五年级数学《求平均数》教学设计

时间:2019-05-12 17:54:11下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《五年级数学《求平均数》教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《五年级数学《求平均数》教学设计》。

第一篇:五年级数学《求平均数》教学设计

教学目标:

1.知道平均值的平均值和含义。

2.加强学生对平均数的统计意义的理解。

3.运用数学思想解决平均生活数量的问题,提高数学意识的应用。

教师的重点和困难:理解平均的意义,掌握平均的方法。

教学辅助/学习准备:多媒体课件,矩形。

首先,创造情况,引入兴趣

1.谈话介绍:(显示幻灯片老师的书架)

老师:这是老师的书架,让我们来看看。现在我的书架在上层有8本书,在下层有4本书。我想请求我的同学帮我重组他们在每个架子上的许多书。你有什么办法吗?

感知

(1)学生思考,想象移动的过程。

健康:上面的书架上8本书,拿下2本上下的书架,现在每本书架上的书多少。

(2)老师操作问:现在每层有几本书吗?(6)

(3)老师:喜欢这样多的少,解决问题,我们给它一个名字:移动更多弥补少。

(4)老师:你有什么办法吗?

健康:上层 在书架上的书和在较低架子上的书被组合在一起并且平均放置在两个书架上,使得每个书架上的书都是同样多的。

老师:像这样给几个不同数量的第一个合并,然后分成相同数量的相同数量,解决问题我们也给它一个名字:

(5)老师:现在在每个架子上的书多少?

健康:一样多。

老师:有几(6)

老师:是我们得到它的方式的数量吗?(或者谁说它怎么能得到这个数字?)

健康:使用方法是增加越来越少。

老师:像这个数字,它也有自己的名字-平均。

老师:所以6是8和4的平均值。谁再谈论6谁是谁的平均值(Said)

(6)老师:今天,我们来知道这个新朋友的平均数,好吗?(黑板:平均)

二,合作探索,加深理解

1,师:老师增加了一层书架,三层书架有几本书?

在三楼的架子上有三本书。

老师:使用我们刚刚解决的问题的方法,你可以找到这个 是三个书架上的书的数量的平均值?

老师:请出来一个工具,摆一个钟摆,注意时间一一对应。

把你的想法给你的同伴。(学生活动,老师之旅。)

老师:谁说你的方式。

学生报告:

健康:从8本书出来的2本书的二楼,然后从第一层出来的两本书放在第三层的书上,让它们和每一层一样多。

老师:现在每层都有几本书?

健康:现在每层有五本书。

老师:5是8,4,3的数字?

健康:5是8,4,3的平均值。

老师:有什么其他方法吗? 健康:本书的前三层一起,平均分三层。

老师:你能有一个公式来表达吗?

健康:(8 4 3)÷3 = 5(教师板)

老师:8 4 3这是什么意思?为什么要除以3? 5什么?

(1)找2-3人报告。

(2)这是什么意思?伴侣谈论对方。

2,分割:这里我们要解决生活中的小问题。(课件产生统计)

(1)老师:仔细观察 图表,你得到这些数学信息吗?

健康:小红色收集47矿泉水瓶。小榄收集了33个矿泉水瓶。小梁收集25个矿泉水瓶。小的红色收藏的35矿泉水瓶。

老师:根据数学信息,你能提出一个与我们今天的学习有关的数学问题吗?

健康:这个小队每人收集多少水瓶?

老师:如何找到这个队平均每人收集几瓶矿泉水?

老师:你先想想,把自己的想法和同伴交流,然后把自己的想法用公式表达。

学生活动,教师游览。

组织报告:

健康:(47 33 25 35)÷4 =(80×60)÷4 = 140÷4 = 35(s)

A:团队每人平均有35个矿泉水瓶。

老师:观察这个公式,哪一部分反映了哪个部分反映了哪些部分?哪个号码是平均值?

健康:47 33 25 35反映组合,÷4反映点数,35是平均数。

老师:35是这些数字的平均数?

健康:35是47,33,25,35平均。

师: 使用更多的方法是有用的吗?

老师:你怎么不使用这种方法?

健康:数字太糟糕无法操作。

老师:嗯,老师把这个方法放进课件里,我们一起看。(课件,学生经历的转变更麻烦)。

老师总结:似乎学生喜欢相同,用多一点小小的增加方法来解决这个问题真的很不方便。当我们未来遇到问题时,我们必须根据不同的问题选择正确的答案。

(2)老师:老师也把平均数统计,请用这个平均值与四个学生实际收集的矿泉水瓶数比一个比率,你发现了什么?(看情况,让学生团体交流)

健康:小红收集数量超过平均水平;小榄和小灯收集的数量小于平均值;小明收集的数量和平均数相同。

老师:这是每个人实际收集的矿泉水瓶吗?

健康:不。

教师:它只反映了这套数据的总体情况。

三,知识的应用解决问题

老师:似乎学生对平均水平有了更深的理解,然后我有几个问题来测试每个人。1,判断和解释原因

学校篮球队 人的平均身高是160厘米。

(1)李强是一个学校篮球队,他155厘米高,可以吗?(要判断。)谈论你的理由。

为了让学生对这个问题有更深的理解,我给你提了一个问题。(2)学校篮球队可能有超过160厘米高的球员?

老师:似乎有人超过平均身高。然而,由于团队的高度超过平均水平,那么。的The 健康:它必须小于平均身高。

老师:是的。看起来,平均值仅反映一组数据的总体水平,并不代表每个数据。好了,要探索整理高的问题,让我们来看看河边的小马的问题。

2,有一匹小马过河,但河上没有桥,河有一个标志:平均深度120厘米,请注意安全!小马想:我的身高是140厘米,高于平均深度,就能安全穿越河流。

老师:同学,你是说小马可以安全地过河吗?跟你的同伴谈谈。

学生判断和解释原因。

老师:似乎小马可以安全地过河是不确定的,小马听着你的分析,必须 会小心参与,谢谢学生。

3,在采摘活动中,小明拿起52个苹果,小刚拿起56个苹果,红色和小蓝选了84个苹果,他们拿到每人平均苹果数?(柱合成式)

学生独立结算,集体校正。

第四,总结:通过今天的学习,你有什么新的收获?

第五,师的总结:学生,我们只是用平均来解决这么多问题,在课堂上,我们可以带来今天的内容,更好地了解生活和平均相关问题的数量。

第二篇:小学数学求平均数教学设计

小学数学求平均数教学设计

一、教学目标:

1、初步建立平均数的基本思想(即移多补少的统计思想),理解平均数的概念。

2.掌握简单的求平均数的方法,并能根据具体情况灵活选用方法进行解答。

3.培养学生估算的能力和应用数学知识解决实际问题的能力。

二、教材分析:

“求平均数”是新教材“统计与概率”领域内容的一部分。它与我们的现实生活紧密联系,现代社会的公共媒体大量使用统计图表表示信息,因此本课教学把重点放在运用平均数的理念分析数据、理解数据的意义上。

三、学校及学生状况分析:

我校是一所农村小学,大多数孩子来自农村,因此我在教学时选材尽量贴近孩子们的生活,兴趣是最好的老师,新课程标准指出:数学教学必须注意从学生感兴趣的事物出发为学生创造成功的机会,使他们体会到数学就在身边,对数学产生亲切感。在这一理念下,为他们创造一个发现、探究的空间,使学生能更好地去发现、去创造。

教学重点:灵活选用求平均数的方法解决实际问题。

教学难点:平均数的意义。

四、课堂实录:

(一)故事导入: 老师给同学发笔记本,给了第一个同学8个,第二个同学4个,第三个3个。

师:对老师分笔记本这件事,你有什么话想说吗?

生:三个同学不一样多。

生:应该分的一样多

根据学生的回答板书:不一样多 一样多

(二)探究新知:

1、请同学们小组讨论一下,你们能用哪些方法可以使每组的个数一样多。

2、交流反馈

(1)引出移多补少、(2)(8+4+3)÷3

师:思考:教师板书移动后什么变了,什么没有变?

板书: 总数不变

一样多 不一样多

3、小结,并揭示课题

师:刚才我们通过移一移,算一算的方法,得出了一个同样的数5,这个数就叫平均数

(板书课题)

4、刚才有同学用(8+4+3)÷3=5的方法算出了他们的平均数,现在老师再摆一组为5个,这时平均数又是多少呢?会吗?

生:会。(生自己完成)

反馈(8+4+3+5)÷4=5

比较归纳得出:总数÷份数=平均数

(三)教学例题

例1、5个小同学一起投篮,怎样求他们投篮的平均数?

1、出示每个同学投中的个数。

(4,7,5,4,5,)

2、出示课件演示求平均数的方法。

3、列式并计算 4+7+5+4+5=25(个)25÷5=5(个)

(四)应用数学

今天回家后称一下自己的体重,明天小组整理算一算各小组的平均体重。

第三篇:《求平均数 》 教学设计

《平均数》教学设计

郑口第一小学 袁宝华

教学内容:冀教版数学三年级下册第五单元53页、54页、55页内容 教学目标 知识与能力:在具体问题情境中,感受求平均数是解决一些实际问题的需要,通过操作和思考体会平均数的意义,学会并能灵活运用方法求简单数据的平均数。

过程与方法:能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。

情感、态度与价值观:进一步发展学生的思维能力,增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。

教学重、难点:

重点:掌握平均数的意义和求平均数的方法。

难点:体会平均数的特点、能利用这些特点解释生活实际中的问题。教学准备:多媒体课件。教学方法

教法:动手操作,自主探索、合作交流 学法:观察法、比较法、发现法和讨论法等

一、初步建立平均数的意义

1、情境引入、激发兴趣 师:同学们喜欢打篮球吗? 生:(齐)喜欢!

师:由于场地有限,我们不能把比赛搬到课堂上来,但老师可以带大家看一场有意思的投球比赛,想看看去么? 生:想。

师:操场上有几个同学,他们相约来一场规定时间内的投球比赛,分成了两个小组,摆开了一副两军对垒的阵势。首先上场的是一组同学,一起看看他们成绩如何!期待吗?

生:恩。

师:看一组投球成绩。

课件出示:张华8个、王云7个、李英6个、赵明7个。

师:一组成绩还真不错,发挥比较稳定,四名同学投的不相上下。师:一组投罢,换二组同学登场了,想看看二组投得咋样么? 生:想,想。

师:第一个出场的是女同学刘杰,竟然投中9个,杨立也投中了8个,二组开场就如此厉害,真为一组同学捏把汗呀,你们觉得二组能赢么?

生:不好说。

师:那我们接着看!

出示:孙梅5个,(学生唏嘘)王丽3个,(学生“啊”?)丁鹏5个。师:两组同学都投完了,这时赛场上两组同学为谁输谁赢起了争执,双方各执一词,一起去听听。

师:二组刘杰说:“我一人投中9个,你们一组都没我多,所以我们二组胜。”同学们以为呢? 生:不能这样比,比得不是个人赛,要看整个小组的水平,更何况二组王丽同学还投了3个呢!

师:是呀,老师也觉得不能比个人成绩。这时王丽又说话了“不比个人的,就比总数,我们二组一共投进了30个球,而你们一组才投是28个,所以还是我们二组胜。”同学们这次觉得可以么?

生:不公平,二组5个人,一组才4个人。欺负人。

师:真是的。5个人打4个人,是不公平。那该怎么比呢?生:(茫然)!师:同学们,能不能找到一个数反映两个小组的整体水平呢?先看看一组的具体投球情况!

出示:第一组同学投球成绩统计图。

2、介绍“移多补少”法

师:同学们仔细观察第一组投球数量都接近几个?用哪个数来代表一组的整体水平呢?

生:7个。

生:8和6都接近7个,所以用7表示。师:怎样让他们投的数量匀一匀呢?

生:把8里面多的1个送给6,这样就都是7个了。演示:移多补少的过程。

师:数学上,像这样从多的里面移一些补给少的,使得每个数都一样多。这一过程就叫“移多补少”。[板书:移多补少]移完后,一组同学看起来好像都投中了几个?

生:(齐)7个。

师:能代表一组的整体水平吗? 生:(齐)能!

师:接下来看一下二组同学的投球情况。

3、介绍求平均数的公式。

出示:第二组投球成绩统计图。

师:能用“移多补少”的方法找一找二组同学的整体水平吗? 生:„„

前后桌四人一小组互相说一说。

生:好像是6个。9个给3个3个,8个分别给两个5一个。都是6个了。演示:移多补少的过程。

师:这样二组同学看起来好像都投了几个? 生:6个。

师:用6代表二组同学投球的整体水平合适么? 生:合适。

师:这次移多补少的过程有什么感觉? 生:很麻烦。

师:有没有别的方法很快的求出6个?

生:我先把5个人投球的个数相加,得到30个,再用30除以5等于6个。师板书:(9 8 5 3 5)÷5

=30÷5 =6(个)师:像这样先把每次投中的个数合起来,然后再平均分给这5人(板书:合并平分),能使每一次看起来一样多吗?

生:能!

师:其实,无论是刚才的移多补少,还是这回的先合并再平均分,目的只有一个,那就是——

生:使原来几个不相同的数变得同样多。[板书:同样多]

师:数学上,我们把通过移多补少后得到的同样多的这个数,就叫做原来这几个数的平均数。(板书课题:平均数)比如,在这里(二组图),我们就说6是9、8、5、3、5这五个数的平均数。那么,在这里(出示一组图),哪个数是哪几个数的平均数呢?同桌说说。

生:在这里,7是8、7、6、7这四个数的平均数。师:能用算式求出它们四个的平均数吗? 生:(8 7 6 7)÷4

=28÷4 =7(个)

为什么同样是求平均数,却一个除以3,一个除以了4呢?(因为他们的人数不一样)第一组中平均每人投中7个,是不是每人都投中7个?第二组平均每人投中6个是什么意思?为什么第一组要除以4?第二组要除以5呢?让学生理解“总数量”和“总份数”的意思。师:现在能判断哪个组胜利了吗?(一组)这就是有理不在声高,最后见输赢!师:这个7能代表赵明投的那7个吗? 生:不能。

师:能代表张华投的那6个吗? 生:更不能!

师:奇怪,这里的平均数7它究竟代表的是哪个人的个数呢? 生:这里的4代表的是一组四人次投球的平均水平。生:是一组投球的整体水平。(师板书:整体水平)

二、巩固练习、知识拓展。

1、练习1:求亮亮家平均每天丢弃多少个塑料袋?

师:带着我们掌握的平均数的知识来看帮助亮亮家遇到的问题吧!呈现亮亮家一周丢弃塑料袋统计图。完成以下问题: 问题1:从图中能发现哪些数学信息?(环保教育,少用塑料袋,多提竹篮。)问题2:猜猜亮亮家平均每天丢弃塑料多少个?(3个)

问题3:为什么不猜1个?6个?(1个最少多的移过来肯定比1个多。最多的才6个移给少的后就不够6个啦!)

师:这样看来,尽管还没得出结果,但我们至少可以肯定,最后的平均数应该比这里最大的数——

生:小一些。

生:还要比最小的数大一些。生:应该在最大数和最小数之间。

师:“平均数总是在最大数和最小数之间”这是平均数的一个重要特点。利用这一特点,我们还可以大概地估计出一组数据的平均数。

问题4:计算一下平均数是多少?(1 3 2 3 2 6 4)÷7

=21÷7 =3(个)

师:能指出平均数所在的位置吗?(找一名同学来指一指)问题5:找一找平均数上面超出几个塑料袋?(4个)下面不足几个塑料袋?(4个)

师:我们发现不足的和超出的正好——(相等)。问题6:为什么它们会相等?

生:它们若不相等,多出的移给少的就不够,或分不完了。

师:对,超出部分就像山峰,不足部分就像山谷,削平山峰才能填满山谷? 师:其实,像这样超出平均数的部分和不到平均数的部分一样多,这是平均的第二个重要特点。把握了这一特点,我们可以巧妙地解决相关的实际问题。

5、小结过渡:刚刚我们学习了平均数,你有什么收获?(其实,移多补少也好,先合再分也好,都是为了使他们同样多,进而得出了一组数据的平均数)同学们有信心将知识活学活用吗?那就让我们一起来闯关吧!

2、练习2:冬冬下河会不会有危险?

师:一起看冬冬遇到什么问题了? 课件出示图

师:冬冬来到一个池塘边。低头一看,发现了什么? 生:平均水深110厘米。

师:冬冬心想,这也太浅了,我的身高是130厘米,下水游泳一定没危险。你们觉得冬冬的想法对吗?

生:不对!

师:怎么不对?冬冬的身高不是已经超过平均水深了吗?

生:平均水深110厘米,并不是说池塘里每一处水深都是110厘米。可能有的地方比较浅,只有几十厘米,而有的地方比较深,比如150厘米。所以,冬冬下水游泳可能会有危险。

师:说得真好!想看看这个池塘水底下的真实情形吗? 出示池塘水底的剖面图 生:真的有危险!

师:提示同学们,一定不能到不熟悉的河边、池塘边玩耍游泳!

(一)第一关:小试牛刀。

1、平均每个笔筒里有多少枝铅笔?(1)你会用不同的方法进行思考吗?

(2)追问:哪一种方法简单?(移多补少)

4、拓展延伸:

(1)如果任意变动笔筒中铅笔的枝数,平均数会变化吗?为什么?(2)如果去掉一个笔筒,平均数会变化吗?为什么?(3)小结:平均数与总个数和份数有关。

小结:求平均数时,要根据具体情况灵活选择方法。

三、深化理解,延伸思维

1、彩带问题。

课件出示如下三条彩带。师:老师大概估计了一下,觉得这三条彩带的平均长度大约是10厘米。不计算,你能根据平均数的特点,大概地判断一下,老师的这一估计对吗?

生:我觉得不对。因为第二条彩带比10厘米只长了2厘米,而另两条彩带比10厘米一共短了5厘米,不相等。所以,它们的平均长度不可能是10厘米。

师:照你看来,它们的平均长度会比10厘米长还是短? 生:应该短一些。生:大约是9厘米。

师:它们的平均长度到底是多少,还是赶紧口算一下吧。„„

如果三条彩带的平均长度就是刚才老师估计的10厘米。那么第三条彩带应该多长呢?

(1)12-10=2 10-7=3 3-1=1 10 1=11(2)10×3=30 30-7-12=11

五、拓展延伸,深化提高

1、刚才我们利用平均数解决了这么多的问题,其实,生活中很多问题都需要用平均数的知识来解决。想一想,你能举出生活中的实例吗?看谁是有心人,试着说一说。

2、春暖花开北京连续5天日平均气温超过10℃。

2、求各组数的平均数。(1)7和3 14和6

(2)

6、7和5 3、2和13 6、6和6(平均数相同,几个数可能不同)(3)7、1、6和2

如果把7增加4,其它数字不变,平均数是多少?如果减少4呢?

师:难怪有人说,平均数这东西很敏感,任何一个数据的“风吹草动”,都会使平均数发生变化。现在看来,这话有道理吗?(生:有)其实呀,善于随着每一个数据的变化而变化,这正是平均数的一个重要特点。就像我们有月考中的平均成绩一样,只有每个同学都多考一点,平均分才会大幅提高。

四、看书质疑、不留死角。师:愿大家能带上今天所学的内容,更好地认识生活中与平均数有关的各种问题。下课!

板书设计:平均数

移多补少

合并平分

一组:(8 7 6 7)÷4 二组:(9 8 5 3 5)÷5

=28÷4 =30÷5 =7(个)=6(个)

第四篇:求平均数教学设计

求平均数教学设计

还地桥镇小学 黄红英 教学目标:

1、在具体的问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。

2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

3、进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,建立学习数学的信心。教学重点:

理解平均数的意义,学会求简单数据的平均数。教学过程:

一、创设情境,提出问题。

谈话:有4个小朋友去李阿姨家做客,李阿姨拿出很多糖果分他们,小明7颗,小红3颗,小丽4颗,小刚6颗。师:你觉得李阿姨这样分发合理吗? 生:不合理。师:为什么不合理? 生:他们分的糖果不一样多。生:应该他们分的一样多

师:那么要使他们分的糖果一样多该怎样分呢?这就是我们今天要研究的课题“求平均数”。

二、自主探索,理解平均数

师:同学们,你们能一眼就看出他们的平均数是多少吗? 生:能 生:不能

(1)小组活动,要求学生在动手实践中得出求平均数的方法及含义。学生活动:

师:请大家以小组为单位,把桌上的糖果摆一摆,分一分,使这几个小朋友每人拿到的糖果一样多。生:学生汇报

(2)老师用磁性小圆片代替糖果,点学生上台边说边动手操作。师:这是我们平时经常用到的一种求平均数的方法,你能给他取个名字吗?

生;取长补短 生:取多补少

师:老师也给他取了一个名字叫“移多补少”这个方法虽然简单,但是如果是求全班同学的平均身高或某个球队的平均身高,我们还能用这种方法吗? 生:不能。

(3)请同学们打开课本P42面,看看还有什么方法?

(4)师:刚才我们看了书,请同学们说说你知道“移多补少”方法外,还可以用什么方法求出平均数? 生:列式计算的方法求出平均数。

师:用你刚才所说的方法求一求,这4个小朋友平均每人分到多少颗糖吗?

仔细的比较一下平均数与原来的几个数,你发现了什么? 学生汇报自己的做法。

小结;总数÷份数=平均数 并且平均数在这几个数中的最大数与最小数之间。

三、解决问题,学以致用

(1)出示例题。学生仔细观察统计表,在统计表中发现问题。(2)小组讨论分别计算出两个篮球队的平均身高。(3)比较两个篮球队的平均身高。(4)教师小结。

四、巩固练习

1、让学生根据要求操作,加深对平均数意义的理解。

2、独立练习。出示习题

3、出示想想做做第(3)题

提问:篮球队员的平均身高是160厘米是什么意思?结合书上的问题指明同学回答,要求学生说明理由。

谈话:如果所有的队员身高如果变得同样高的的话,是160厘米,说明有的队员身高不到160厘米,有的超过160厘米。

五、总结评价

提问:这节课我们学习了什么,你有怎样的收获?

求平均数教学反思

为了让学生感受平均数的用途广泛,我又让学生自由交流生活中所见到过的平均数,再通过报刊新闻开扩学生的视野,体会平均数在各行各业中的广泛用途。

但是课堂上的问题还是有很多,在这堂课中其实对于求平均数孩子们是比较容易掌握的,而对于平均数的意义学生也理解比较透彻,而这堂课我把重点放在了求平均数和理解意义上,忽略在教学过程中学生对所学知识的运用,比如说在计算求平均数时,学生可以通过本节课所学的移多补少的方法来简化计算,减轻计算负担,而我忽略了对孩子们这方面意识的培养。另外练习的层次不够鲜明,在求平均数的基础上再增加让孩子求总数该如何求,数学应该培养孩子们举一反三的学习能力。

求平均数说课稿

课一开始,我用多媒体出示这样的情景:“星期天,有4个小朋友去李阿姨家做客,李阿姨拿出很多糖果分他们,小明7颗,小红3颗,小丽4颗,小刚6颗。李阿姨这种分发合理吗?”由熟悉的生活情景引入,使学生体会到数学就在身边,生活中处处离不开数学,从而对数学知识产生亲切感,能更好地激发学生爱数学、学数学的兴趣。

接着让学生动手操作分糖果,要求以最快的速度摆出结果,然后让学生闭上眼睛反思刚才的操作过程,概括出“移多补少”的方法。如果李阿姨要给我们班的小朋友平均分糖,这么多人这么多糖,让学生在头脑中想象“移”的过程并交流。我们知道“平均数”与“平均分”是不同的概念。因为平均分得的结果是一个实实在在的量,而平均数却只是一个表示中间状态的抽象数量。因而在教学时,我并未让学生进行操作,而是通过让学生在交流与想象中感受“平均数”的实际意义,为随后的深化作好预设。

学生的认识刚刚获得平衡,如果李阿姨要给我们班的小朋友平均分糖,这么多人这么多糖,仍旧让学生在头脑中想象,学生觉得用“移多补少”的方法太麻烦了,该怎么办呢?迫使他们自觉突破思维定势,换角度寻求解决问题的策略,从而获得求平均数的一般方法,即“先合并再平分”,并要求列式计算,这个过程其实就是“数学化”的过程,它对于培养学生用数学的眼光观察、思考问题有着实际的意义。

最后,让学生为操作后得到的结果“5”起个名字,从而引出“平均数”及其含义。

1、联系生活,提出问题

在学生初步理解了“平均数”的含义后,我又联系学生熟悉的两个篮球队的队员的身高情况统计表引出身高的话题,让学生作比较。接着,我又请第一排和最后一排同学起立,比较身高并说说你是怎么比的。学生会觉得这个问题太容易了,因为坐在最后的同学往往个子比较高。我又请第3小组和第4小组同学起立,再进行比较,学生发现高矮不一,不好比,想到把每人的身高加起来再比,又发现两组人数不一样,还是无法比较。

学生悬念顿生,思维处于欲罢不能的愤悱状态,我抓住时机设疑:“有没有更好的办法,能准确地比较出这两组同学哪组更高一些?”鼓励学生充分发表意见,引导总结出最佳方法是通过求他们的平均身高来比较。“学起于思,思源于疑。”通过问题情境的创设,为探索活动提供了动力,明确了方向,使学生进入“心求通而未得,口欲言而未能”的境界,激发了他们的探究欲望。

2、自主探究,合作交流

明确了探究方向即求每一个小组的平均身高后,我便组织学生开展讨论:“要求每一小组的平均身高,要作哪些方面的准备工作?”让学生懂得要先收集每个同学的身高才能计算。源于学生身边真实的数学问题,正好激发了学生开展研究的兴趣,促使他们主动进行合作,以取得小组竞赛的胜利。以学生小组为单位开始了活动。允许学生离开座位,独立收集小组内每个同学的身高填入统计表中,计算出平均身高,然后在组内交流计算方法,统一结果,由组长填入汇总表中。这儿,教师充分发挥学生的主体作用,放手让他们在开放的活动空间里自主探索,解决问题。教师只是以参与者、合作者的身份融入他们的活动中,和他们平等相处,热心帮助他们处理突发事件,并及时获取反馈信息,]在投影仪上展示交流各种计算方法,一一加以肯定,鼓励简便算法,并总结基本方法:总数/份数=平均数。紧接着激发学生思考:“第1小组的平均身高为138厘米,所以他们组每个同学的身高一定是138厘米。对吗?”通过辨析进一步理解平均数的意义,培养学生多角度看问题的能力。

3、实践运用,体验生活

数学来源于生活,又要应用于生活,才能体现其价值及魅力。在学生理解了“平均数”的含义,学会了求“平均数”的方法后,我又引入了以下现实情境:

(1)、小明班同学的平均身高是140厘米,所以他的身高一定是140厘米。对吗?

(2)、小明班同学的平均身高是140厘米,小强班同学的平均身高是137厘米,可以说小明一定比小强高吗?

(3)、游泳池的平均水深是130厘米,小明身高140厘米,他在游泳池中学游泳,会不会有危险?为什么?

(4)、老师发现我们家第二季度用电情况是这样的(投影电费单),你能用刚才学到的本领,帮我预测一下我家这个月的用电情况,好吗?你为什么这么认为?

通过情境的辨析,问题的解决,既深化了学生对“平均数”概念的认识,体会到“求平均数”在日常生活中的实际意义,同时也为学生创造了自由表达、广泛交流的机会,提升了他们“数学交流”的能力。

第五篇:《求平均数》教学设计

《求平均数》教学设计

教学目标:

1.理解平均数产生的必要性及平均数的意义;

2.理解平均数算法的多样性,通过活动让学生初步获得一些数学活动的经验,养成从数学角度思考问题的习惯。

3.了解平均数在日常生活中的简单应用,并能正确、全面的看待问题,同时学会与他人合作交流,获得积极的数学学习的情感。

教学重点:

1、帮助学生建立平均数的概念。

2、学生会解求平均数应用题的方法。

教学准备:

乒乓球板和球各2付。统计表若干张。

教学过程:

一、构建平均数的概念:

1、游戏导入,初步感知。

(1)、师:今天老师想组织同学们进行一场小小的球赛,有没有信心? 生:(有信心)

师:既然是比赛就有比赛规则,请听好:全班同学分成两队,一二2组为甲队;三四2组为

乙队,每队挑选若干名选手来参加拍球比赛。比赛规则是:在规定时间内哪个队拍的

个数多哪个队获胜。(注意:时间到或球离板后都表示结束比赛)

(给10秒时间商量派谁来参加比赛。)

师:好,甲队老师选4名参赛者;乙队老师选5名参赛者。

生:学生选派选手,编号后上台排好队伍。

备注:如果在这里有学生说出人数不同比赛不公正,教师随即提问:那么怎样比才公平呢?

生:只要算出2队拍球的平均数。(教师板书:今天这节课我们就来研究生活中的“平均数”。

师:刚才同学们一致认为求出每一队拍球的平均数是最公平、公正的。

说得一点没错,老师决定采纳同学们的建议。下面我们首先进行拍球比赛。

师:为了节省时间,每次2个选手一起比,另外1名选手和各队的同学们可以一起数数。并

记好所拍的个数。

2、设疑:

师:两个队拍球个数已经公布,可结果还未决定,猜猜看假如你是裁判,你会依据什么来决定哪个队获胜呢?(学生交流,口答――平均数)

生:只要算出2队拍球的平均数。(教师板书:“平均数”。)

3、师:为什么用平均数?求出总个数不行吗?平均数有什么好处?

小组讨论:(小组讨论交流,互说回答。因为求平均数公正,又能反映一个队的整体水平)

师:说得真好。边说边板书:公正、代表整体水平

师:怎样来计算平均数呢?谁来说说看?

生:学生说出算式并计算出结果。(教师板书)注意:若出现除不尽可以保留整数。

师:好,比赛结果已经出来了,我们看到甲队平均每人拍()下,代表甲队整体水平,乙队

平均每人拍()下,代表乙队整体水平。现在老师宣布:本次拍球比赛×队获胜。同学们

你们还有意见吗?

2、联系生活,深化感知

A、出示一组题目:

师:下面我们就运用平均数的知识,解决我们日常生活中的实际问题,请同学们对下面3题发表自己的看法,并简要说明理由。

(1)小华班的同学的平均身高是138厘米,所以他的身高一定是138厘米。

(2)小华班的同学的平均身高是138厘米,小勇班的同学的平均身高是135厘米,所以小华身高一定比小勇高。

(3)出示一副图:(图略)一个游泳池的平均水深是1.2米,小芳身高1.35米,她在这个游泳池中学游泳不会有什么危险。

B、学生交流看法,并说明理由。1.2米是一个平均水深,深的地方一定比1.2米深,甚至于有2米,而浅的地方一定比1.2米浅。

师:是的,平均数只是一个表示中间状态的抽象数量,不是一个实实在在的量。

师:那么在我们的生活中还有哪些地方用到平均数的吗?谁能举个例子来说说看。

生:汇报。(3-4个学生)

师:同学们说的不错。老师这里也收集了一个例子,请看。

三、平均数算法的探究。

(1)出示题目:这是四(4)班同学上学期到图书馆借阅图书情况一览表:□ 代表10本。

师: 现在王老师想了解四(4)班同学平均每组借阅图书多少本?

先独立思考,再到小组里交流想法,可以用算式或图示来表示你的想法。

(2)学生小组合作学习后交流汇报。(选择学生上黑板板演)

可能出现的情况如下:

生1:(我是用图来表示的,只要把第2组的一个个框移给第一组1个,再把第3组的一个框移给第4组1个,这样每组都是三个框,就是平

均每组30本。

师:喔,根据图你一眼就看出来了,其实你就是就把多的移出来,补到少的里面去。这个过程就是“移多补少”。(板书)

生2:我是用(20+40+40+20)÷4=30(本)我是先求出四组一共借阅的总本数,再除以组数就是每组的平均分。

师:噢,你是先把四个组的总本数合起来再平均分。这个过程就是“先合后分”的过程。(板书)大家认可他的想法吗?(生:认可)

生3或生4:我的做法其实与生2一样,(40+20)×2÷4=30(本);60×2÷4=30(本)……

师:这2种方法只是求总数的方法不同,其实也是先求出总数再平均分这也是“先总后分”。

如果出现:(20+40)÷2=30(本)

师:这个算式是谁的?能说说你的想法吗?

生:由于一、二2组和三、四2组借阅的本数相同,我就先算出一、二2组的平均本数,也就算出了四组的平均本数。

师:你观察得真仔细,原来这份材料里正好一、二组和三、四组借阅的情况是一样的,所以你算出其中的一半的平均数也就代表了四组的平均数。

★★如果出现:20+(20+20)÷4或20+40÷4 也让学生说说想法。

生:我是这样想的,因为每组都有20本,就把20本作为标准,再把剩下的40本平均分,得到的商再与20加起来。也是每组30本。

师:他的想法同学们都听清楚了吗?(教师可补充说明)他的意思是:首先选出20为标准,再把比20多的数加起来的和除以4,得到的商与前面的20相加,就是每组的平均本数。

师:同学们真了不起,想出了这么多方法。象这样,几个不相同的数在总数不变的前提下,通过移多补少(或先合后分),使不相同的数变得同样多,同样多的数就是这几个数的平均数。

师:做对的举手。看来同学们都掌握得不错。请观察以上每个算式中的平均数的得数,你能发现平均数的值有什么规律吗?

生:平均数比最大的数小,比最小的数大。

师:你真是个有心人,观察得真仔细,平均数比最大的数小,比最小的数大,介于两者之间。

师:接下来老师要考考大家了。

四、巩固应用。

1、做“练一练”/第一题。(题略)学生做后评讲。(略)

2、第二题。(可以口答算式不计算)

出示四年级四班高萌同学在作文比赛中的得分情况。

师:你知道评委们是怎样确定她最后得分的吗?

生:先把8个评委的得分加起来,再除以8。

学生回答后,让学生按他们的方法计算,等到学生出现疑惑时,组织学生讨论:

平均数既然具有公正性和代表性,为什么在这要去掉一个最高分和最低分?(学生讨论、交流。引导学生从数学角度去思考问题)

师:计算比赛成绩的特殊要求(去掉一个最高分,去掉一个最低分),然后让学生以最快的速度、用你认为最简便的方法,再根据这一特殊要求再计算出高盟同学的最后得分。

3、师:如果让你当评委,你认为王老师这节课能得多少分?

学生商讨后,给老师亮分,你把得分写在黑板上,并让学生针对不同的得分说出自己的想法。

师:最后得分是多少,请小评委们抓紧时间计算出来。(亮分97)

四、课堂小结:

师:看来得分还挺高的,那么通过这节课的学习,你学会了什么?你有什么收获?

生:学会什么叫平均数,求平均数的方法。

求平均数时,首先要求出总数量,再用总数量除以和它对应的总份数;或者直接用移多补少的方法,先找出基数,再把比基数多的数加起来除以总份数,将商与基数相加,得到平均数。

四、布置作业。完成练习册。

下载五年级数学《求平均数》教学设计word格式文档
下载五年级数学《求平均数》教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    统计求平均数教学设计

    本单元内容是在第一学段学生对数据的收集、整理、描述和分析过程有所体验,会用统计表和条形统计图(一格表示一个单位)表示统计结果,能根据统计图表中的数据提出问题、分析问题,初......

    求平均数的教学设计

    求平均数的教学设计 一、教材分析 “求平均数”是人教版小学三年级第六册第三单元42页的内容。它是新教材“统计与概率”领域内容的一部分。小学数学里所讲的平均数一般是算......

    《统计和求平均数》教学设计

    教学内容:苏教版小学数学第6册第92—94的内容。目标预设:1.使学生在丰富的具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会......

    小学数学五年级关于求平均数的题。

    甲乙丙丁四人称体重,乙丙丁三人共重120千克,甲丙丁三人共重126千克,丙丁二人平均体重是40千克,求四人的平均体重是多少千克? 解:根据题意可知:乙丙二人共重40×2=80千克,所以120+126......

    人教版三年级数学下册求平均数教学设计

    三年级数学下册求平均数教学设计 了李家河乡中心小学 李京星 教学内容: 教材第42页的例一 教学目标: 1、使学生理解平均数的含义。 2、使学生掌握求平均数的方法。 3、培养学......

    “求平均数”教学设计及设计意图(5篇范文)

    “求平均数”教学设计及设计意图 教学内容:苏教版义务教育课程标准实验教科书三年级下册P92~94页。教学目标: 1.使学生在丰富的具体问题情境中,感受求平均数是解决一些实际问题......

    求较复杂平均数教学设计

    求较复杂平均数 教学内容:青岛版四年级下册P91信息窗1红点,自主练习1、2、4。 教学目标 1.结合生活实例,理解平均数的意义,探索求平均数的基本方法。初步学会根据具体情况运用平......

    求平均数应用题-教学设计与评析

    求平均数应用题"教学设计与评析 教学内容:求平均数应用题。 教学目标:1.初步建立平均数的基本思想(即移多补少的统计思想),理解平均数的概念。 2.掌握简单的求平均数的方法,......