第一篇:求平均数应用题教学设计及意图
“求平均数应用题”教学设计及意图
教学目标:
一、使学生理解“平均”、“平均数”的意义,学会分析、解答求平均数的应用题。
二、渗透“移多补少”、“对应”、“估算”等数学思想方法,并能运用数学思想方法去解决实际问题,增强数学的应用意识。
三、萌发学生的辩证思维,学会全面地思考问题,正确处理一般与特殊的关系,提高学生解决问题的能力。教学过程:
一、主动构建“平均数”的概念。
1.师:把12本练习本平均分给3人,每人得几本?
2.师:现在把这些练习本分给甲、乙、丙三人(师分给甲3本、乙4本、丙5本),他们得到的本数平均吗?你能使三人得到的本数平均吗?(学生操作:①从丙的本数中取出1本补给甲;②从乙、丙的本数中分别取出1本和2本,再将取出的总本数平均分给甲、乙、丙;③把三人的本数合并后重新进行三等分。)师:上面的方法中,哪种最简单?你能很快使三人的本数平均吗?(揭示:移多补少。)
3.师:你认为“平均”是什么意思?(生:一样多,相等……)到底什么叫“平均”?请看——(屏幕显示:“把几个大小不等的数量,在总量不变的条件下,移多补少,使各个数量相等,叫做平均。”让学生默读。)
4.显示:
师:①这三组棋子数平均吗?②要使三组棋子数平均,老师这样做可以吗?(移去部分棋子,使余下的每组都是2颗。)为什么?(突出概念中的关键词句:在总量不变的条件下。)③谁能使三组棋子数平均?(让学生操作演示。)④(指着棋子图)经过移多补少,现在三组棋子数平均了,每组都是4颗。这“4”就是“4、2、6”的平均数。想一想:什么叫平均数?(不要求回答。)
5.思考:
(1)14,10;(师:这两个数的平均数是多少?)
(2)19,__;(师:两个数的平均数是20,其中第一个数是19,问第二个数是几。让学生从平均数概念出发进行思考;①由于第一个数比平均数20少1,所以第二个数应比平均数20多1,是21;②由于两个数的平均数是20,则两个数的和是40,用40减去第一个数19,得第二个数。)
(3)9,10,11;(师:怎样能很快知道它们的平均数?)
(4)66,74,100。(师:用移多补少的方法能很快知道这三个数的平均数吗?有没有办法来算出它们的平均数呢?让学生尝试、相互交流并展示思考过程。板书:(66+74+100)÷3=240÷3=80。)
【意图:学会求平均数的应用题,首先要建立平均数的概念。为了让学生能主动地构建概念,遵循学生概念形成的心理过程,从原有知识出发,让学生对实例用多种方法进行操作实践,获得对“平均”的感性认识,同时为用多种方法求出平均数提供原型;再学习“平均”的概念,通过正、反例使学生加深对“平均”的理解。在此基础上,结合具体例子引出“平均数”的概念,并强调是这几个数的平均数,在运用中具体、清晰、牢固地建立平均数的概念。特别地,设计第(2)题,让学生从平均数的概念出发作推理,既利于概念的内化,又能激发学生兴趣,培养思维的灵活性。而第(4)题的情境创设,使学生求知心理产生不平衡:用移多补少很难知道它们的平均数,有没有其它的方法能算出它们的平均数呢?求知的欲望被激发,而经过思考发现“总数量÷总份数=平均数”这一求平均数的一般方法,为学习应用题作了准备。】
二、学习“求平均数应用题”。
师:在实际生活中经常遇到求平均数的问题(板书课题)。
1.出示:学校组织男、女两队参加头脑奥林匹克比赛,成绩如下:
男队
女队
问:哪个队的成绩好?
(1)师:①谁的得分最高?②哪个队的总分高?③哪个队的成绩好?(学生普遍认为男队的成绩好,理由是男队的总分高。)④总分高能说明这个队的成绩一定好吗?(教师的设疑引起学生的深入思考,许多学生纷纷发表意见,认为总分高并不一定说明成绩好,若人数相等则总分高成绩也就好。那么,到底怎样进行比较呢?经过讨论,大家一致认为应该比较每个队的平均成绩。)
(2)尝试练习。(男、女学生分别计算男、女队的平均成绩。男队:(96+90+80+70)÷4=84(分);女队:(87+89+82)÷3=86(分)。)
(3)指名学生展示求平均分的思考过程,并比较两队的平均分后,得女队的成绩好的结论。
【意图:若给出男、女两队的得分表后,让学生直接计算出每个队的平均分,再比较哪个队的成绩好。这样设计教学,从传授知识的角度看也是可以的。但学习的目的在于运用。为此,联系学生实际,创设上面的问题情境,让学生积极参与尝试解决面临的实际问题,亲身体会到平均数知识能解决生活中的实际问题,对数学感到亲切又有用,激发学生的兴趣,并增强了数学的应用意识。同时,在“总分高成绩一定好吗?”的讨论中,使学生体会到要辩证地全面分析问题,从而萌发学生的辩证思维。】
2.先出示四名少先队员为敬老院做衣架的画面,再逐个出示:
(1)小华做5个,小红和小刚共做8个,小芳做7个,平均每人做几个?
(1)小华做5个,小红和小刚各做8个,小芳做7个,平均每人做几个?
(3)小华做5个,小红和小刚各做8个,小芳上午做3个,下午做4个,平均每人做几个?
(先出示第(1)题,在学生独立思考后,教师出示“(5+8+7)÷3”问:这样列式正确吗?为什么?然后逐个出示(2)、(3)题,让学生列式。最后引导学生比较:这三道题的条件在变化,但什么没有变?求平均每人做几个,我们都是怎样想的?)
【意图:通过这组题的列式及比较,使学生在变与不变中掌握求平均数应用题的解题思路。】
3.出示:三(1)班40名学生分三组为希望工程捐款。第一小组捐43元,第二小组捐38元,第三小组捐39元。平均每组捐款多少元?
(1)学生独自思考。
(2)选择正确算式的编号(手势表示)。
①(43+38+39)÷3=40(元)
②(43+38+39)÷40=3(元)
(让学生说出选择理由,并结合算式②问:老师从结果是平均每组捐3元,就知道肯定错了。你们知道为什么吗?让学生用平均数概念对结果进行估算。)
(3)提问:若选算式②,应该提怎样的问题?(平均每人捐款多少元?)
(4)比较:这两个问题的区别在哪里?(前者是将捐款总数按组数平均;后者是将捐款总数按人数平均。)
【意图:选择时启发学生运用平均数概念对算式②的结果进行估算再作出判断,有利于学生巩固平均数概念,从而学习在实际生活中非常有用的估算方法;而通过只一字之差的两个问题的比较,则有利于学生从问题出发搜取有关的信息,展开有序思维,提高解决问题的能力。】
4.出示:
某厂加工零件个数统计表
问:平均每月加工零件多少个?
(1)学生独自列式计算。(生:(1008+1001+1004+1003)÷4=1004(个)。)
(2)师:有更简单的方法吗?(学生再作思考:有的用“移多补少”方法,有的列式:1000+(8+1+4+3)÷4=1004(个)。)
(3)小结:在求平均数应用题时,我们既要会用一般的思考方法,即“总数量÷总份数”来求,也要会根据具体题目的特点,采用灵活简单的方法。
【意图:巩固求平均数应用题的一般思考方法,激发学生多角度地灵活思考,使学生的潜能得到开发;由几种不同的思考方法进行的小结,使学生学会以一般性原理为指导,从事物特殊性出发思考问题的方法。】
三、课堂小结。
师:这节课上,你学到了哪些知识?(让学生归纳)
第二篇:“求平均数”教学设计及设计意图
“求平均数”教学设计及设计意图
教学内容:
苏教版义务教育课程标准实验教科书三年级下册P92~94页。
教学目标:
1.使学生在丰富的具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。
2.在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。
3.进一步增强与他人交流的意识和能力,体验运用已学的统计知识解决问题的兴趣,建立学习数学的信心。
教学过程:
一、创设问题情境
1.出示P92的情境图。
师:图上的同学们在做什么游戏?(套圈)如果让你套15个圈,你觉得能套中多少个?
【设计意图:创设学生熟悉的游戏情境,让学生很快进入学习状态,为下面出示三年级第一小组的男生和女生套中的个数作铺垫。】
师:三年级第一小组的男生和女生也进行了套圈比赛,每人套15个圈,我们来看看他们的比赛情况。
2.出示两张统计图表。
师:这两张统计图表示他们套中的个数,从中你得到了什么信息?(两个组、参加人数、每人的成绩等)
二、探索解决问题
1.那你认为是男生套得准一些,还是女生套得准一些呢?说说你的理由。(学生交流讨论)
生1:套中个数最多的是女生,最少的也是女生,很难比。
生2:4名男生共套中28个,5名女生共套中30个,不好比。
师:为什么不好比?什么地方不统一?如何才能统一?要求出什么就可以比较了?
生3:就是分别求出男、女生平均每人套中的个数。
【设计意图:通过创设开放性问题,让学生产生认知冲突,陷入矛盾中,从而产生解题的强烈欲望,为平均数概念的提出打开方便之门。】
2.提问:那么,怎样才能知道男、女生平均每人套中的个数呢?试试看,然后说给大家听一听。先求男生平均每人套中多少个圈。
(1)通过统计图中涂色方块的“移多补少”,为学生提供感性基础。
(2)揭示“先求4人套中的总个数,再求出平均每人套中的个数”的方法。[6+9+7+6=28(个),28÷4=7(个)]
师:这里的“4”从何而来?
3.女生平均每人套中多少个圈呢?和同桌说说你的方法。
(1)通过统计图中涂色方块的“移多补少”,求出平均数。(多媒体演示)在移的过程中,你发现移的总个数与补的总个数有什么关系?(移的总个数等于补的总个数)
(2)揭示“先求5人套中的总个数,再求出平均每人套中的个数”的方法。[10+4+7+5+4=30(个),30÷5=6(个)]
师:为什么这里要除以5,而不是除以4呢?
【设计意图:让学生充分经历知识的形成过程,自主尝试用不同的方法求平均数,培养学生的合作意识,再让学生进行对比,强调份数的不同,选择适合自己的方法。】
师:现在你知道是男生套得准,还是女生套得准了吗?(男生)
4.交流。
师:问题解决了,你有什么收获?你学会了什么?
师:在刚才我们解决的问题中,男生的平均数是7个,这“7个”是不是表示每个男生都套中7个?(不是)那这“7个”指的是什么?
【设计意图:加深对平均数意义的理解,让学生体会到求平均数是一种统计数据的处理方法,而不是真正地把这些数量平均分,从而有利于学生感受平均数的本质。】
5.用7与这组中的每一个数比一比,你发现什么?(比最小的大,比最大的小)
6.180、230、250、490、563、1000这几个数的平均数比1000大,还是小?比180呢?
【设计意图:进一步让学生了解平均数的特征,感悟平均数在一个群体中是在最小的值与最大的值之间。】
三、巩固练习,拓展应用
1.练习“想想做做”第1题。
师:你是怎么想的,怎么做的?
【设计意图:在“移多补少”的操作中,体会“移多补少”与“先求和再求平均分”这一方法的内在联系。】
2.练习“想想做做”第2题。
师:你觉得用哪种方法比较喜欢?
3.一个身高150厘米的人,在一个平均水深140厘米的河中游泳,他会有危险吗?
【设计意图:“平均水深”代表的是一个整体水平,可能有比这深的,可能有比这浅的,也就是说有的会超过150厘米,人下去游泳会有危险。】
4.英语得多少分?
方法(1):92-90=2,91-90=1,2+1=3,90-3=87。
方法(2):90×3=270,270-92-91=87。
【设计意图:前面都是求平均数的练习,这里是知道了平均数,和前面不同,学生会感到束手无策。第一种是用“移多补少的方法”很容易解决,主要突出移的部分和补的部分一样多;第二种方法是先求出总数,再用总数减去部分。练习这道题的目的是让学生开拓思维,密切了数学与生活的联系,还为学生留足了思考探索的时空,打开了思路,有举一反三的作用。】
四、全课总结,畅谈收获
师:通过本节课的学习,你有什么收获?
生1:学会用“移多补少”与“求和再平均分”的方法求平均数。
生2:知道了平均数所反映的是某一群体的整体水平,它在最小值和最大值之间。
……
(责编 杜 华)
第三篇:求平均数应用题-教学设计与评析
求平均数应用题“教学设计与评析
教学内容:求平均数应用题。
教学目标:1.初步建立平均数的基本思想(即移多补少的统计思想),理解平均数的概念。
2.掌握简单的求平均数的方法,并能根据具体情况灵活选用方法进行解答。
3.培养学生估算的能力和应用数学知识解决实际问题的能力。
教学重点:灵活选用求平均数的方法解决实际问题。
教学难点:平均数的意义。
教程设计:
一、组织实践活动,建立平均数的概念
1.实际操作,引出概念。
(1)教师实验操作。
师示U型玻璃连通管,让学生观察左右水高度的变化:左比右高→左往右流→左右相等教师引导学生比较实验前后水的变化,使学生清楚地看到这种变化实际上就是把左边多的部分水移到了右边补在少的地方,使其数量”同样多“。通过实验让学生建立”移多补少“的思想,为平均数的概念提供了实验模型。
(2)学生分组操作。
①四人小组合作,每人拿出个数不同的正方形,怎样移动使每人手中的正方形个数同样多?
②学生分组动手操作。
③把操作过程反馈,并板书:
2.引导归纳,建立概念。
(1)讨论:刚才同学们在移动过程中,都有什么相同的地方?
(2)反馈并板书;
(3)师生归纳:像这样,几个不相等的量,在总数不变的前提下,移多补少,使它们成为相等的几份,我们把这个相等的数叫做这几个数的平均数。(板书:平均数)
3.探求解法,深化概念。
(l)讨论:6为什么既是4、3、7、5这四个数的平均数,也是9、3、6、7的平均数(总数都是24)。7、11、6三个数的总数也是24,为什么它们的平均数是8?(份数不同)
(2)探索:除了用”移多补少“的办法求出平均数外,还有其他的办法求出几个数的平均数吗?
(4+8+7+5)÷4=6
(9+2+6+7)÷4=6
(7+11+6)÷3=8
(3)归纳:总数÷份数=平均数
(4)讨论:你喜欢哪种方法?一般认为两种方法都可以,但是如果数大,用”移多补少"的方法求出平均数就不方便了,可以采用先求和再均分的方法。
二、应用数学知识,解决实际问题
1.联系班级实际,出示身高统计表。
401班五名同学身高统计表
姓名俞笛黄卓仁刘婷 施军博鲍倩培身高(厘米)***9153
第四篇:三步应用题、数据整理、求平均数教学设计
教学内容:教科书第32?33页的第4?7题,练习八的第5、6题。
教学目的:通过整理和复习所学知识,使学生进一步理解三步应用题的数量关系和解
答方法;掌握数据整理及求平均数的基本方法;提高综合运用知识的能力。
教具准备:小黑板。
一、整理和复习三步应用题。
1.教师在黑板上并列出示教科书第32页第4题和第5题。
请两位学生读题后,分别说一说题里的条件和问题。然后,让全班学生用两种方法解答。集体订正后,指名让学生回答问题;
教师提问:第4题和第5题有什么相同点?有什么不同点?
为什么这两题都可以用简便算法计算?
2.教师先出示题目:同学们抬水浇树。三年级浇45棵,四年级比三年级多浇lo棵,五年级浇的棵数等于四年级的2倍。五年级浇树多少棵?
请一位学生读题后,让学生自己解答。
接着,教师出示教科书第32页第6题。读题后,让学生说一说题里的条件和问题,并且让学生画出线段图帮助理解。然后,指名让学生回答教师的问题。
教师提问:这一题与上面一题比较有什么相同的地方?有什么不同的地方?(上面一
题是两步应用题,下面一题是三步应用题。)
让学生独立解答,集体订正。
教师:我们这一册所学习的三步应用题都是在两步应用题的基础上发展来的。把两步应用题改编成三步应用题主要有2种方法:增加条件、改变条件的叙述方式、改变问题。第6题是从上面的两步题改变问题而变来的。现在,大家试一试用另外两种方法把上面的两步题改编成三步题。
鼓励学生改编题,集体订正所改编的题。
3.做练习八的第5、6题。
教师让学生独立做题,教师巡视,个别辅导,做完集体订正。
二、整理和复习数据整理及求平均数
教师让学生打开教科书第33页,默读第7题,理解题意。(教师也可用小黑板出示这一题。)然后看图回答教师的问题。
教师提问:这个条形统计图中的一个格代表多少千克?
哪个年级采的最多?
五年级比三年级多采多少千克?
然后,让学生自己做第(3)、(4)小题。做完以后,指名让学生回答问题。
教师提问:求平均数的方法是什么?在这一题里,求平均数的算式是什么?
接着,让学生自己想根统计图中的数据填写下面的统计表。填写之前,教师提问:
下面的统计表是统计什么的?每个格里要填什么?
学生做题时,教师巡视,个别辅导。
让学有余力的学生做练习八的第7*题。这道题先算出每种车的数量,然后才能填表,制成条形统计图。这是一道需要综合运用知识的题目,对于提高学生综合运用知识的能力很有帮助。
第五篇:《求平均数 》 教学设计
《平均数》教学设计
郑口第一小学 袁宝华
教学内容:冀教版数学三年级下册第五单元53页、54页、55页内容 教学目标 知识与能力:在具体问题情境中,感受求平均数是解决一些实际问题的需要,通过操作和思考体会平均数的意义,学会并能灵活运用方法求简单数据的平均数。
过程与方法:能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。
情感、态度与价值观:进一步发展学生的思维能力,增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。
教学重、难点:
重点:掌握平均数的意义和求平均数的方法。
难点:体会平均数的特点、能利用这些特点解释生活实际中的问题。教学准备:多媒体课件。教学方法
教法:动手操作,自主探索、合作交流 学法:观察法、比较法、发现法和讨论法等
一、初步建立平均数的意义
1、情境引入、激发兴趣 师:同学们喜欢打篮球吗? 生:(齐)喜欢!
师:由于场地有限,我们不能把比赛搬到课堂上来,但老师可以带大家看一场有意思的投球比赛,想看看去么? 生:想。
师:操场上有几个同学,他们相约来一场规定时间内的投球比赛,分成了两个小组,摆开了一副两军对垒的阵势。首先上场的是一组同学,一起看看他们成绩如何!期待吗?
生:恩。
师:看一组投球成绩。
课件出示:张华8个、王云7个、李英6个、赵明7个。
师:一组成绩还真不错,发挥比较稳定,四名同学投的不相上下。师:一组投罢,换二组同学登场了,想看看二组投得咋样么? 生:想,想。
师:第一个出场的是女同学刘杰,竟然投中9个,杨立也投中了8个,二组开场就如此厉害,真为一组同学捏把汗呀,你们觉得二组能赢么?
生:不好说。
师:那我们接着看!
出示:孙梅5个,(学生唏嘘)王丽3个,(学生“啊”?)丁鹏5个。师:两组同学都投完了,这时赛场上两组同学为谁输谁赢起了争执,双方各执一词,一起去听听。
师:二组刘杰说:“我一人投中9个,你们一组都没我多,所以我们二组胜。”同学们以为呢? 生:不能这样比,比得不是个人赛,要看整个小组的水平,更何况二组王丽同学还投了3个呢!
师:是呀,老师也觉得不能比个人成绩。这时王丽又说话了“不比个人的,就比总数,我们二组一共投进了30个球,而你们一组才投是28个,所以还是我们二组胜。”同学们这次觉得可以么?
生:不公平,二组5个人,一组才4个人。欺负人。
师:真是的。5个人打4个人,是不公平。那该怎么比呢?生:(茫然)!师:同学们,能不能找到一个数反映两个小组的整体水平呢?先看看一组的具体投球情况!
出示:第一组同学投球成绩统计图。
2、介绍“移多补少”法
师:同学们仔细观察第一组投球数量都接近几个?用哪个数来代表一组的整体水平呢?
生:7个。
生:8和6都接近7个,所以用7表示。师:怎样让他们投的数量匀一匀呢?
生:把8里面多的1个送给6,这样就都是7个了。演示:移多补少的过程。
师:数学上,像这样从多的里面移一些补给少的,使得每个数都一样多。这一过程就叫“移多补少”。[板书:移多补少]移完后,一组同学看起来好像都投中了几个?
生:(齐)7个。
师:能代表一组的整体水平吗? 生:(齐)能!
师:接下来看一下二组同学的投球情况。
3、介绍求平均数的公式。
出示:第二组投球成绩统计图。
师:能用“移多补少”的方法找一找二组同学的整体水平吗? 生:„„
前后桌四人一小组互相说一说。
生:好像是6个。9个给3个3个,8个分别给两个5一个。都是6个了。演示:移多补少的过程。
师:这样二组同学看起来好像都投了几个? 生:6个。
师:用6代表二组同学投球的整体水平合适么? 生:合适。
师:这次移多补少的过程有什么感觉? 生:很麻烦。
师:有没有别的方法很快的求出6个?
生:我先把5个人投球的个数相加,得到30个,再用30除以5等于6个。师板书:(9 8 5 3 5)÷5
=30÷5 =6(个)师:像这样先把每次投中的个数合起来,然后再平均分给这5人(板书:合并平分),能使每一次看起来一样多吗?
生:能!
师:其实,无论是刚才的移多补少,还是这回的先合并再平均分,目的只有一个,那就是——
生:使原来几个不相同的数变得同样多。[板书:同样多]
师:数学上,我们把通过移多补少后得到的同样多的这个数,就叫做原来这几个数的平均数。(板书课题:平均数)比如,在这里(二组图),我们就说6是9、8、5、3、5这五个数的平均数。那么,在这里(出示一组图),哪个数是哪几个数的平均数呢?同桌说说。
生:在这里,7是8、7、6、7这四个数的平均数。师:能用算式求出它们四个的平均数吗? 生:(8 7 6 7)÷4
=28÷4 =7(个)
为什么同样是求平均数,却一个除以3,一个除以了4呢?(因为他们的人数不一样)第一组中平均每人投中7个,是不是每人都投中7个?第二组平均每人投中6个是什么意思?为什么第一组要除以4?第二组要除以5呢?让学生理解“总数量”和“总份数”的意思。师:现在能判断哪个组胜利了吗?(一组)这就是有理不在声高,最后见输赢!师:这个7能代表赵明投的那7个吗? 生:不能。
师:能代表张华投的那6个吗? 生:更不能!
师:奇怪,这里的平均数7它究竟代表的是哪个人的个数呢? 生:这里的4代表的是一组四人次投球的平均水平。生:是一组投球的整体水平。(师板书:整体水平)
二、巩固练习、知识拓展。
1、练习1:求亮亮家平均每天丢弃多少个塑料袋?
师:带着我们掌握的平均数的知识来看帮助亮亮家遇到的问题吧!呈现亮亮家一周丢弃塑料袋统计图。完成以下问题: 问题1:从图中能发现哪些数学信息?(环保教育,少用塑料袋,多提竹篮。)问题2:猜猜亮亮家平均每天丢弃塑料多少个?(3个)
问题3:为什么不猜1个?6个?(1个最少多的移过来肯定比1个多。最多的才6个移给少的后就不够6个啦!)
师:这样看来,尽管还没得出结果,但我们至少可以肯定,最后的平均数应该比这里最大的数——
生:小一些。
生:还要比最小的数大一些。生:应该在最大数和最小数之间。
师:“平均数总是在最大数和最小数之间”这是平均数的一个重要特点。利用这一特点,我们还可以大概地估计出一组数据的平均数。
问题4:计算一下平均数是多少?(1 3 2 3 2 6 4)÷7
=21÷7 =3(个)
师:能指出平均数所在的位置吗?(找一名同学来指一指)问题5:找一找平均数上面超出几个塑料袋?(4个)下面不足几个塑料袋?(4个)
师:我们发现不足的和超出的正好——(相等)。问题6:为什么它们会相等?
生:它们若不相等,多出的移给少的就不够,或分不完了。
师:对,超出部分就像山峰,不足部分就像山谷,削平山峰才能填满山谷? 师:其实,像这样超出平均数的部分和不到平均数的部分一样多,这是平均的第二个重要特点。把握了这一特点,我们可以巧妙地解决相关的实际问题。
5、小结过渡:刚刚我们学习了平均数,你有什么收获?(其实,移多补少也好,先合再分也好,都是为了使他们同样多,进而得出了一组数据的平均数)同学们有信心将知识活学活用吗?那就让我们一起来闯关吧!
2、练习2:冬冬下河会不会有危险?
师:一起看冬冬遇到什么问题了? 课件出示图
师:冬冬来到一个池塘边。低头一看,发现了什么? 生:平均水深110厘米。
师:冬冬心想,这也太浅了,我的身高是130厘米,下水游泳一定没危险。你们觉得冬冬的想法对吗?
生:不对!
师:怎么不对?冬冬的身高不是已经超过平均水深了吗?
生:平均水深110厘米,并不是说池塘里每一处水深都是110厘米。可能有的地方比较浅,只有几十厘米,而有的地方比较深,比如150厘米。所以,冬冬下水游泳可能会有危险。
师:说得真好!想看看这个池塘水底下的真实情形吗? 出示池塘水底的剖面图 生:真的有危险!
师:提示同学们,一定不能到不熟悉的河边、池塘边玩耍游泳!
(一)第一关:小试牛刀。
1、平均每个笔筒里有多少枝铅笔?(1)你会用不同的方法进行思考吗?
(2)追问:哪一种方法简单?(移多补少)
4、拓展延伸:
(1)如果任意变动笔筒中铅笔的枝数,平均数会变化吗?为什么?(2)如果去掉一个笔筒,平均数会变化吗?为什么?(3)小结:平均数与总个数和份数有关。
小结:求平均数时,要根据具体情况灵活选择方法。
三、深化理解,延伸思维
1、彩带问题。
课件出示如下三条彩带。师:老师大概估计了一下,觉得这三条彩带的平均长度大约是10厘米。不计算,你能根据平均数的特点,大概地判断一下,老师的这一估计对吗?
生:我觉得不对。因为第二条彩带比10厘米只长了2厘米,而另两条彩带比10厘米一共短了5厘米,不相等。所以,它们的平均长度不可能是10厘米。
师:照你看来,它们的平均长度会比10厘米长还是短? 生:应该短一些。生:大约是9厘米。
师:它们的平均长度到底是多少,还是赶紧口算一下吧。„„
如果三条彩带的平均长度就是刚才老师估计的10厘米。那么第三条彩带应该多长呢?
(1)12-10=2 10-7=3 3-1=1 10 1=11(2)10×3=30 30-7-12=11
五、拓展延伸,深化提高
1、刚才我们利用平均数解决了这么多的问题,其实,生活中很多问题都需要用平均数的知识来解决。想一想,你能举出生活中的实例吗?看谁是有心人,试着说一说。
2、春暖花开北京连续5天日平均气温超过10℃。
2、求各组数的平均数。(1)7和3 14和6
(2)
6、7和5 3、2和13 6、6和6(平均数相同,几个数可能不同)(3)7、1、6和2
如果把7增加4,其它数字不变,平均数是多少?如果减少4呢?
师:难怪有人说,平均数这东西很敏感,任何一个数据的“风吹草动”,都会使平均数发生变化。现在看来,这话有道理吗?(生:有)其实呀,善于随着每一个数据的变化而变化,这正是平均数的一个重要特点。就像我们有月考中的平均成绩一样,只有每个同学都多考一点,平均分才会大幅提高。
四、看书质疑、不留死角。师:愿大家能带上今天所学的内容,更好地认识生活中与平均数有关的各种问题。下课!
板书设计:平均数
移多补少
合并平分
一组:(8 7 6 7)÷4 二组:(9 8 5 3 5)÷5
=28÷4 =30÷5 =7(个)=6(个)