么不同?生答:从形式上看,前者指数是自变量,后者底数是自变量。

改进设计

1.创设情境:有人说,将一张白纸对折50次以后,其厚度超过地球到月球的距离,你认为可能吗?设白纸每张厚度为,已知地球到月球的距离约为380000千米。

对折的层数y与对折次数x的函数关系式是什么?设纸的原面积为1,对折后纸的面积z与对折次数x又有什么关系?x)

2.提出问题:师问:能发现y=2x,z=x的共同点吗?

学生思考片刻,教师提示:从形式上,有什么共同点?并用红粉笔标出指数x。

生答:指数x是自变量,底数是大于0且不等于1的常数。

教学反思

凯洛夫的“五环节”教学理论:“复习旧课—导入新课—讲授新课—巩固—作业” 目前还深深地影响着我们的教学。但如果总是这样一成不变,就显得呆板与程式化。我们现在上课总喜欢说:“今天我们学习……”。教师不说,学生不问,教师怎么讲,学生就怎么学。我们知道,数学来源于生活,又应用于实践。在原始设计中,先复习与新授知识相关的内容,然后再从实际引入新课,与教材编排相一致,这样就数学讲数学,显得枯燥无味,很难调动学生的学习兴趣。为此,从学生感兴趣的一个生活实例出发,引起学生注意与争议,教师再创设实际问题情境,就激发了学生的学习兴趣,牢牢地吸引了学生的注意力,增强了学生的求知欲望,强化了学生内在的学习需求,巧妙地导入了新课。

案例二:多媒体使用的改进

原始设计

1.电脑作图:教师用多媒体演示y=2x、y=x的作图过程。

2.观察猜想:教师引导学生观察y=2x、y=x的图像,猜想y=3x的图像形状。

3.电脑验证:教师用几何画板做出y=3x的图像,验证猜想。

4.归纳猜想:由特殊到一般,给出指数函数的图像分为01两类,并用多媒体演示它们的图像特征和性质。

改进设计

1.学生作图:在教师的指导下学生分组后用几何画板作y=2x、y=x的图像。然后,让学生在电脑上作y=3x,y=5x y=10x,y=,y=等函数的图像,并对图像形状的变化加以观察与讨论。

2.猜想形状:让学生猜想函数y=8x,y=的图像形状,师生讨论,并列出有关观察结论。

3.分组探究1:一般地指数函数的图像大致有几类?

4.分组探究2:分别满足什么条件的指数函数图像大致是图

1、图2?

5.电脑验证:用几何画板作y=ax图像,任意改变a的值,展示底变化对图像的影响。

教学反思

原始设计,多媒体演示放在猜想之后,仅仅起了一个验证的作用,体现不了计算机辅助教学的目的,有点画蛇添足,成了一种花架子。

改进之后,按照“动手操作—创设情境—观察猜想—验证证明”的思路设计,首先电脑作图,为学生观察、交流创设情境;然后,引导学生深入细致地观察图像,学生在相互争论、研讨的过程中进行民主交流,倾听他人意见,分享研究成果,猜想出图像分两种情形;最后,再用多媒体验证猜想。这样设计符合学生的认知规律和思维习惯,激发了学生的求知欲,增强了学习的自信心,张扬了学生的个性,顺利地解决了这一教学难点。

我们在使用计算机辅助教学时,千万不要忘记“辅助”二字,辅助在不用多媒体教学时的难点处,辅助在点子上,而不能为了用多媒体而用多媒体。

(作者:未知本文来源于爬虫自动抓取,如有侵犯权益请联系service@立即删除)

第三篇:指数函数教学设计的三个改进案例

指数函数是高中数学的重点内容之一,从教学要求看,一是理解指数函数的定义;二是掌握指数函数的图像与性质。下面是笔者在公开教学中对指数函数教学设计的三处改进。

案例一:新课引入的改进

(一)原始设计

1.复习旧知:

②函数y=x的定义域是

2.引入新课:师问:函数y=()与函数y=x,从形式上看有什么不同?生答:从形式上看,前者指数是自变量,后者底数是自变量。(引入课题)

(二)改进设计

1.创设情境:有人说,将一张白纸对折50次以后,其厚度超过地球到月球的距离,你认为可能吗?设白纸每张厚度为0.01mm,已知地球到月球的距离约为380000千米。

对折的层数y与对折次数x的函数关系式是什么?设纸的原面积为1,对折后纸的面积z与对折次数x又有什么关系?(y=2x,z=()x)

2.提出问题:师问:能发现y=2x,z=()x的共同点吗?

学生思考片刻,教师提示:从形式上,有什么共同点?并用红粉笔标出指数x。

生答:指数x是自变量,底数是大于0且不等于1的常数。(引入课题)

(三)教学反思

凯洛夫的“五环节”教学理论:“复习旧课—导入新课—讲授新课—巩固—作业” 目前还深深地影响着我们的教学。但如果总是这样一成不变,就显得呆板与程式化。我们现在上课总喜欢说:“今天我们学习……”。教师不说,学生不问,教师怎么讲,学生就怎么学。我们知道,数学来源于生活,又应用于实践。在原始设计中,先复习与新授知识相关的内容,然后再从实际引入新课,与教材编排相一致,这样就数学讲数学,显得枯燥无味,很难调动学生的学习兴趣。为此,从学生感兴趣的一个生活实例出发,引起学生注意与争议,教师再创设实际问题情境,就激发了学生的学习兴趣,牢牢地吸引了学生的注意力,增强了学生的求知欲望,强化了学生内在的学习需求,巧妙地导入了新课。

案例二:多媒体使用的改进

(一)原始设计

1.电脑作图:教师用多媒体演示y=2x、y=()x的作图过程。

2.观察猜想:教师引导学生观察y=2x、y=()x的图像,猜想y=3x的图像形状。

3.电脑验证:教师用几何画板做出y=3x的图像,验证猜想。

4.归纳猜想:由特殊到一般,给出指数函数的图像分为01两类,并用多媒体演示它们的图像特征和性质。

(二)改进设计

1.学生作图:在教师的指导下学生分组后用几何画板作y=2x、y=()x的图像。然后,让学生在电脑上作y=3x,y=5x y=10x,y=0.2x,y=0.7x等函数的图像,并对图像形状的变化加以观察与讨论。

2.猜想形状:让学生猜想函数y=8x,y=0.3x的图像形状,师生讨论,并列出有关观察结论。

3.分组探究1:一般地指数函数的图像大致有几类(几种走势)?

4.分组探究2:分别满足什么条件的指数函数图像大致是图

1、图2?

5.电脑验证:用几何画板作y=ax(a>0且a≠1)图像,任意改变a的值,展示底变化对图像的影响。

(三)教学反思

原始设计,多媒体演示放在猜想之后,仅仅起了一个验证的作用,体现不了计算机辅助教学的目的,有点画蛇添足,成了一种花架子。

改进之后,按照“动手操作—创设情境—观察猜想—验证证明”的思路设计,首先电脑作图,为学生观察、交流创设情境;然后,引导学生深入细致地观察图像,学生在相互争论、研讨的过程中进行民主交流,倾听他人意见,分享研究成果,猜想出图像分两种情形;最后,再用多媒体验证猜想。这样设计符合学生的认知规律和思维习惯,激发了学生的求知欲,增强了学习的自信心,张扬了学生的个性,顺利地解决了这一教学难点。

我们在使用计算机辅助教学时,千万不要忘记“辅助”二字,辅助在不用多媒体教学时的难点处,辅助在点子上,而不能为了用多媒体而用多媒体。

第四篇:指数函数教学设计范文

指数函数的图象及其性质

一、教学内容分析

本节课是 《普通高中课程标准实验教科书·数学(1)》(人教A版)第二章第一节第二课(2.1.2)《指数函数及其性质》。根据我所任教的学生的实际情况,我将《指数函数及其性质》划分为两节课(探究图象及其性质,指数函数及其性质的应用),这是第一节课“探究图象及其性质”。指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。

二、学生学习况情分析

指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,是学生对函数概念及性质的第一次应用。教材在之前的学习中给出了两个实际例子(GDP的增长问题和炭14的衰减问题),已经让学生感受到指数函数的实际背景,但这两个例子背景对于学生来说有些陌生。本节课先设计一个看似简单的问题,通过超出想象的结果来激发学生学习新知的兴趣和欲望。

三、设计思想

1.函数及其图象在高中数学中占有很重要的位置。如何突破这个即重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。本节课,力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种的研究方法,以便能将其迁移到其他函数的研究中去。

2.结合参加我校组织的两个课题《对话——反思——选择》和《新课程实施中同伴合作和师生互动研究》的研究,在本课的教学中我努力实践以下两点:

⑴.在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式。

⑵.在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。

通过课堂教学活动向学生渗透数学思想方法。

四、教学目标

根据任教班级学生的实际情况,本节课我确定的教学目标是:理解指数函数的概念,能画出具体指数函数的图象;在理解指数函数概念、性质的基础上,能应用所学知识解决简单的数学问题;在教学过程中通过类比,回顾归纳从图象和解析式这两种不同角度研究函数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。

五、教学重点与难点

教学重点:指数函数的概念、图象和性质。

教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。

六、教学过程:

(一)创设情景、提出问题(约3分钟)师:如果让1号同学准备2粒米,2号同学准备4粒米,3号同学准备6粒米,4号同学准备8粒米,5号同学准备10粒米,„„按这样的规律,51号同学该准备多少米?

学生回答后教师公布事先估算的数据:51号同学该准备102粒米,大约5克重。师:如果改成让1号同学准备2粒米,2号同学准备4粒米,3号同学准备8粒米,4号同学准备16粒米,5号同学准备32粒米,„„按这样的规律,51号同学该准备多少米?

【学情预设】学生可能说很多或能算出具体数目

师:大家能否估计一下,51号同学该准备的米有多重?

教师公布事先估算的数据:51号同学所需准备的大米约重1.2亿吨。

师:1.2亿吨是一个什么概念?根据2007年9月13日美国农业部发布的最新数据显示,2007~2008我国大米产量预计为1.27亿吨。这就是说51号同学所需准备的大米相当于2007~2008我国全年的大米产量!【设计意图】用一个看似简单的实例,为引出指数函数的概念做准备;同时通过与一次函数的对比让学生感受指数函数的爆炸增长,激发学生学习新知的兴趣和欲望。

在以上两个问题中,每位同学所需准备的米粒数用y表示,每位同学的座号数用

x表示,y与x之间的关系分别是什么?

学生很容易得出y2x(xN*)和y2x(xN*)

【学情预设】学生可能会漏掉x的取值范围,教师要引导学生思考具体问题中x的范围。

(二)师生互动、探究新知

1.指数函数的定义

老师:其实,在本章开头的问题2中,也有一个与y2类似的关系x*y1.073(xN,x20)式

x⑴让学生思考讨论以下问题(问题逐个给出):(约3分钟)

x*x*y2(xN)y1.073(xN,x20)这两个解析式有什么共同特征?

①和②它们能否构成函数?

③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字?

【设计意图】 引导学生从具体问题、实际问题中抽象出数学模型。学生对比已经学过一次函数、反比例函数、二次函数,发现xy2,xy073.1是一个新的函数模型,再让学生给这个新的函数命名,由此激发学生的学习兴趣。

引导学生观察,两个函数中,底数是常数,指数是自变量。

老师:如果可以用字母a代替其中的底数,那么上述两式就可以表示成xay的形式。自变量在指数位置,所以我们把它称作指数函数。

⑵让学生讨论并给出指数函数的定义。(约6分钟)

对于底数的分类,可将问题分解为:

a2,x2则在实数范围内相应的函数值不存 ①若a0会有什么问题?(如

1在)

②若a0 会有什么问题?(对于x0,a都无意义)

③若a1又会怎么样?(1无论x取何值,它总是1,对它没有研究的必要.)

老师:为了避免上述各种情况的发生,所以规定a0且a1。在这里要注意生生之间、师生之间的对话。

xx【学情预设】

①若学生从教科书中已经看到指数函数的定义,教师可以问,为什么要求a0且a1。a1为什么不行?

xya②若学生只给出,教师可以引导学生通过类比一次函数ykxb(k0)、反比例函数

yk(k0)2yaxbxc(a0)中x,二次函数的限制条件,思

考指数函数中底数的限制条件。【设计意图 】

①对指数函数中底数限制条件的讨论可以引导学生研究一个函数应注意它的实际意义和研究价值;

②讨论出10aa,且,也为下面研究性质时对底数的分类做准备。

接下来教师可以问学生是否明确了指数函数的定义,能否写出一两个指数函数?教师也在黑板上写出一些解析式让学生判断,如y23x,y32x,y2x。

【学情预设】学生可能只是关注指数是否是变量,而不考虑其它的。【设计意图 】加深学生对指数函数定义和呈现形式的理解。

2.指数函数性质

⑴提出两个问题(约3分钟)

①目前研究函数一般可以包括哪些方面;

【设计意图】让学生在研究指数函数时有明确的目标:函数三个要素(对应法则、定义域、值域、)和函数的基本性质(单调性、奇偶性)。

②研究函数(比如今天的指数函数)可以怎么研究?用什么方法、从什么角度研究?

可以从图象和解析式这两个不同的角度进行研究;可以从具体的函数入手(即底数取一些数值);当然也可以用列表法研究函数,只是今天我们所学的函数用列表法不易得出此函数的性质,可见具体问题要选择适当的方法来研究才能事半功倍!还可以借助一些数学思想方法来思考。

【设计意图】

①让学生知道图象法不是研究函数的唯一方法,由此引导学生可以从图象和解析式(包括列表)不同的角度对函数进行研究;

②对学生进行数学思想方法(从一般到特殊再到一般、数形结合、分类讨论)的有机渗透。

⑵分组活动,合作学习(约8分钟)

老师:好,下面我们就从图象和解析式这两个不同的角度对指数函数进行研究。

①让学生分为两大组,一组从解析式的角度入手(不画图)研究指数函数,一组借助电脑通过几何画板的操作从图象的角度入手研究指数函数;

②每一大组再分为若干合作小组(建议4人一小组);

③每组都将研究所得到的结论或成果写出来以便交流。

【学情预设】考虑到各组的水平可能有所不同,教师应巡视,对个别组可做适当的指导。

【设计意图】通过自主探索、合作学习不仅让学生充当学习的主人更可加深对所得到结论的理解。

⑶交流、总结(约10~12分钟)师:下面我们开一个成果展示会!

教师在巡视过程中应关注各组的研究情况,此时可选一些有代表性的小组上台展示研究成果,并对比从两个角度入手研究的结果。

教师可根据上课的实际情况对学生发现、得出的结论进行适当的点评或要求学生分析。这里除了研究定义域、值域、单调性、奇偶性外,再引导学生注意是否还有其它性质?

师:各组在研究过程中除了定义域、值域、单调性、奇偶性外是否还得到一些有价值

1yax与y()xa的图象关于y轴对称)的副产品呢?(如过定点(0,1),【学情预设】

①首先选一从解析式的角度研究的小组上台汇报;

②对于从图象的角度研究的,可先选没对底数进行分类的小组上台汇报;

③问其它小组有没不同的看法,上台补充,让学生对底数进行分类,引导学生思考哪个量决定着指数函数的单调性,以什么为分界,教师可以马上通过电脑操作看函数图象的变化。

【设计意图】

①函数的表示法有三种:列表法、图象法、解析法,通过这个活动,让学生知道研究一个具体的函数可以也应该从多个角度入手,从图象角度研究只是能直观的看出函数的一些性质,而具体的性质还是要通过对解析式的论证;特别是定义域、值域更是可以直接从解析式中得到的。

②让学生上台汇报研究成果,让学生有种成就感,同时还可训练其对数学问题的分析和表达能力,培养其数学素养;

③对指数函数的底数进行分类是本课的一个难点,让学生在讨论中自己解决分类问题使该难点的突破显得自然。

师:从图象入手我们很容易看出函数的单调性、奇偶性、以及过定点(0,1),但定义域、值域却不可确定;从解析式(结合列表)可以很容易得出函数的定义域、值域,但对底数的分类却很难想到。

xya教师通过几何画板中改变参数a的值,追踪的图象,在变化过程中,让全体学生进一步观察指数函数的变化规律。

师生共同总结指数函数的图象和性质,教师可以边总结边板书。

(三)巩固训练、提升总结(约8分钟)

1.例:已知指数函数的值。

解:因为f(x)的图象经过点(3,)所以f(3)

3a,解得a3 即f(x)ax(a0且a1)的图象经过点(3,),求f(0),f(1),f(3)于是 f(x)x3

13 所以f(0)1,f(1),f(3)1.【设计意图】通过本题加深学生对指数函数的理解。

师:根据本题,你能说出确定一个指数函数需要什么条件吗?

师:从方程思想来看,求指数函数就是确定底数,因此只要一个条件,即布列一个方程就可以了。

【设计意图】让学生明确底数是确定指数函数的要素,同时向学生渗透方程的思想。

1y3和y3 的大致图2.练习:⑴在同一平面直角坐标系中画出

xx象,并说出这两个函数的性质;

⑵求下列函数的定义域: 

y2x21y2 

1x

3.老师:通过本节课的学习,你对指数函数有什么认识?你有什么收获?

【学情预设】学生可能只是把指数函数的性质总结一下,教师要引导学生谈谈对函数研究的学习,即怎么研究一个函数。【设计意图】

①让学生再一次复习对函数的研究方法(可以从也应该从多个角度进行),让学生体会本课的研究方法,以便能将其迁移到其他函数的研究中去。

②总结本节课中所用到的数学思想方法。

③强调各种研究数学的方法之间有区别又有联系,相互作用,才能融会贯通。

4.作业:课本59页习题2.1A组第5题。

七、教学反思

1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”。

2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,本课使用几何画板可以动态地演示出指数函数的底数的动态过程,让学生直观观察底数对指数函数单调性的影响。

3.在教学过程中不断向学生渗透数学思想方法,让学生在活动中感受数学思想方法之美、体会数学思想方法之重要,部分学生还能自觉得运用这些数学思想方法去分析、思考问题。

第五篇:教学设计改进案例

教学设计改进案例

《长方体》

改进后的教学设计:(一)教学目标:

1在自主探究中掌握长方体、正方体的特征,认识它们的联系。

2通过开放型的问题励学生解决问题策略的多样化,发展学生的空间观念和思维能力。

3在观察、操作、讨论、交流的小组式学习过程中激发学生的学习兴趣,培养合作意识和主动探求知识的能力。(二)学情分析:

对于五年级学生来说,长方体和正方体是最基本的立体图形,它是在学生初步识别长方体、正方体,掌握长方形、正方形特征的基础上展开教学的,为学生今后进一步学习长方体和正方体的表面积、体积,以用其他立体图形作准备,使学生由认识二维空间发展到认识三维空间是学生发展空间观念的一次飞跃。(三)教学过程: 1创设情境,激发兴趣

第一环节,课始课件演示:长方形、正方形、三角形„„组成的图形。然后教师请学生找出我们学过的图形长方形、正方形。

第二环节,教师通过教材P13配套示范图片,找出长方体和正方体,同时,让学生把自己带来的物体进行分类。教师利用电脑抽象出长方体和正方体,引导学生初步比较长方体、正方体与长方形、正方形的异同。顺势提示课题。

在新课导入时,通过课件活泼的画面,美妙的音乐,激发学习兴趣,学生既回顾了旧知,又唤起了学生参与探究的欲望。2组织探究,掌握新知(1)初步感知面、棱、顶点

这一环节,通过学生使用长方体,正方体模型,引导学生看一看、摸一摸、说一说等,同时结合电脑的演示初步感知、体验长方体、正方体面、棱、顶点的概念。

这一环节加强了数学与生活的练习,充分利用了教学模型,引导学生多种感官参加活动,在操作中发现,建立了面、棱、顶点的概念。(2)探究长方体的特征

第一环节:动手操作,直观感知。

教师要求学生以4人一小组为单位,动手动脑探究长方体的特征,同时出示温情问题导向:1长方体有几个面?每个面的大小、形状一样吗?2长方体有几条棱?每条棱的长短一样吗?3长方体有几个顶点?每个顶点有几条棱相交?4老师希望你能用实践作说明以上问题。

第二环节:小组交流,达成共识 学生在动手中,初步感知长方体后,组织学生小组讨论,再请组长汇报。

一、二环节利用学生的心理特点,让学生进行形式多样的自主探究。学生在活动中感知长方体;在学生相互争论、相互补充、相互启发中建立长方体清晰的表象,同时教师的温情提示,也体现实现的人文关怀。第三环节:电脑演示、验证认识

当学生通过小组讨论,能用自己的语言归纳出长方体特征后,教师利用电脑演示:一个长方体匀速转动,清晰、有序地显示长方体六个面,接着排开、分 解;十二条棱也分组排开;八个顶点也进行闪烁;验证了学生的认识:长方体有六个面,每个面都是长方形(有时有的两个面也是正方形)。

通过电脑演示验证学生的认识,促使学生形成新的知识结构,也突出了教学难点。

(3)探究正方体的特征

第一环节:电脑演示,学生观察:正方体有什么特征? 第二环节:师生归纳。

这部分采用直接演示,学生观察特征,让学生在看一看、说一说的活动中,归纳、表述长方体的特征。培养学生自学能力及初步逻辑思维能力。(4)联系本质,引导辨析

第一环节:让学生分别找出生活中的长方体和正方体。

第二环节:出示一些立体图形,请学生用学过的知道说明哪些立体图形是长方体、正方体?(先小组合作学习,在请小组组长汇报合作学习结果。)

这一开放性问题的提出,引发了学生思考。学生在思考过程中,必须对长方体和正方体的有关知识进行搜索、归纳、整理,让学生在比较中进一步认识长方体和正方体,掌握学习方法,发展学生思维能力。

第三环节:总结长方体特征。3实践运用,巩固新知

同学们已经认识了长方体的特征,那么咱们来说一说,在生活中,你还见过那些物体的形状是长方体或正方体?

把学生学到的的本节课知识和日常生活联系起来。使同学们认识到生活中处处有数学。在此基础上,小组同学拿出长方体的正方体的实物模型,互相交流,巩固本节课的内容。4梳理知识,反思总结

教师要求学生以小组为单位,设计一张学习报告,(设计有困难的学生可以参与教师的表格)整理今天的学习内容,同时合理评价同学、自己在学习中表现和收获,并提出不同见解和值得探究的问题。

反思总结由“关注结果”走向“关注发展”,“凸现”了过程性、激励性。梳理知识时不仅设计学习报告,总结自己的学习,还开展教师评价、学生互评、自评相结合的师生双向参与、交流互动新评价方法。同时也提倡反思问题和有价值的学习内容。

下载个人论文:指数函数教学设计改进案例2012word格式文档
下载个人论文:指数函数教学设计改进案例2012.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    指数函数教学设计(全文5篇)

    指数函数教学设计 一.教材分析 指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念......

    指数函数及其性质教学设计[推荐]

    指数函数及其性质教学设计 一、教学目标: 知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。 过程与方法:通过观察图象,分析、归纳、总结、......

    《指数函数及其性质》教学设计

    《指数函数及其性质》教学设计 尚义县第一中学 乔珺 一、指数函数及其性质教学设计说明 新课标指出: 学生是教学的主体,教师的教应本着从学生的认知规律出发,以学生活动为主线......

    教学设计改进案例(全文5篇)

    “情境——探究”教学—《财产留给谁》教学设计改进案例作业 学员培训帐号:xy5542863 学员姓名:陈晓华 所在学校名称:浙江省东阳市横店一中 培训所在班级名称: 东阳社会思品班......

    指数函数及其性质教学设计解读

    《 2.1.2 指数函数及其性质(2 》 教学设计 【学习目标】 1.知识与技能 ① . 熟练掌握指数函数概念、图象、性质。 ② . 掌握指数函数的性质及应用。 ③ . 理解指数函数的简......

    指数函数及其性质复习教学设计

    指数函数及其性质复习教学设计 上塘中学 胡冬雪教学目标: 1. 进一步深刻理解指数函数的定义、图像和性质 2. 能灵活运用指数函数的图像和性质解决一些问题 3. 体会研究一般函......

    指数函数教学设计打印完

    指数函数教学设计 甘南县第二中学 商洪喜 指数函数教学设计 甘南县第二中学商洪喜 教学目标: 理解指数函数的概念。 会用描点法画出指数函数的图像。并根据图像,探索并了解指......

    2.1 指数函数 教学设计 教案

    教学准备 1. 教学目标 1.知识与技能: (1)理解分数指数幂和根式的概念; (2)掌握分数指数幂和根式之间的互化; (3)掌握分数指数幂的运算性质; (4)培养学生观察分析、抽象等的能力. 2.过程......