第一篇:北师大版八年级下册数学第二章 《不等式的基本性质》教学设计
八年级数学下册《2.2 不等式的基本性质》教案
教学目标:
(1)知识与技能目标:
①掌握不等式的基本性质。
②经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。(2)过程与方法目标:
①能说出一个不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯。
②进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。
(3)情感与态度目标:
①尊重学生的个体差异,关注学生的学习情感和自信心的建立。②关注学生对问题的实质性认识与理解。
教学重难点:不等式的基本性质2和不等式的基本性质3 教学过程:
本节课设计了五个教学环节:第一环节:情景引入;第二环节:活动探究,验证明确结论;第三环节:例题讲解及运用巩固;第四环节:课堂小结;第五环节:布置作业。第一环节:情景引入 如果a=b,那么(1)acbc;(2)acbc;
归纳出等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式。
(3)aca(4)bc;cb.c
归纳出等式基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式。
第二环节:探究新知
1、对于4<6,那么(1)42(3)4062;(2)4260;(4)4062;60.对比“等式基本性质1”,你有什么想法?
不等式的基本性质1与等式的基本性质1类似,你能总结出不等式的基本性质1吗?
不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变;
用字母表示:如果a>b,那么a+c>b+c,a-c>b-c
如果a
2、对于4<6,那么
(1)42(3)404(2)62;24(4)60;06;2 6.0
对比“等式基本性质2”,你有什么想法?
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;
用字母表示:如果a>b,并且c>0那么ac>bc,ac>b÷c
如果a0那么ac 3、对于4<6,那么 (1)4(2)1(3)4()24(2)6(2);216().2 6;2 对比“等式基本性质2”,你有什么想法? 不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。 用字母表示:如果a>b,并且c<0那么ac 如果abc,ac>b÷c 思考:不等式的两边能不能同时乘以0,为什么? 不等式的其它性质: 对称性:如果a>b,那么bb,b>c,那么a>c 如果ab>0,那么a,b同号;如果ab<0,那么a,b异号 如果a-b>0,那么a>b,反之若a>b,则a-b>0 如果a-b<0,那么a 例 1、将下列不等式化成“xa”或“xa”的形式: (1)x5(2)2x3 巩固练习 1、将下列不等式化成“xa”或“xa”的形式: (1)x1 2(2)x1 5(3)x3 262、已知xy,下列不等式一定成立吗? (1)x6y6 (2)3x3y (3)2x2y (4)2x12y1 例 2、同桌的甲、乙两名同学,争论着一个问题: 甲同学说:“5a>4a。”乙同学说:“这不可能。”请你评说一下两名同学的观点究竟哪个正确?为什么?举例说明。 3、比较下列各式的大小: (1)a与a2;(2)2与2a;(3)a与2a.第四环节:课堂小结 学生自己总结今天这节课有什么收获,思考后对全班说出,与全班同学讨论交流。 第五环节:布置作业习题2.2 2.2《不等式的性质》说课稿 一、教材分析 1、教材所处的地位和作用: 不等式基本性质是八年级下册第二章第二节内容。不等式是现实世界中不等关系的一种数学表示形式,它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。本节课是建立在学生已认识了不等关系基础上来学习的,也是为进一步学习解不等式及应用不等关系解决实际问题的重要依据,因此本节课内容在不等关系这一章占有重要位置。本节课的教学指导思想是从学生实际认知水平及知识结构出发,让学生自主获取知识。 二、教学目标(1)知识与技能 1、经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。 2、掌握不等式的基本性质,并能初步运用不等式的基本性质把比较简单的不等式转化为“x>a”或“x<a”的形式。(2)过程与方法: 1.经历探索不等式基本性质的过程,体验数学学习探究的方法 2.通过观察、类比、猜想、验证、归纳总结等数学学习活动过程,发展合理的推理和初步论证能力(3)情感态度与价值观: 1.学生在探索过程中感受成功、建立自信,增进学习数学的兴趣。 2.体验在研究过程中创造的快乐,并学会与人交流合作养成良好的人格品质 3、重点、难点及关键 重点:不等式基本性质的探索及应用 难点:不等式的基本性质三的探索及其应用 三、教法学情分析: 1、学生在学习一元一次方程、二元一次方程组和一次函数的基础上,积累了一定的经验,本节课主要采用类比等式的方法进行不等式的探究教学,这样不仅有利于学生掌握不等式的基本性质,而且可以使学生体会知识之间的内在联系,整体上把握知识,发展学生的辩证思维。 2、始终坚持学生为主体,教师为主导的教学方法,通过教师的启发,设问,引导学生自主探索、合作交流,师生充分互动,这样才 能将学生推到学习的前沿,才能充分发挥学生的学习主体性和主观能动性。 3、在探索不等式的性质时为了避免简单的“模型化”,主要采用引导学生观察、类比、猜想、验证、总结概括的方法,发展学生分析问题和解决问题及初步论证问题的能力,关注学生知识的形成和学习能力的提高。 学法指导 1、观察猜想 2、类比验证 3、探究合作 4、抽象概括 5、总结归纳 6、数学表示 四、说教学过程 最后我来具体谈谈这一堂课的教学过程: (一)、回顾交流,指导观察 教师提问:同学们还记得等式的性质吗?学生举手回答,交流联想。投影显示:等式的性质 设计意图:通过回顾等式的性质,类比等式的性质,为探索不等式的性质做好铺垫,并且从学生已有的数学经验出发,建立新旧知识之间的联系,培养学生梳理知识体系的习惯。 (二)、知识探究 1、用“﹥”或“﹤”填空,并总结其中的规律: (1)5>3, 5+2 3+2 , 5-2 3-2; (2)–1<3 ,-1+2 3+2 ,-1-3 3-3;学生活动:探究规律,交流讨论,解答上述问题,结果:(1)>、>(2)<、< 根据发现的规律填空: 当不等式两边加或减去同一个数(正数或负数)时,不等号的方向 师生共识:总结出不等式的性质: 不等式的性质1 不等式的两边加(或减)同一个数(或式子),不等号的方向不变.字母表示为: 如果a>b,那么a±c > b±c 设计意图:通过一组精心设计的填空题,让学生观察有限个不等式的变化,发现并归纳不等式的性质1,进一步培养学生得抽象概括能力及合情推理能力。让学生用语言概括出结论,培养学生的数学语言表达能力及抽象概括能力。 2、继续探究,接着又出示(3)、(4)题: (3)6>2, 6×5 2×5 , 6×(-5)2×(-5);(4)-2<3,(-2)×6 3×6 ,(-2)×(-6)3×(-6)(方法同上)又得到: 当不等式的两边同乘以一个正数时,不等号的方向不变; 当不等式的两边同乘以一个负数时,不等号的方向改变。 (1)3a 3b;(2)a-8 b-8(3)-2a-2b(4)2a-5 2b-5(5)-3.5a+1-3.5b+1 设计意图:由浅入深的练习,进一步帮助学生理解不等式的性质,为下面利用不等式性质解不等式作准备。(五)、例题讲解及运用巩固(多媒体展示)例题:将下列不等式化成x>a或x<a的形式(1)x-5>-1(2)-2x>3 类比等式基本性质的应用,师生共同板演完成(注意有意强化在(2)题的结果中不等号的方向为什么会改变?) 2、尝试练习一(学生板演)(要求同例题)(1)x-1>2(2)-x<3 (3)x≤3 3、巩固练习二(要求同例题)小组内交流并订正 (1)x+3<-1 (2)3x>27(3)-6x > 5(4)5x<4x-6(通过练习,进一步巩固性质,突出重点)通过(3)(4)的求解过程,类似于解方程两边都除以未知数的系数(未知数系数化为1),解不等式时要注意未知数系数的正负,以决定是否改变不等号的方向。设计意图:让学生经历运用知识解决问题的过程,给学生获得成功体验的空间,激发学生得积极性,建立学好数学的自信心。 4、抢答提升,强化性质 已知x>y,下列不等式一定成立吗? 78- 辽宁省辽阳九中八年级数学下册《1.2 不等式的基本性质》教案 北 师大版 一、学生知识状况分析 本章是在学生学习了一元一次方程、二元一次方程组和一次函数的基础上,开始研究简单的不等关系。通过前面的学习,学生已初步体会到生活中量与量之间的关系是众多而且复杂的,但面对大量的同类量,最容易使人想到的就是它们有大小之分。学习时可以类比七年级上册学习的等式的基本性质。 二、教学任务分析 不等式是现实世界中不等关系的一种数学表示形式,它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同,掌握不等式的基本性质。本节课教学目标: (1)知识与技能目标: ①掌握不等式的基本性质。 ②经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。 (2)过程与方法目标: ①能说出一个不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯。 ②进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。(3)情感与态度目标: ①尊重学生的个体差异,关注学生的学习情感和自信心的建立。②关注学生对问题的实质性认识与理解。 三、教学过程分析 本节课设计了五个教学环节:第一环节:情景引入,提出问题;第二环节:活动探究,验证明确结论;第三环节:例题讲解及运用巩固;第四环节:课堂小结;第五环节:布置作 用心 爱心 专心 业。 第二环节:活动探究,验证明确结论 活动内容: 参照教材与多媒体课件提出问题:(1)还记得等式的基本性质吗? a(2)等式的基本性质1用字母可以表示为:等式的基本性质1是什么?先猜一猜。 b,acbc,那么不(3)如果在不等式的两边都加上或都减去同一个整式,结果会怎样?请举几例试一试,并与同伴交流。 (4)不等式的基本性质与等式的基本性质类似,对于等式的基本性质2,用字母可以表示为:ab,acbc,acbc,其中c0。对应的大家能不能归纳出不等式的基本性质2是什么呢? (5)例如:如果比高度的两个人不是同时增加或减少相同的高度,而是成倍的增加(或缩小)自身的高度,结果又会怎样? (6)例如:商场A种服装的标价高于B种服装的标价,如果都打八折出售,那么还是A种服装价格高。通过这些例子,你发现了什么?能得到一个什么类似的结论? (7)如果乘以(或除以)同一个负数呢? (8)通过实际的计算、观察、与同伴交流,得出什么类似的结论? 用心 爱心 专心 活动目的:通过等式的基本性质对比不等式的基本性质,由数学情境转化成数学问题,由特殊的数值到字母代表数,从中归纳出一般性结论。进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。 活动实际效果:以问题串的形式引导学生一步步从对比中自己先猜想不等式的基本性质、再通过具体数值验算性质、最后自己总结归纳出性质并能用字母表示出来。因此在整个教学教程中,学生均处于主导地位,教师只是从旁引。这时,学生对于由自己推导出性质定理感到非常兴奋。 第三环节:例题讲解及运用巩固 活动内容: 1、在上一节课中,我们猜想,无论绳长l取何值,圆的面积总大于正方形l2l2的面积,即。你相信这个结论吗?你能利用不等式的基本性质解释这一结论吗? 4162、将下列不等式化成“xa”或“xa”的形式:(1)x51(2)2x3 3、将下列不等式化成“xa”或“xa”的形式:(1)x12(2)x51(3)x3 624、已知xy,下列不等式一定成立吗? (1)x6y6(2)3x3y(3)2x2y(4)2x12y1 活动目的:在讲解例题的过程中要求学生说出每一步变形的依据,加强学生对不等式的基本性质的理解。随堂练习学生独立完成,师生共同讲解,能说出一个不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯,并通过这种方式达到熟练掌握不等式的基本性质的目的。 活动实际效果:学生在讲解例题与练习的过程中,思维非常活跃,都非常踊跃的举手要求上黑板示范,并且每一步变形的依据都能够集体回答或个别举手回答正确,黑板上的演示过程也十分规范,达到预期教学目的。 第四环节:课堂小结 活动内容:学生自己总结今天这节课有什么收获,思考后对全班说出,与全班同学讨论 用心 爱心 专心 交流。 活动目的:学生说出自己的收获与感想与全班交流,若有任何疑问可以当堂提出供大家讨论。教师要学会倾听并鼓励学生的回答,关注学生对问题的实质性认识与理解,尊重学生的个体差异,关注学生的学习情感和自信心的建立。 活动实际效果:学生自我总结本节课所学到的知识和重点注意的问题,畅所欲言自己的切身感受与实际收获,除了今天所学新的内容之外,还复习巩固了等式的基本性质,体会新旧知识的联系与区别。 第五环节:布置作业 习题1.2 四、教学反思 对于不等式的基本性质的引入,生活中不相等的量有很多,具体教学时可以根据实际情况列举不同的例子。 本节课是以比高矮这个贴近生活的例子引入,充分的调动学生积极性。教学中问题串的设置均与等式的基本性质相联系,引导学生一步步从类比中自己先猜想不等式基本性质的雏形、再通过具体数值验算性质、最后自己总结归纳完善性质定理并能用字母表示出来。在接下来的讲解例题与练习的过程中,全班同学思维活跃,踊跃的举手要求上黑板示范,并且每一步变形的依据都能够集体回答或个别举手回答正确,黑板上的演示过程也十分规范。 在整个教学教程中,学生均处于主导地位,教师只是从旁引,学生对于由自己推导出性质定理感到非常兴奋。 再教设计:在探索及运用不等式的基本性质时,应该让学生多举一些生活中的不等关系,更加容易加深学生的理解。 用心 爱心 专心 4 不等式的基本性质 一、教学任务分析 不等式是现实世界中不等关系的一种数学表示形式,它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同,掌握不等式的基本性质。 本节课教学目标: (1)知识与技能目标: ①经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。 ②掌握不等式的基本性质,并能初步运用不等式的基本性质将比较简单的不等式转化为“x>a”或“x<a”的形式。 (2)过程与方法目标: ①能说出不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯。 ②通过研究等式的基本性质过程类比研究不等式的基本性质过程,体会类比的数学方法。 ③进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。 (3)情感与态度目标: ①通过学生自我探索,发现不等式的基本性质,提高学生学习数学的兴趣和学好数学的自信心。 ②尊重学生的个体差异,关注学生对问题的实质性认识与理解。 二、教学过程分析 本节课设计了五个教学环节:第一环节:情景引入,提出问题;第二环节:活动探究,验证明确结论;第三环节:例题讲解及运用巩固;第四环节:课堂小结;第五环节:布置作业。 第一环节:情景引入,提出问题 活动内容:利用班上同学站在不同的位置上比高矮。请最高的同学和最矮的同学“同时站在地面上”,“矮的同学站在桌子上”,“高的同学站到楼下一楼”三种不同的情况下比较高矮。问题1:怎样比才公平? 活动目的:让学生体会当两位同学同时增高相同的高度或同时减少相同的高度时,比较才是公平的,高的同学仍然高,矮的同学仍然矮,这是不可能改变的事实。 活动实际效果:学生对能自己参与的活动很感兴趣,体会到不相等的两个量的比较要在“公平”的情况下进行,即要加同时加,要减同时减。 第二环节:活动探究,验证明确结论 活动内容: 参照教材与多媒体课件提出问题: (1) 还记得等式的基本性质吗?请用字母表示它。不等式有类似的性质吗?先猜一猜。 (2) 用等号或不等号完成下面的填空。 如果2 3;那么 × × 5; × ×; × (-1) × (- 1); × (- 5) × (- 5); × (-) × (-).(3) 验证你的结论,用字母表示你所发现的结论。 (4) 与同伴交流你的结论,并展示。 生1:等式的基本性质1用字母可以表示为:,类似地得到,如果在不等式的两边都加上或都减去同一个整式,结果不等号方向不变。 字母表示为:∵a>b,∴a±c>b±c;或∵a>b,∴a±c<b±c。 生2:对于等式的基本性质2,用字母可以表示为:,其中。经过前面的探索,可类似地得到: 如果不等式两边同时乘以(或除以)同一个正数,不等号方向不变;如果不等式两边同时乘以(或除以)同一个负数,不等号的方向要发生改变。字母表示如下: 活动目的:通过等式的基本性质对比不等式的基本性质,由特殊的数值到字母代表数,从中归纳出一般性结论。进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。 活动实际效果:以问题的形式引导学生从对比中自己先猜想不等式的基本性质、再通过具体数值验算性质、最后自己总结归纳出性质并能用字母表示出来。因此在整个教学教程中,学生均处于主导地位,教师只是从旁引。这时,学生对于由自己推导出性质应该感到非常兴奋。 第三环节:例题讲解及运用巩固 活动内容: 1、在上一节课中,我们猜想,无论绳长取何值,圆的面积总大于正方形的面积,即。你相信这个结论吗?你能利用不等式的基本性质解释这一结论吗? 2、将下列不等式化成“”或“”的形式: (1) (2) 练习设计: 1、将下列不等式化成“”或“”的形式: (1) (2) (3) 2、已知,下列不等式一定成立吗? (1) (2) (3) (4) 3、小明做这样一题:已知2x>3x,求x的范围。结果小明两边同时除以x,得到2>3。你知道他错在哪? 活动目的:在讲解例题的过程中要求学生说出每一步变形的依据,加强学生对不等式的基本性质的理解。随堂练习学生独立完成,师生共同讲解,能说出一个不等式为什么可以从一种形式变形为另一种形式,养成步步有据、准确表达的良好学习习惯,并通过这种方式达到熟练掌握不等式的基本性质的目的。 活动实际效果:学生在讲解例题与练习的过程中,思维非常活跃,都非常踊跃的举手要求上黑板示范,并且每一步变形的依据都能够集体回答或个别举手回答正确,黑板上的演示过程也十分规范,达到预期教学目的。 第四环节:课堂小结 活动内容:学生自己总结今天这节课有什么收获,思考后对全班说出,与全班同学讨论交流。 活动目的:学生说出自己的收获与感想与全班交流,若有任何疑问可以当堂提出供大家讨论。教师要学会倾听并鼓励学生的回答,关注学生对问题的实质性认识与理解,尊重学生的个体差异,关注学生的学习情感和自信心的建立。 活动实际效果:学生自我总结本节课所学到的知识和重点注意的问题,畅所欲言自己的切身感受与实际收获,除了今天所学新的内容之外,还复习巩固了等式的基本性质,体会新旧知识的联系与区别。 第五环节:布置作业 三、教学反思 本节课通过复习等式的基本性质,类比得出不等式的基本性质。教学中问题的设置通过与等式的基本性质相对比,引导学生自己先猜想不等式基本性质、再通过具体数值验算性质、最后自己总结归纳完善性质定理并能用字母表示出来。在接下来的讲解例题与练习的过程中,每一步变形的依据都能够集体回答或个别举手回答正确,黑板上的演示过程也十分规范。 在整个教学过程中,学生始终处于主导地位,不等式的基本性质主要由学生自己推导得出。 《不等式的基本性质》教学设计 主备人:黄小妹 辅备人:张泽云 李星华 刘军 李波 教学目标: 知识目标 : 掌握不等式的三个基本性质并且能正确应用; 能力目标: 经历探索不等式基本性质的过程,体会不等式与等式的异同点,发展学生分析问题、解决问题的能力; 情感目标 : 开展研究性学习,使学生初步体会学习不等式基本性质的价值。 教学重点:理解不等式的三个基本性质。 教学难点:对不等式的基本性质3的重点认识。教法学法: “类比—交流—总结”教学过程: (一)知识链接 我们在学习一元一次方程先讨论等式的性质,等式的这些性质适用于不等式吗?不等式有哪些性质呢?(类比思想方法)进而引出本节课的内容——不等式的基本性质。 (二)自主学习 合作探究 1.展示一组题目,让学生先填空,观察以上四个式子,学生以小组的形式合作交流、共同探讨,最后填写规律的发现。 思考:用“﹥”或“﹤”填空,并总结其中的规律:(1)5>3,5+2___3+2 ,5-2___3-2; (2)-1<3,-1+2___3+2 ,-1-3___3-3;根据发现的规律填空:当不等式两边加或减同一个数(正数或负数)时,不等号的方向______.(3)6>2, 6×5____2×5 , 6×(-5)____2×(-5);(4)–2<3,(-2)×6___3×6 ,(-2)×(-6)___3×(-6) 当不等式两边乘同一个正数时,不等号的方向_____而乘同一个负数时,不等号的方向_____;2.归纳总结 得出结论 向学生展示一个天平的图片,让学生通过观察比较,归纳总结,并用式子表示出来,体会不等式性质的探究过程培养学生的发散思维及创新能力,两个思考问题: 1、比较上面的性质2与性质3,看看它们有什么区别? 2.比较等式的性质和不等式的性质,看看它们有什么异同? 我的创设意图是:采用类比的学习方法,让学生在问题中加深对新知识的理解,以及对旧知识的回顾。 3.分组练习巩固新知 题组1:(1)如果x-5>4,那么两边都 可得到x>9(2)如果在-7<8的两边都加上9可得到(3)如果在5>-2的两边都加上a+2可得到(4)如果在-3>-4的两边都乘以7可得到(5)如果在8>0的两边都乘以8可得到 (6)如果在x∕7>2 + x ∕ 2的两边都乘以14可得到 题组2: (1)如果在不等式8>0的两边都乘以―8可得到(2)如果-3x>9,那么两边都除以―3可得到(3)设m>n,用“>”或“<”填空: m-5 n-5(根据不等式的性质)-6m -6n(根据不等式的性质) 题组3: 1.设a>b,用“<”“>”填空并回答是根据不等式的哪一条基本性质(.1)a3;(2)a÷3____b÷3(3)0.1a____0.1b; (4)-4a____-4b(5)2a+3____2b+3;(6)(m2+1)a____(m2+1)b(m为常数)2.已知a<0,用“<”“>”填空: (1)a+2 ____2;(2)a-1 _____-1;(3)3a______0; (4)- ______0; (5)a2_____0; (6)a3______0;(7)a-1_____0;(8)|a|______0. (三)展示成果 因为数学本身的学科特点,多做练习是很有必要的。学生练习后展示交流让学生重新回顾新知,并在此基础上掌握不等式的三条性质。因为性质3是学生最容易出错的地方,练习时突破教学难点。 (四)巩固拓展 1.拓展提高 判断正误: (1)如果a>b,那么ac>bc.(2)如果a>b,那么ac2>bc2.(3)如果ac2>bc2,那么a>b.(4)因为3>2,所以3a>2a 2.以下不等式中,不等号用对了么?(1)3-a<6-a (2)3a<6a (五)本课小结 作业布置 我会跟学生共同回顾、总结、矫正及提高。帮助学生形成本节课的知识网络,特别要总结强调性质3符号问题。这也是学生最易出错的地方,因而是本节课的难点所在。第二篇:北师大版八年级数学下册《不等式的基本性质》说课稿
第三篇:八年级数学下册《1.2 不等式的基本性质》教案 北师大版
第四篇:北师版八年级下册数学 第2章 「教学设计」不等式的基本性质
第五篇:不等式的基本性质教学设计