第一篇:新课标人教版五年级数学(下)《数学广角》教案
“数学广角”教学设计
教学内容:
《义务教育课程标准实验教科书 数学 五年级下册》 第134~135页。教学目标:
1.能够借助纸笔对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样到优化的思维过程。
2.以“找次品”为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。
3.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重点:
经历观察、猜测、试验、推理的思维过程,归纳出解决问题的最优策略。教学难点:
脱离实物,借助纸笔帮助分析“找次品”的问题。教、学具准备:
教师用具:卡片、5个药瓶 学生用具:卡片 教学过程:
一、初步认识“找次品”的基本原理
1.创设情景,自主探索。
(1)出示钙片,提出问题:这里有3瓶钙片,其中有一瓶少了3片,你能用什么办法把它找出来吗?
(2)独立思考。教师鼓励大胆设想,积极发言。
(3)全班汇报。教师指导学生认真倾听并且积极评价各种方案:打开瓶子数一数、用手掂掂、用秤称(你选择用什么称来称)、用天平称(教师不急于让学生说出最佳方案,给全班学生留出思考空间,但是可帮助发言学生阐述天平的工作原理和特点:天平大家都见过吗?有两个托盘,如果两个托盘里的物品重量相等,天平就保持平衡,如果不相等,重的一端就会„„轻的一端就会„„)。
2.自主探索用天平找次品的基本方法。
(1)引导学生探索利用天平找次品的方法:大家猜猜,怎么样利用天平找出这瓶少了的钙片。我们可以拿出3个学具代替钙片,想象一下,怎样找出少了的这瓶?
(2)独立思考,有一定思维结果的时候组织小组交流。教师指导交流方法:一个一个地讲,声音不要太大,能让对方听到就可以了,也可以边讲边演示,让对方可以更清楚„„
(3)全班汇报。一个一个地称出重量(利用砝码);利用推理(教师手托实物模拟天平帮助演示,强调全面考虑可能出现的结果:你说的是“如果”,那还可能出现什么情况?说明什么?)„„
教师小结:利用天平找到这瓶钙片有多种方法,可以在天平上用砝码称出每瓶的重量再进行比较;还可以在天平两端各放一瓶,根据天平是否平衡来判断哪一瓶是少的:如果天平平衡,说明剩下的一瓶似的少的;如果天平不平衡,说明上扬的一端的是少的。
3.揭示课题。
综合比较几种方法(打开瓶子数一数、用手掂掂、用盘秤称、用天平称„„),哪一种更加快速、准确?(天平)
在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个重量不同的,轻一点或是重一点,利用天平能够快速准确地把它找出来,我们把这类问题叫做找次品。(板书课题:找次品)接下来我们再请天平来帮帮忙。
二、初步认识“找次品”的基本解决手段和方法
1.创设情景,自主探索。
(1)出示问题,引导学生利用学具自主探索:现在有5瓶钙片,其中有一瓶比较少,怎样利用天平把这瓶钙片找出来呢?我们可以拿出5个学具代替钙片,想象一下,怎样找出少了的这瓶?
(2)独立思考,有一定思维结果的时候组织小组交流。指导学生在交流中比较方法。
(3)全班汇报。较复杂的方法教师帮助板书示意图。教师在引导语中强调全面考虑可能出现的结果:怎么找?可能出现什么情况?说明什么?
(4)对几种方法的梳理、比较:“分成几份?每份数量是多少?至少需要称几次就一定能找出来?
(5)教师小结:在天平的帮助下找到这瓶钙片有多种方法,可以„„还可以„„。除了利用学具,还可以画出这样的示意图来帮助我们思考。
三、解决9个零件问题,归纳出找次品的最优方法
1.出示问题:有9个零件,其中有一个是次品(次品重一些),你能用天平把它找出来吗?
教师引导分析方法:你可以拿学具摆一摆,也可以用笔在纸上进行分析,看看至少需要几次就一定能找出次品。
2.自主探索。在有一定结果以后请一个学生上台展示方法,教师帮助梳理分法:分成几份?每份各是多少?至少需要几次就一定能找出次品?
3.反思自己的分法并在小组内交流。教师指导交流重点:看看我们的分法有什么不同?分成了几份?每份是多少?至少需要几次就能保证找出次品?提示学生把可能出现的结果考虑全面。
4.全班汇报。教师引导学生阐述:分成几份?怎么分?怎样找出次品?至少需要称几次就一定能找出次品?边汇报边板书示意图。
5.教师先引导学生观察、梳理一遍,然后进行比较:哪种分法能保证用最少的次数称出次品?这种分法有什么特点?
小结:把9个零件分成3部分,并且平均分,能够保证找出次品而且称的次数最少。
四、推测多个零件找次品的解决办法
提出猜测:那么,是否在所有的找次品问题中,这样平均分成3份的方法能保证找出次品而且所需次数一定最少呢?我们来猜一猜。
学生猜测。
要验证猜想我们再来试一下。如果有12个零件,其中一个是次品,按刚才我们的猜想应该怎么分称的次数就最少而且一定能找出次品?(平均分成3份,即4,4,4)。迅速在草稿纸上分析一下,看看至少需要几次就一定能找出次品?
学生汇报:3次。
我们再来看看别的分法能不能让称的次数更少。还有哪些分法?(2 2 8)(3 3 6)(5 5 2)(6 6)„„
学生选择一种分法在纸上进行分析。
全班汇报,引导学生比较:有没有哪种分法能让称的次数更少而且保证找出次品?
小结:这样看来在利用天平找次品的时候,把待测物品分成3份,并且平均分的方法能保证找出次品而且称的次数一定最少。
五、巩固练习
完成P136练习二十六的第二题:
有15盒饼干,其中的14盒质量相同,另有一盒少了几块,如果能用天平称,至少几次可以找出这盒饼干?
独立思考,在纸上进行分析。
全班汇报。教师指导学生在汇报时重点阐述:分成几份?每份是多少?至少需要几次就可以找出这盒饼干?
小结:在解决找次品问题的时候,我们把待测物品分成3份,并且平均分的方法能够准确快捷地找出次品。
六、拓展训练
刚才我们我们分析的9、12和15都是刚好可以平均分成3份的数,假如遇到不能平均分成3份的数,例如10个、11个„„又该怎么分呢?大家猜猜,可以大胆地试一下,看看哪种分法能保证找出次品而且称的次数最少。我们下节课继续研究这个问题。
第二篇:(人教新课标)五年级数学下册教案轴对称
(人教新课标)五年级数学下册教案轴对称
教学目标:
1.知识与技能:使学生进一步认识图形的轴对称。
2.过程与方法:探索图形成轴对称的特征和性质,能在方格纸上画出一个图形的轴对称图形。
3.情感、态度与价值观:让学生在上述活动中,欣赏图形变换所创造出的美,进一步感受对称在生活中的应用,体会数学的价值。
教材说明和教学建议
教材说明
学生在二年级已经初步感知了生活中的对称、平移和旋转现象,初步认识了轴对称图形,能在方格纸上画简单的轴对称图形,也能在方格纸上画出一个简单图形沿水平或垂直方向平移后的图形。在此基础上,本单元让学生进一步认识图形的轴对称,探索图形成轴对称的特征和性质,学习在方格纸上画出一个图形的轴对称图形和画出一个简单图形旋转90°后的图形,发展空间观念。结合本单元的学习, 还安排了数学游戏“设计镶嵌图案”。本单元教材在编排上有以下几个特点。
1.重视学生已有的知识基础,探索两个图形成轴对称的特征和性质。
在二年级学生已经认识了日常生活中的对称现象,有了轴对称图形的概念,并能画出一个轴对称图形的对称轴和它的另一半,这里是进一步认识两个图形成轴对称的概念,探索图形成轴对称的特征和性质,并学习在方格纸上画出一个图形的轴对称图形。本单元教材先设计了画对称轴,观察轴对称图形的特征和画出一个轴对称图形的另一半的活动,加深对轴对称图形特征的认识,从而让学生在已有的知识基础上探索新知识。
2.注重联系生活实际,让学生在具体情境中认识图形的旋转。
本单元联系具体情境,让学生观察钟表的表针和风车旋转的过程,分别认识这些实物怎样按照顺时针和逆时针方向旋转,明确旋转的含义,探索图形的旋转的特征和性质,再让学生学会在方格纸上把简单图形旋转90°3.通过大量的活动,帮助学生理解图形的对称和旋转变换,增强空间观念。本单元不仅设计了看一看、画一画、剪一剪等操作活动,而且注意设计需要学生进行想像、猜测和推理进行探究的活动,培养学生的空间想像力和思维能力。例如,让学生判断几个图案分别是由哪种方法剪出来的。这就要求学生要根据图案的特征,不断在头脑中对这个图案进行“折叠”,并将最后的结果与下面的剪法对应起来。而且还让学生思考“还有什么剪法”,从而使学生的空间想像力和思维能力得到充分的锻炼。
教学建议
1.注意让学生真正地、充分地进行活动和探究。
由于本单元知识是在学生已有的关于对称和旋转的知识基础上,并结合学生熟悉的生活情境进行安排的,学生完全可以通过观察、想像、分析和推理等过程,独立探究出来。因此,教师要切实组织好学生的课堂活动,为学生创造进行探究的时间和空间。不要让教师的演示或少数学生的活动和回答代替每一位学生的亲自动手、亲自体验和独立思考。这样学生的空间想像力和思维能力才能得以锻炼,空间观念才能得到发展。
2.本单元内容可以用4课时进行教学。
具体内容的说明和教学建议
(第2~4页)
1.主题图。
教科书第2页,呈现了现实生活中利用对称、平移和旋转设计出的许多美丽的事物和图案,引出本单元内容的学习。目的是从现实生活的事物引入,让学生在欣赏图形变换所创造出的美好事物的过程中,进一步感受对称、平移和旋转在生活中的应用,体会数学的价值。
教学时,教师可以先让学生观察,说一说这些图形有什么特征。学生可能会根据图形的变换把这些图形分成几类,教师可从此处引出本单元内容的学习。
到本单元内容学习结束后,还可以再让学生观察这幅主题图,用所学的图形变换的知识对这些图形的设计进行分析,体会所学知识的作用和价值。2.例1上面的内容及例1。(课本第三页)教材通过例1上面的内容,让学生画对称轴的活动,帮助学生复习已有的关于轴对称图形的知识,在此基础上教学例1。在“例1”中,首先通过看一看、数一数的活动,使学生由观察“松树”这个轴对称图形,进一步观察两个“小草”图形成轴对称,从而引出两个图形成轴对称的概念,并引导学生从整体上概括出轴对称的特征。接下来,再引导学生观察轴对称图形(松树)及成轴对称的两个图形(小草)的对应点与对称轴之间有什么关系,使学生探索、发现图形成轴对称的性质,并为例2教学“在方格纸上画出一个图形的轴对称图形”做准备。
教学时,可以分三步进行。
(1)复习旧知。
让学生独立画出例1上面图形的对称轴,帮助学生回忆轴对称图形的知识,以便在此基础上教学例1。
(2)进一步认识图形的轴对称。
先让学生观察图中的“松树”和“小草”图案有什么特征。根据已有的知识,学生很容易判断出“松树”图案是轴对称图形,图中的虚线是它的对称轴(教师也可以先不出示这条虚线,让学生画出它的对称轴。)进一步学生会发现,如果沿虚线折叠,两个“小草”图案,也将完全重合。这时教师可以适时的引出两个图形成轴对称的概念,并引导学生从整体上概括出轴对称的特征。
(3)探索图形成轴对称的基本性质。可以引导学生分别观察“小树”这个轴对称图形和成轴对称的两个“小草”图案的各对应点(A 与A′、B 与B′、C与C′)与对称轴之间有什么关系,使学生探索、发现图形成轴对称的基本性质。
这一部分内容教学需要特殊注意的是,我们不要求学生说出准确的数学语言,只要学生能用自己的语言描述出他发现的特征和性质就可以了。
例如,两个图形成轴对称的数学概念是“如果平面到其自身的一一变换的每对对应点A、A′,都垂直于同一直线l,且被直线l平分,则这种变换叫做关于直线l的轴对称。直线l 叫做对称轴,对应点A 和A′叫做关于轴l的对称点,在直线反射下的对应图形叫做关于轴l 的对称图形。”(马忠林,《几何学》,吉林人民出版社,1984年4月第1版。)在初中数学中,概括成“把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫对称轴,折叠后重合的点是对应点,叫做对称点。”(《义务教育课程标准实验教科书数学八年级上册》,人民教育出版社,2004年12月第1版。)在小学阶段,我们不要求学生说得这么准确,只要学生能用自己的语言把“折叠”“重合”这些基本特征概括出来就可以。
再如,图形成轴对称的基本性质,在初中数学中概括成“如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。”(《义务教育课程标准实验教科书数学八年级上册》,人民教育出版社,2004年12月第1版。)我们不要求学生概括出这样的结论,只要学生能像书上的学生那样直观描述就可以了,使学生知道“对应点到对称轴的距离相等”。
3.例2及“做一做”。(课本第四页)
(1)例2。
教材通过让学生画小房子的另一半的活动,借助学生已经掌握的关于轴对称的知识,使学生在能够画出轴对称图形另一半(屋顶、房体及大门)的基础上,进一步能在方格纸上画出一个图形(窗户)的轴对称图形。教材中的小精灵提问“怎样画得又好又快?”就是提示学生在动手之前,先思考好画的步骤和方法。
教学时,完全可以放手让学生独立完成。如果学生有困难,教师可以提示学生只要找到左边图形的几个关键点的对称点,再连线就可以了;可以利用已经掌握的图形成轴对称的特征和性质方面的知识来找到关键点的对称点。
巩固并小结:做一做。
教材让学生判断把一张纸连续对折三次,画上一个图形,剪出的是什么图案。学生根据书上的折法,在头脑中将彩纸展开,对这个图形先做一次轴对称变换,再对得到的图形做一次轴对称变换,得出最后的结果。在这个活动中,要让学生进行空间想像,进一步体会轴对称变换的特点。如果学生想像对折四次后剪出的图案有困难,教师可以让学生按书上的方法实际折一折、剪一剪,帮助学生进行想像。
第三篇:五年级数学广角教案
第八单元数学广角
单元计划
教材分析:
第八单元的《数学广角》主要是渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单视实际问题。
解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔)和植树的棵数之间的关系就不同。例1是探讨关于一条路线的植树问题并且两端都要栽树的情况,让学生先通过划线段图来发现栽树的棵数和间隔数之间的关系,再用发现的规律解决实际问题。例2讨论的是两端都不栽树的情形。教学中通过生活中的事例,让学生初步体会解决植树问题的思想方法以及这种方法在解决实际问题中的应用,同时培养学生在解决实际问题中探索规律,找出解决问题的有效方法的能力,初步培养学生抽取数学模型的能力。教学目标
1、知识与技能方面:通过探索,发现两端都栽和两端不栽的植树问题的规律,并运用这一规律解决实际生活中的问题。
2、过程与方法方面:通过尝试探索、实验、直观演示、观察、分析、讨论等方法经历和体验“复杂问题简单化”的解题策略。
3、情感态度价值观方面:感受数学在日常生活中的广泛应用,尝试
用数学的方法来解决实际生活中的简单问题,培养应用意识和解决实际问题的能力,渗透爱国主义教育。教学重、难点:
发现植树的棵数和间隔数的关系,并运用发现的规律解决实际问题。
第七单元:数学广角《植树问题》
第 一 课 时
【教学目标】:
1.利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。
2.通过小组合作、交流,使学生能理解并掌握“植树问题”的基本方法、并能解决一些实际生活中存在的与植树有关的问题。
3、让学生自己编一道题,真正从根本上掌握解决植树问题的方法。
4、培养学生认真审题的良好习惯。【教学重、难点】
1、掌握“两端都要种的植树问题”的解题方法。
2、引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律,并能运用规律解决实际问题。教学过程:
一、导入新课
同学们,春天是植树的季节,因为植树可以净化空气,绿化我们的家园,国家把每年的3月12日定为植树节,你可曾注意到植树中也有很多学问,由于植树的线路不同,植树的情况也就不同,那么你们想了解植树中的学问吗?那么我们今天就来共同研究你们想要解决的问题。
(一)、同桌相互观察你们自己的一双手,看看发现了什么? 让同学们,观察后,自己发言,全班交流。
师:看着老师的手,你从中得到了什么数字?(5,5个手指)
师:老师从中也得到了一个数字—4,你们知道它指的是什么吗?(缝隙、空格等)
师:对了,指的是手指间的空格,在数学上我们把这样的空格叫做间隔。我们手上每两个手指之间有一个间隔,大家仔细观察老师的手,5个手指,有几个间隔,4个手指的时候有几个间隔呢?3个手指,2个手指呢? 师:你们发现手指数与间隔数的关系了吗?谁能说一说? 2.引入
师:连手上都有这么多数学奥秘,看来数学真是无处不在!现在我们开始上课了吗?
二、创设情境,学习新课、出示例
1、同学们在全长100米的小路一边植树,每隔5米栽和一棵(两端都栽)。一共需要多少棵树苗?1、2、3、4、让学生读题,理解题意。
交流从题目中获取的信息和所要解决的问题。学生动手试一试。
小组看图讨论,各自交流做题方法。
生1、100÷5=20,所以要准备20棵树苗。
生
2、我用画线段图的方式帮助思考,如果把一条线段平均分成4段,两端也要栽树,这样就可以栽5棵。照此思路,可以推出间隔数比棵数少1。
5、6、师让学生猜测,谁的思路对。集体反馈,发现规律。
经过集体交流,同学们发现栽树的棵数比间隔数多1。在100米长的小路上共有20个间隔,那么就可以栽21棵树。
7、教师讲解,帮助学生理解规律。
因为植树总是比间隔数多1,这样我们就可以先求出树与树之间共有多少个间隔,而每个间隔的长度是已知的,就可以求出一共植树多少棵。
8、研究如何列式。
100÷5=20(段)20﹢1=21(棵)
老师请同学们说出为什么这样列式,并让他们阐明思考过程。
三、敢于尝试,大显身手
1、在一条18米长的水泥路上,从头开始每隔3米摆一盆花,一共摆多少盆花?(1)、让学生自己读题,思考。(2)、小组讨论交流。(3)、集体反馈。指名板书:18÷3=6(段)
6+1=7(盆)
请学生分别说出每步的意思。
2、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?(1)、读题、理解题意。(2)、分析已知条件和问题。(3)、尝试分析、独立列式。(4)、交流反馈。36-1=35(段)35×6=210(米)
(5)、让学生观察此题与例1的不同(6)、小组讨论,得出结论。例1是已知全长和株距,求株数。间隔+1=株数
此题是已知株数和株距,求全长。株数-1=间隔 间隔×株距=全长。
四、相信自己,你是最棒的!(做一做)
1、有一根绳子,每隔2米挂一个灯笼,起点和终点都挂,共挂了14个灯笼。这根绳子长多少米?
2、学校领操台到教学楼前共12米,每隔2米插一面彩旗。一共需要多少面彩旗?
五、学做小老师
同学们,学了这节课,相信同学们都明白了如何解决植树问题,那么,请同学们自己做一次小老师,自己编写一道植树问题,在小组内交流,比一比,看谁编的最好。
(学生动手,小组交流)
六、课堂小结,课外延伸
通过这节课的学习你有什么收获?
(这节课我们学习了植树问题,发现了植树的规律,并能运用规律,解决生活中的实际问题。其实植树问题里还有许多有趣的知识,需要同学们在以后的学习中去探索和发现。)
植树问题
(二)第 二 课 时
教学目标
[知识与技能]
1、探究两端都不种的植树问题。
2、培养学生动手操作,分析解决问题的能力。
3、培养学生运用数学知识解决实际问题的能力。
[过程与方法]通过猜测操作,验证,交流的方式探究两端都不种的植树问题。[情感态度与价值观]通过实践活动,培养学生应用所学知识解决实际问题的能力。
教学重点 理解植树问题中线段两端都不种的特征,并能应用规律解决问题。
教学难点 基本规律的提炼和方法的应用。
教学方法 观察法,尝试法,自学引导法 学法指导 自主探索、合作讨论练习法 教学过程
一、开门见山,直点主题
今天我们继续研究植树问题(师板书)
二、合作探究,发现规律
出示例2:大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米。一共要栽几棵树?
1、学生读题,理解题意
“两馆间的小路”指的是哪一段?
“小路两旁”指的是要栽几边?
2、学生互相合作,用小棒摆一摆
师提示:我们现在可以假设大象馆和猩猩馆相距18米,其它条件不变,用小棒摆一摆,说一说。
要求完成:
你一共摆了几根小棒
每一边的小棒根数和间隔数之间有什么关系?
3、全班交流
4、教师小结
这种情况属于两端都不种的植树问题,即植树棵数=间隔个数—1。
三、运用规律,解决问题。
1、在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50米安装一座,一共要安装多少座路灯?
2、一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?
学生独立完成后全班交流
想一想:平均分成5段只需锯几次?
师问:为什么要减1?这相当于植树问题中的哪种情况?
四、课堂小结
同学们,今天这节课,你们表现得太出色了。谁能来夸夸自己或小伙伴,哪些地方做得好?
五、作业设计:
1、在两栋教学楼中间有一条50米的小路,在小路的两旁每隔5米放一盆兰花(两头都不放),一共要放多少盆花?
2、在一条全长3千米的公路两端装路灯(两端不要安装),每隔20米装一座。一共要安装多少座路灯?
板书
植树问题
全长÷间隔=间隔数
两端都不种的植树问题,即:植树棵数=间隔个数—1。
第三课时 围棋中的数学问题
课题:围棋中的数学问题 教学目标:
1.借助围棋盘探讨封闭曲线(方阵)中的植树问题;
2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力; 3.让学生感受数学在日常生活中的广泛应用。教学重点:从封闭曲线(方阵)中探讨植树问题。教学难点:用数学的方法解决实际生活中的简单问题。
情感与态度目标:通过小组合作交流,培养学生认真倾听他人意见,乐于与人合作,从不同角度欣赏他人的良好心态。教学过程:
一、情境导入
二、猜谜:十九乘十九,黑白两对手,有眼看不见,无眼难活久。(打一棋类名称)
[设计意图:用谜语引入,从学生的已有经验出发,激发学生的学习兴趣。培养学生良好的兴趣爱好。]
二、探索新知
1.教学每边摆放3粒棋子的方法。
(1)出示围棋格子图,最外层每边能放3个棋子。最外层可以摆放多少个棋子?(2)抢答:读题后,让学生口算出答案。(学生可能会出现多种答案。)(3)动手验证:请学生分小组按要求摆放棋子,验证刚才答案。(4)汇报交流(着重请学生说出方法。)可能会出现以下方法:
3×2+2=8 2×4=8 3×3-1=8 3×4-4=8 直接点数。教师表扬学生的创新摆法,并奖励“智慧星”。(教师随学生回答,出示摆放方法。)2.教学每边摆放4粒棋子的方法。(1)课件出示围棋格子图,最外层每边能放4个棋子。最外层可以摆放多少棋子?(2)动手操作:请学生分小组按要求摆放棋子,写出算式。(3)游戏:让一学生当“小老师”,其余学生当“围棋子”,请小老师邀请“围棋子”按上题要求站在老师设计的大棋盘上。
[设计意图:这一游戏的方法,激发了学生的兴趣,不仅使学生学到了摆放方法,让每个学生参与活动,把所学知识运动到游戏中。](4)汇报交流(着重请学生说出方法)教师随学生回答,用课件出示摆放方法。(5)你们最喜欢哪种方法?为什么? 3.教学每边摆放5粒棋子的方法。(1)课件出示围棋格子图,最外层每边能放5个棋子。最外层可以摆放多少棋子?
(2)动手操作:请学生分小组按要求摆放棋子,写出算式。(3)汇报交流。(教师随学生回答,出示摆放方法。)(4)你们最喜欢哪种方法?和同桌说一说。
[设计意图:让每位学生都参与活动,通过抢答、验证、分析、交流等一系列活动,借助围棋盘探讨封闭曲线(方阵)中的植树问题,进一步体会数学在日常生活中的广泛应用,学生在亲身“经历”的过程中实现知识能力乃至生命的同步发展。]
三、总结规律
(1)师:你觉得再用棋子摆,方便吗?你能根据前面我们摆放的方法,填写下列表格,总结出规律吗?(小组合作完成)每边放的个数 最外层总数 3 4 5 6 „
你发现了什么规律:_____________________________________
(2)教学例3:出示围棋格子图。问:围棋盘的最外层每边都能放19个棋子,最外层一共可以摆放多少个棋子?
(2)总结规律:教师随着学生的回答板书: 间隔数×边数=最外层的总数
(3)学生根据规律,独立完成例3。
三、运用规律
1.如果最外层每边能放100个,最外层一共可以摆放多少个棋子? 如果最外层每边能放200个,最外层一共可以摆放多少个棋子? 如果最外层每边能放300个,最外层一共可以摆放多少个棋子? 拓展思维:如果一个五边形,怎么算?一个三角形呢?(集体口答)2.做第121页第三题。
[设计意图:充分相信学生,放手让学生分析问题、解决问题,以学生为主归纳问题;教师在关键之处疏通点拨,引导学生加深理解,做到以学生为主体。] 3.请你参加:
12名学生在操场上做游戏,大家围成一个正方形,每边人数相等。四个顶点都有人,每边各有几名学生?(在教室内围一围。)4.请你思考:(课件出示同学开联欢会时的欢乐情景。)
“六一”儿童节即将来临,四<1>班同学准备开联欢会。大家围坐在一起,如果每边做14人,(如下图),这个班一共有多少个同学?每边都有8张课桌,一共要多少张课桌?
5.请你设计:(课件出示美丽的校园情景。)
学校为了庆祝“六一”儿童节,改变校园环境,想全校范围内征集校园花坛设计方案。有以下三种,请每组同学选择一种你最喜欢的图形,算一算如果每边放三盆花,一共可以摆放多少盆花?再动手画一画,展示在黑板上,看哪一组做得又好又快!
[设计意图:整个练习从现实生活中出发提出数学问题,让学生在游戏中,在具体情境中充分动口、动手、动脑,培养了学生的自主学习能力、合作意识和科学探究精神。]
第四篇:(人教新课标)六年级数学下册数学广角《抽屉原理》
(人教新课标)六年级数学下册 数学广角《抽屉原理》
1.把5只兔放进2个笼子里。不管怎么放,总有一个笼子至少放进几只兔?为什么?
2.盒子里有同样大小的红球、黄球和蓝球各5个。
(1)要想摸出的球一定有两种同色的,最少要摸多少个球?
(2)要想摸出的球一定有3个同色的,至少要摸多少个球?
3.五(1)班有30名学生是2月份出生的,至少有几名学生的生日是同一天,为什么?
4.在38个小朋友中,至少有几个小朋友的属相是相同的?为什么?
5.一个盒子里装有大小相同但颜色不同的手套若干只,已知手套的颜色有灰、白、黑三种。问最少要取出多少只手套才能保证有三幅手套是同色的?
6.有100个学生参加美术小组,其中最小的只有7岁,最大的有12岁。问参加美术小组的学生是否一定有两个学生肯定是同年同月出生的?
第五篇:五年级下册数学广角教案
五年级下册数学广角教案
散旦小学李加有
教学内容:
《义务教育课程标准实验教科书数学 五年级下册》第134~135页。
教学目标:
1.能够借助纸笔对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样到优化的思维过程。
2.以“找次品”为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。
3.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重点:经历观察、猜测、试验、推理的思维过程,归纳出解决问题的最优策略。
教学难点:脱离实物,借助纸笔帮助分析“找次品”的问题。
教、学具准备:
教师用具:卡片、5个药瓶
学生用具:卡片
教学过程:
一、导入新课
1986年1月28日,美国第二架航天飞机“挑战者”号在进行飞行时发生爆炸,价值12亿美元的航天飞机化作碎片坠入大西洋,造成世界航天史上最大的悲剧。据调查,这次灾难的主要原因是一个不合格的零件(橡皮圈)引起的。可见,不合格零件的危害有多大。不合格的零件称为次品,合格的物品称为正品,次品与正品相差甚微,有些从外表根本无法辨别。怎样才能快速准确地把它找出来,我们把这类问题叫做找次品。(板书课题:找次品)接下来我们就一起来研究找次品的问题。
二、初步认识“找次品”的基本解决手段和方法
1、出示药瓶,提出问题:这里有3瓶药,其中有一瓶少了3片,你能用什么办法把它找出来吗?
综合比较几种方法(打开瓶子数一数、用手掂掂、用盘秤称、用天平称……),哪一种更加快速、准确?(天平)
2.创设情景,自主探索。
(1)出示问题,引导学生利用学具自主探索:现在有5瓶药,其中有一瓶比较少,怎样利用天平把这瓶钙片找出来呢?我们可以拿出5个学具代替药,想象一下,怎样找出少了的这瓶?
(2)独立思考,有一定思维结果的时候组织小组交流。
(3)全班汇报。较复杂的方法教师帮助板书示意图。
(4)教师小结。
三、解决9个零件问题,归纳出找次品的最优方法
1.出示问题:有9个零件,其中有一个是次品(次品重一些),你能用天平把它找出来吗?
教师引导分析方法:你可以拿学具摆一摆,也可以用笔在纸上进行分析,看看至少需要几次就一定能找出次品。
2.自主探索。
3.在小组内交流。
4.全班汇报。教师引导学生阐述:分成几份?怎么分?怎样找出次品?至少需要称几次就一定能找出次品?边汇报边板书示意图。
5.教师先引导学生观察,然后进行比较:哪种分法能保证用最少的次数称出次品?这种分法有什么特点?
小结:把9个零件分成3部分,并且平均分,能够保证找出次品而且称的次数最少。
四、推测多个零件找次品的解决办法
提出猜测:那么,是否在所有的找次品问题中,这样平均分成3份的方法能保证找出次品而且所需次数一定最少呢?我们来猜一猜。
学生猜测。
要验证猜想我们再来试一下。如果有12个零件,其中一个是次品,按刚才我们的猜想应该怎么分称的次数就最少而且一定能找出次品?(平均分成3份,即4,4,4)。迅速在草稿纸上分析一下,看看至少需要几次就一定能找出次品?
学生汇报:3次。
我们再来看看别的分法能不能让称的次数更少。还有哪些分法?(2 2 8)(3 3 6)(5 5 2)(6 6)……
学生选择一种分法在纸上进行分析。
全班汇报,引导学生比较:有没有哪种分法能让称的次数更少而且保证找出次品?
小结:这样看来在利用天平找次品的时候,把待测物品分成3份,并且平均分的方法能保证找出次品而且称的次数一定最少。
五、巩固练习
完成P136练习二十六的第二题:
六、拓展训练
刚才我们我们分析的9、12和15都是刚好可以平均分成3份的数,假如
遇到不能平均分成3份的数,例如10个、11个……又该怎么分呢?大家猜猜,可以大胆地试一下,看看哪种分法能保证找出次品而且称的次数最少。我们下节课继续研究这个问题。
七、小结