第一篇:(人教新课标)五年级数学下册教案 打电话1
打电话
教学内容:教材第132——133页。教学目标:
1.知识与技能:使学生在解决问题的多种方案中寻找最优方案,初步体会运筹思想和对策论方法在解决问题中的应用。
2.过程与方法:经历设计打电话方案,并找出最优方案的过程,体验画图分析、交流讨论的学习方法。
3.情感、态度与价值观:通过画图的方式发现事物隐含的规律,培养学生归纳推理的思维能力。
教学重点:理解打电话的最优方案的方法。
教学难点:能够运用打电话的最优方案的方法解决一些简单的实际问题。教学过程:
一、探讨最优方案
1.教师出示问题:15人的合唱队接到紧急演出,通过打电话通知每个队员,如果每分钟通知1人,怎样尽快通知到每个队员?
2.小组讨论:设计一个打电话的最快方案,既能节约时间又能全部通知到。
教师巡视指导,给学生留中够的探索时间,如学生有困难,可提示:老师在第一分钟通知的队员也可以通知其他的队员。可用图示的直观形式进行分析。
预测会有以下几种不同的方案:
(1)一个一个地通知,一共需要15分钟;
教师引导学生得出这种方案最简单,当然需要的时间也最长。
(2)分组通知。如:平均分成3个组,每组5人,通知完15人至少需要7分钟;如果平均分成5组,每组3人,则需要7分钟;如果按(4,4,4,3)分成4组,需要6分钟;如果按6,5,4分成3组。需要6分钟„„
教师用图示的方式直观地表示出学生的每种方案,帮助学生计算出所需的时间。问:是不是分的组越多用的时间越少呢?
引导他们观察得出不是分的组越多所需的时间越少的结论。(3)还有更快的方法吗?怎样保证时间最少呢?
只有每个接到通知的队员都继续通知后面的队员,直到全部通知到为止,这样每个接到通知的队员都不空闲才是最快的方案。
教师用图示的方法直观地展示了这种方案,按照时间的顺序,用不同的颜色动态地显示了每分钟新接到通知的队员和总共通知的队员,得出这种方案一共需要4分钟。
二、发现规律
1.仔细观察示意图,第一分钟时,有几人打电话?打完电话后接到通知的队员和老师共有多少人?除去教师,通知到几名学生?第二分钟呢?第三分钟呢? 你发现了什么?每增加1分钟,新接到通知的队员人数有什么规律? 2.你能找你的方法向大家介绍一下吗?
发现一:每增加一分钟新接到通知的队员数正好是前面所有接到通知的队员和老师的总数,也就是第n分钟新接到通知的队员数等于前(n-1)分钟内接到通知的队员和老师的总数。发现二:第n分钟所有接到通知的队员和老师的总数就是一个等比数列,通项公式为an=2n,发现三:第n分钟所有接到通知的队员总数就是(2n-1)人。
三、应用规律
1.既然大家都发现了这一规律,那么5分钟可以通知多少人?6分钟、7分钟呢? 组织学生在小组中进行交流探讨,然后汇报。
2.老师要通知50位学生来学校举行活动,如果用打电话的方式,最少需要多少分钟?
提醒学生在具体实施中还有个问题要解决,那就是要设计好打电话的顺序,也就是说每个队员要清楚他接到电话后,后面要怎样继续通知其他队员。因此这个方案还需要事先制定好一个打电话的流程示意图,让老师和每个队员都明确接到通知后,按照怎样的顺序通知后面的队员。只有严格按照事先制定好的方案执行,才能达到节省时间的目的。
四、课堂小结:通过这节课的学习活动,你有什么收获?
教学反思:
三个重要
1.生活经验很重要。
如果本课由教师整齐划一的要求学生按教材不同方案的顺序依次教学,显然会束缚学生的思维,使活动过程过于机械化。在这一过程中学生的生活经验很重要,为了唤起学生的生活体验,启迪学生的思维,我特意为学生创设一种宽松的研究氛围,鼓励学生毫无顾虑地把自己的想法说出来,启发他们设计各种各样打电话的方法。
建构主义理论告诉我们:每个学生并不是空着脑袋走进教室的,在日常生活和学习过程中,他们已经形成了相当的经验,每个人都以自己的方式看待事物,因此,教学不能无视学生的这些经验,而是要把儿童现有的知识经验作为新知识的增长点,引导儿童从原有的知识经验中“生长”出新的知识经验。教学并不是知识的传递,而是知识的处理和转换。教师也不是知识的呈现者,而是引导学生丰富和调整自己的理解。最后的教学实践也证明,学生在第二种方案的过程中,就已经初步感悟到当教师在通知其他同学时,已得到通知的学生也应投入到打电话的行列之中,设计方法的热情很高,他们积极思维。各种方案中,既有生活经验的迁移,又有学生的创造性设计,这样既扩大了知识的信息量,又开拓了他们的思路。
2.逻辑推理很重要。
在发现规律的教学环节中,我通过图示引导学生有序思维。第一分钟时,有几人打电话?打完电话后共有多少人(这里包括教师)知道这个消息?第二分钟呢?第三分钟呢?通过“层层剥笋”,规律一步步明晰,道理不说自明。
小学生正处在从具体形象思维向抽象逻辑思维过渡的阶段。特别是中、高年级,学生的抽象思维发生了“飞跃”或“质变”,这一阶段正是发展学生逻辑思维的有利时期。而学生在思考打电话的时间与通知到的学生人数问题时,常会被表面现象所迷惑,而不能抓住事物的内在规律和本质——即第n分钟所有接到通知的队员和老师的总数是一个等比数列。为了克服思维的表面性与不求甚解的毛病,我创设探究情境,让学生的思维过程得以充分暴露,使思维深刻。
3.符号化思想很重要。
打电话方案的记录方式有很多种,可以用文字完整描述,可以用数字1-15分别代替15名学生逐条简单记录,还可以用画图示的方式形象记录。在课堂上,我提示学生“用图示的方法”来记录。虽然学生展示的结果各不相同,但无论哪一种图示都体现出数学的简约美。
数学发展到今天, 已成为一个符号化的世界。符号就是数学存在的具体化身。数学用的语言与通常的语言有重大区别,它将自然语言变为一种简明的符号语言。我在本课打电话方案的记录上从正反两方面入手,培养学生符号化的思想。首先引导学生初步学会将日常语言叙述的数量关系转化为数学符号语言。其次, 我还请部分同学板书,引导学生将看懂抽象的符号所反映的数量关系,把符号化思维渗透于教学的始终, 以培养学生抽象思维的能力。
第二篇:(人教新课标)五年级数学下册教案轴对称
(人教新课标)五年级数学下册教案轴对称
教学目标:
1.知识与技能:使学生进一步认识图形的轴对称。
2.过程与方法:探索图形成轴对称的特征和性质,能在方格纸上画出一个图形的轴对称图形。
3.情感、态度与价值观:让学生在上述活动中,欣赏图形变换所创造出的美,进一步感受对称在生活中的应用,体会数学的价值。
教材说明和教学建议
教材说明
学生在二年级已经初步感知了生活中的对称、平移和旋转现象,初步认识了轴对称图形,能在方格纸上画简单的轴对称图形,也能在方格纸上画出一个简单图形沿水平或垂直方向平移后的图形。在此基础上,本单元让学生进一步认识图形的轴对称,探索图形成轴对称的特征和性质,学习在方格纸上画出一个图形的轴对称图形和画出一个简单图形旋转90°后的图形,发展空间观念。结合本单元的学习, 还安排了数学游戏“设计镶嵌图案”。本单元教材在编排上有以下几个特点。
1.重视学生已有的知识基础,探索两个图形成轴对称的特征和性质。
在二年级学生已经认识了日常生活中的对称现象,有了轴对称图形的概念,并能画出一个轴对称图形的对称轴和它的另一半,这里是进一步认识两个图形成轴对称的概念,探索图形成轴对称的特征和性质,并学习在方格纸上画出一个图形的轴对称图形。本单元教材先设计了画对称轴,观察轴对称图形的特征和画出一个轴对称图形的另一半的活动,加深对轴对称图形特征的认识,从而让学生在已有的知识基础上探索新知识。
2.注重联系生活实际,让学生在具体情境中认识图形的旋转。
本单元联系具体情境,让学生观察钟表的表针和风车旋转的过程,分别认识这些实物怎样按照顺时针和逆时针方向旋转,明确旋转的含义,探索图形的旋转的特征和性质,再让学生学会在方格纸上把简单图形旋转90°3.通过大量的活动,帮助学生理解图形的对称和旋转变换,增强空间观念。本单元不仅设计了看一看、画一画、剪一剪等操作活动,而且注意设计需要学生进行想像、猜测和推理进行探究的活动,培养学生的空间想像力和思维能力。例如,让学生判断几个图案分别是由哪种方法剪出来的。这就要求学生要根据图案的特征,不断在头脑中对这个图案进行“折叠”,并将最后的结果与下面的剪法对应起来。而且还让学生思考“还有什么剪法”,从而使学生的空间想像力和思维能力得到充分的锻炼。
教学建议
1.注意让学生真正地、充分地进行活动和探究。
由于本单元知识是在学生已有的关于对称和旋转的知识基础上,并结合学生熟悉的生活情境进行安排的,学生完全可以通过观察、想像、分析和推理等过程,独立探究出来。因此,教师要切实组织好学生的课堂活动,为学生创造进行探究的时间和空间。不要让教师的演示或少数学生的活动和回答代替每一位学生的亲自动手、亲自体验和独立思考。这样学生的空间想像力和思维能力才能得以锻炼,空间观念才能得到发展。
2.本单元内容可以用4课时进行教学。
具体内容的说明和教学建议
(第2~4页)
1.主题图。
教科书第2页,呈现了现实生活中利用对称、平移和旋转设计出的许多美丽的事物和图案,引出本单元内容的学习。目的是从现实生活的事物引入,让学生在欣赏图形变换所创造出的美好事物的过程中,进一步感受对称、平移和旋转在生活中的应用,体会数学的价值。
教学时,教师可以先让学生观察,说一说这些图形有什么特征。学生可能会根据图形的变换把这些图形分成几类,教师可从此处引出本单元内容的学习。
到本单元内容学习结束后,还可以再让学生观察这幅主题图,用所学的图形变换的知识对这些图形的设计进行分析,体会所学知识的作用和价值。2.例1上面的内容及例1。(课本第三页)教材通过例1上面的内容,让学生画对称轴的活动,帮助学生复习已有的关于轴对称图形的知识,在此基础上教学例1。在“例1”中,首先通过看一看、数一数的活动,使学生由观察“松树”这个轴对称图形,进一步观察两个“小草”图形成轴对称,从而引出两个图形成轴对称的概念,并引导学生从整体上概括出轴对称的特征。接下来,再引导学生观察轴对称图形(松树)及成轴对称的两个图形(小草)的对应点与对称轴之间有什么关系,使学生探索、发现图形成轴对称的性质,并为例2教学“在方格纸上画出一个图形的轴对称图形”做准备。
教学时,可以分三步进行。
(1)复习旧知。
让学生独立画出例1上面图形的对称轴,帮助学生回忆轴对称图形的知识,以便在此基础上教学例1。
(2)进一步认识图形的轴对称。
先让学生观察图中的“松树”和“小草”图案有什么特征。根据已有的知识,学生很容易判断出“松树”图案是轴对称图形,图中的虚线是它的对称轴(教师也可以先不出示这条虚线,让学生画出它的对称轴。)进一步学生会发现,如果沿虚线折叠,两个“小草”图案,也将完全重合。这时教师可以适时的引出两个图形成轴对称的概念,并引导学生从整体上概括出轴对称的特征。
(3)探索图形成轴对称的基本性质。可以引导学生分别观察“小树”这个轴对称图形和成轴对称的两个“小草”图案的各对应点(A 与A′、B 与B′、C与C′)与对称轴之间有什么关系,使学生探索、发现图形成轴对称的基本性质。
这一部分内容教学需要特殊注意的是,我们不要求学生说出准确的数学语言,只要学生能用自己的语言描述出他发现的特征和性质就可以了。
例如,两个图形成轴对称的数学概念是“如果平面到其自身的一一变换的每对对应点A、A′,都垂直于同一直线l,且被直线l平分,则这种变换叫做关于直线l的轴对称。直线l 叫做对称轴,对应点A 和A′叫做关于轴l的对称点,在直线反射下的对应图形叫做关于轴l 的对称图形。”(马忠林,《几何学》,吉林人民出版社,1984年4月第1版。)在初中数学中,概括成“把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫对称轴,折叠后重合的点是对应点,叫做对称点。”(《义务教育课程标准实验教科书数学八年级上册》,人民教育出版社,2004年12月第1版。)在小学阶段,我们不要求学生说得这么准确,只要学生能用自己的语言把“折叠”“重合”这些基本特征概括出来就可以。
再如,图形成轴对称的基本性质,在初中数学中概括成“如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。”(《义务教育课程标准实验教科书数学八年级上册》,人民教育出版社,2004年12月第1版。)我们不要求学生概括出这样的结论,只要学生能像书上的学生那样直观描述就可以了,使学生知道“对应点到对称轴的距离相等”。
3.例2及“做一做”。(课本第四页)
(1)例2。
教材通过让学生画小房子的另一半的活动,借助学生已经掌握的关于轴对称的知识,使学生在能够画出轴对称图形另一半(屋顶、房体及大门)的基础上,进一步能在方格纸上画出一个图形(窗户)的轴对称图形。教材中的小精灵提问“怎样画得又好又快?”就是提示学生在动手之前,先思考好画的步骤和方法。
教学时,完全可以放手让学生独立完成。如果学生有困难,教师可以提示学生只要找到左边图形的几个关键点的对称点,再连线就可以了;可以利用已经掌握的图形成轴对称的特征和性质方面的知识来找到关键点的对称点。
巩固并小结:做一做。
教材让学生判断把一张纸连续对折三次,画上一个图形,剪出的是什么图案。学生根据书上的折法,在头脑中将彩纸展开,对这个图形先做一次轴对称变换,再对得到的图形做一次轴对称变换,得出最后的结果。在这个活动中,要让学生进行空间想像,进一步体会轴对称变换的特点。如果学生想像对折四次后剪出的图案有困难,教师可以让学生按书上的方法实际折一折、剪一剪,帮助学生进行想像。
第三篇:(人教新课标)五年级数学下册教案 欣赏设计3
欣赏设计
教学内容:教材第7——11页。教学目标:
1.通过欣赏与设计图案,使学生进一步熟悉已学过的对称、旋转等现象,会利用图形的变换设计一些美丽的图案。
2.通过学习让学生体会图形变换在生活中的应用。利用图形变换进行图案设计,感受图案带来的美感和数学的应用价值。
教学重、难点:
利用平移、旋转、对称变换来设计一些美丽的图案。
教具准备:
准备一些漂亮的图案,剪刀和蜡刀纸。
教学过程:
一、欣赏图案。
1.(出示课文第2页的主题图)同学们,在我们伟大中华民族上下五千年的历史中,人们创造了很多灿烂的文化,它们就像一颗颗璀璨的明珠镶嵌在人类历史的星空。请同学们一起来欣赏这些漂亮的图案。这些美丽的图案都是由一个图形经过若干次的变化得来的。那么,我们已经学习过哪几种图形变化?它们之间又有什么不同点?(引导学生从特征和性质入手分析、对比)2.这些漂亮的图案是如何设计出来的?它们分别是由哪个图形平移或旋转得到的?哪幅图是对称的?(先让学生边观察讨论,再进行交流。)3.汇报。
二、独立设计。
1.学习借鉴
观察第7页下面方格纸中的两幅图,它们分别是由哪个基本图形通过怎样的变化得到的? 2.独立绘制
通过观察分析,我们发现很多漂亮的图案都是用简单的图形通过变换得来的。咱们也可以根据自己的想法,设计出更多像这么美丽的图案。下面就来动手试一试吧!请同学们先构想一个基本图形,然后用这个基本图形在方格纸上通过各种变化设计一个美丽的图案。
提示设计思路:可通过平移来设计,可通过旋转来设计,也可以通过对称来设计,还可以几种方法同时使用来设计。
3.放手让学生独立设计,再进行交流。
三、巩固知识。
1.第8页3题。
仔细观察这几个图案是由哪个图形经过什么变换得到的?
四、全课总结。对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉及到其它领域,希望同学们平时注意观察,都成为杰出的设计师。
板书设计:
欣赏和设计
平移(图案1)学生作品1 图形的变化 对称(图案2)学生作品2 旋转(图案3)学生作品3
教学反思:
一课三有
看似简单的教学内容,平淡无奇的教学设计却在学生们张扬的个性中变得有生有色起来。这“生”与“色”缘自何方?我反思教学,归纳为“一课三有”。
教师:有思考价值的提问
———“我们已经学习过哪几种图形变化?它们之间又有什么不同点?”
价值1:简单明了的两个问题促使学生对图形的变化进行了系统回顾与梳理。平移是二下的教学内容,本单元前两课时基本没有涉及,复习回顾,使学生在头脑中形成正确的认知编码。
价值2:有对比就有鉴别,虽然平移、旋转和对称都属图形的变化,但它们有着各自不同的特征和性质。通过对比,促使学生同中求异,正确区分知识点,有效避免知识的混淆。
学生:有敢于质疑的精神
和谐的课堂氛围、融洽的师生关系,使孩子们在课堂中不迷信教材,不盲从别人的观点。今天这节课在许多图案的分析上都存在激烈的争论。就是这些争论,最大程度地促使大家学有所思、思有所获。
争论1:铜镜中的图形到底旋转了4次还是3次?
旋转3次的同学认为图形旋转3次后就已完整形成铜镜的图案。旋转4次的同学认为旋转应由开始回到原位,所以共计4次。双方争执不下,最后我将教材“把图形旋转了4次”改为“把图形旋转了4次回到原位”才尘埃落定。
争论2:旋转与对称的争论?
铜镜是通过旋转得到的无容置疑,但也有部分学生提出质疑“铜镜也是轴对称图形,如果以下面这条直线为对称轴,那么直线的两边能够完全重合。”
那么它是否也可以说是轴对称图形呢?大家依据轴对称图形的特征和性质最后判定这一说法也是正确的,在表述时只要说清哪条直线是这个图形的对称轴即可。
但类似的图案再次发生争论,这次争论点在于对称是仅于图形的形状有关,还是既与形状有关,又与颜色有关。因为如果按下面的直线为对称轴,两侧的图形形状完全重合,但颜色却正好相差。这是否算轴对称图形呢?请大家发表自己的观点。
争论3:平移与对称的争论?
花边是通过连续平移得到的,大家都表示赞同。但也有部分学生提出不同观点:花边的图案也是轴对称图形,它的对称轴是长方形的中垂线。通过讨论,最终大家认同了这种观点。
但类似的图案又发生了争论。这次争论点在于观察图案是否考虑边框。因为这幅图的左右两条宽的线条比中间垂直线条要粗得多。如果不考虑,那么它可以通过平移得到;如果考虑,那么它只能是轴对称图形。您认为这里的图案需要应该考虑边框吗?
反馈:有一批优秀的作品
课标强调教学要注重过程,但结果同样不可忽视
第四篇:(人教新课标)五年级数学下册教案 长方体的表面积
长方体的表面积
教学目标: 1.知识目标:在操作,观察活动中,探索并理解长方体,正方体的表面积及计算方法,并能正确计算。
2.能力目标:丰富对现实空间的认识,发展初步的空间观察。
3.情感目标:结合和具体情境,解决生活中一些简单的问题,体会数学与生活的联系。
教学重难点: 1.长方体表面积计算。2.同上。
教学过程:
一、旧知铺垫,揭示课题。
1.复习长方体的特征
让学生说一说长方体的面、棱有什么特征,教师引导学生抓住以下几点进行有针对性的复习:(1)长方体一共有几个面?(6个面)(2)每个面都是什么形状?(每个面都是长方形)(3)面与面之间的大小关系。(相对面面积相等)2.揭示课题
我们已经掌握了长方体、正方体的特征,今天,我们要用对这些特征了解,来解决一个问题。
(板书课题:长方体的表面积)
二、自主探索,获取新知。1.什么是表面积? 学生思考、交流后说出自己的看法。
2.拿出教具、学具,一起摸一摸长方体的整个表面。
3.明确表面积含义:长方体(正方体)6个面的面积,总和叫做它的表面积。4.怎么求长方体的表面积。
①让学生沿着长方体的棱将长方体纸盒剪开,得到长方体的表面展开图。
②在展开图上标出:相应的“上面”“下面”“前面”“后面”“左面”“右面”,每个面的长宽的数据。
③计算出每个面的面积。
④反馈、交流结果。5.这个展开图的全部面积就是什么面积?你还有别的计算方法吗?是否更简便一些? 6.在学生回答后,教师出示表格,让学生填写完整。7.你能写出计算过程吗? 板书:长方体的表面积
5×7×2+3×7×2+5×3×2 =70+42+30 =142(平方厘米)8.看一看,算式有什么特征?能否将这个算式再简化一些;并说出根据: 学生思考后,会得出结果
(5×7+3×7+5×3)×2 9.正方体的表面积
问:正方体的表面积应该如何计算? 利用长方体的表面积计算方法迁移,得出正方体表面积的计算方法,回答后板书: 长方体的表面积=棱长×棱长×6
三、巩固练习。1.第18页试一试。
板书: 长方体的表面积
表面积的含义:长方体(正方体)6个面的面积
之和叫做它的表面积。
前后两面的面积和: 左右两面的面积和: 上下两面的面积和: 教学反思:
长方体表面积这节课是利用长方体展开图的基础上,引导学生分析长方体与其展开图各部分的对应关系。在教学中,我让学生利用学具来教学这部分知识,让学生理解长方体比较面积的含义。
在教学中,我充分发挥学生的主体地位,自主探索,合作交流,归纳概念,并动手操作,全班回报等形式,学生的学习兴趣很高,效果也挺好,但在教学中,让学生练习的时间少了。以后我要把时间把握好,把每一环节时间控制住,保证各环节时间充足、合理。
第五篇:(人教新课标)五年级美术下册教案 微观世界
微观世界
教学目标:
1.通过对微观世界的认识、了解,引导学生从不同角度来省视、探究事物的另一构造世界,培养学生细致观察的习惯。
2.让学生尝试运用不同的表现方式,自由表达自己领略到的微观世界画面,体验观察与绘画的乐趣。
3.提高学生对抽象美的认识和熏陶。教学重难点:
1.微观事物的细致观察与表现。
2.微观世界的表现。教具学具:
显微镜、放大镜、可观察的动植物图片及实物 教学过程:
一、组织教学:
二、讲授新课:
(一)引导阶段
1.多媒体欣赏几种海洋与陆地的动、植物(如:海星、海螺、多种植物的根、茎及昆虫等)在不同生存环境中的生活情境,观察它们外在的形状、颜色和质感
2.欣赏与比较的几种方法
由远到近的观察对比方法:
A.海星外在的整体形状是多角形刺状。
B.局部观察时面部凹凸有致。
C.在显微镜下表面呈各式星状且形态各异,还参差着无规则的小圆点。
剖面观察法:
A.两种不同植物的根、茎横切,虽都以圆为元素,但由于它们的轨迹不同,形成两种截然不同的图象
------小学资源网投稿邮箱: xj5u@163.com-----
--1--
B.螺是一种贝类海洋动物,其质的坚实外表由外往里是旋状纹样。横剖切后,是发射式渐变状,色彩也从蓝灰逐渐变成黄灰色。
(二)发展、表现阶段
A.通过线条的粗细、蔬密、曲直组织,能表达出微观物体的运动态势。
B.以点的大小为排列基数,通过运动轨迹来体现形象的节奏感。
C.运用色彩要素体现各种不同的色彩倾向或冷暖变化,使学生懂得色彩能传递人们的思想感情。
D.注入自身的情感,更能创造出美丽丰富的微观世界,并从美的角度进行塑造,使其更具艺术性。
三、布置课堂作业
根据所观察的对象,用笔把见到的微观世界描绘下来。
四、学生作业,教师辅导
五、作品展示与评价
1.作品让学生通过教学多媒体开展自评、互评与师评活动
2.谈运用哪些奇思妙想与作画方式来完成作业?
3.通过微观世界的观察与描绘你们有何收获?
六、教学廷伸与拓展
通过仔细观察和大胆想象相结合,鼓励学生运用点、线、面和色彩方法来组织表现许多抽象作品,描绘出更多的微观世界画幅。
------小学资源网投稿邮箱: xj5u@163.com-------2--