第一篇:第七章 空间解析几何习题课教案
高等数学课 讲 教 案 主讲人
课 题 第七章习题课
目的任务
重点难点
教学方法
使用教具
提问作业
备课时间
查 阅 使学生进一步巩固和掌握本章的知识要点,掌握有关计算。
本章的知识要点的进一步巩固和掌握,有关计算的熟练掌握。讲练结合
年 月 日 上课时间 年 月 日抽 查
教学过程:
第一部分 知识归纳
一、空间直角坐标系及向量代数
1、空间直角坐标系的基本问题
1)坐标系的建立;2)卦限的划分;3)两点间的距离公式
2、向量:
1)定义及记法;2)模;
3)方向角与方向余弦;4)单位向量;
5)负向量;
6)零向量; 7)向量在轴上的投影;8)向量的坐标表示
3、向量的加减法及数乘运算: 1)向量的相等;
2)向量的加法—平行四边形法则和三角形法则
3)向量的减法:aba(b); 4)数乘运算;
5)加减法与数乘的坐标表示;
6)线性关系:a与b共线;a,b,c共面.4、向量的数量积(点积、内积)
1)定义;2)投影公式;3)坐标表示式;4)性质;5)运算律.5、向量的向量积(叉积、外积)
1)定义; 2)坐标表示式;3)性质;4)运算律;5)几何意义.6、向量的混合积
1)定义;2)坐标表示;3)性质;4)几何意义.7、二重积.二、曲面、平面与直线
1、曲面与方程;
2、空间曲线;
3、球面与柱面方程;
4、平面方程:
1)一般方程;2)点法式方程;3)截距式方程;4)三点式方程
5)*法式方程:xcosycoszcosp0.(,,为平面法向量的方向角,p为原点到平面的距离)
5、直线方程
A1xB1yC1zD101)一般方程(交面式)
AxByCzD022222)标准方程(对称方程,点向式)
xx0yy0zz0 lmnxx0l3)参数式方程 yy0m(是参数)
zzn04)两点式方程 xx1yy1zz1 x2x1y2y1z2z16、两平面的夹角
cosA1A2B1B2C1C2ABCABC212121222222
7、点到平面的距离
dAx0By0Cz0DABC222
8、两平面1,2平行、垂直的充要条件是
ABC
1∥2n1∥n2111
A2B2C2 1⊥2n1⊥n2n1n2A1A2B1B2C1C20
9、两直线的夹角
s1s2l1l2m1m2n1n2 cos
222222s1s2l1m1n1l2m2n210、两直线平行、垂直的充要条件
lmn
l1∥l2s1∥s2111
l2m2n2 l1⊥l2s1⊥s2l1l2m1m2n1n20
11、点到直线的距离
ix0x1l2M1M2s dsjy0y1mlmn2kz0z1n2
12、两直线共面的条件
l1,l2共面M1M2(s1s2)0x2x1l1l2y2y1m1m2z2z1n1n20
13、直线和平面间的夹角:
nsAlBmcn sin222222nsABClmnl∥s⊥nsnAlBmCn0
lmnl⊥s∥n
ABC二、二次曲面的标准方程
x2y2z21)椭球面: 2221;
abcx2y2z22)单叶双曲面:2221;
abcx2y2z23)双叶双曲面:2221;
abcx2y24)椭圆抛物面:222z;
abx2y25)双曲抛物面:222z;
abx2y2z26)二次锥面:2220.abc第二部分 例题分析
例1 在什么条件下,下列式子成立:
① abab ② abab ③ abab 解:(略)。
例2 已知向量a,b,以a,b为邻边作平行四边形,求平行四边形中和a所在边垂直的高线向量.解:(略)。
2222 例3 证明(ab)(ab)2(ab),并给出几何解释。解:(略)。
例4 设aik,bi2jk,ci2jk,求
① ab,ba ② a(bc),(ab)c ③ a(bc),(ab)c 解:(略)。
例5 证明
① a(bc)b(ac)和c垂直;
② ap,aq,ar三向量共面.解:(略)。
例6 已知向量p和q及x轴均垂直,其中q3i6j8k,p2,求p.解:(略)。
例7 已知两定点F1,F2相距为2a,动点到两定点的距离的平方和为4a,求动点轨迹.、解:(略)。
例8平面过原点o,且垂直于平面1:x2y3z20及2:6xy5z230,求此平面方程。
解:(略)。
2x4yz10例9 将直线的一般方程l:化为对称方程和参数方程。
x3y50解:(略)。
例10平面过z轴,且与平面2xy5z0的夹角为解:(略)。
,求此平面方程。34xz10例11 试证:直线l1:与l2x2y30解:(略)。
3xyz40相交。:y2z80y3x5y4x7例12 直线过点A(3,5,9),且和两直线l1:及l2:相交,求此
z2x3z5x10直线方程。
解:(略)。
x3y5zx10y7z及l2:相交,且和231541x2y1z3l3:平行的直线。
871解:(略)。例13 求与已知直线l1:A1xB1yC1zD10例14 要求直线l:(1)与x轴平行;(2)与y轴平行;
A2xB2yC2zD20(3)与z轴重合;(4)经过原点。
解:(略)。
例15 指出下列方程所示之曲面
(1)x2y2x2y222z0
(2)99z21 解:(略)。
例16 画出x2yz2和x2z24y的图形。解:(略)。
三、作业
第二篇:《解析几何》教案
《解析几何》教案
第一章 向量与坐标
本章教学目的:通过本章学习,使学生掌握向量及其运算的概念,熟练掌握线性运算和非线性运算的基本性质、运算规律和分量表示,会利用向量及其运算建立空间坐标系和解决某些几何问题,为以下各章利用代数方法研究空间图形的性质打下基础.本章教学重点:(1)向量的基本概念和向量间关系的各种刻划。(2)向量的线性运算、积运算的定义、运算规律及分量表示.本章教学难点:(1)向量及其运算与空间坐标系的联系;(2)向量的数量积与向量积的区别与联系;(3)向量及其运算在平面、立体几何中的应用.本章教学内容:
§1.1 向量的基本概念
一、定义:既有大小又有方向的量称为向量,如力、速度、位移等.二、表示:在几何上,用带箭头的线段表示向量,箭头表示向量的方向,线段长度代表向量的大小;向量的大小又叫向量的模(长度).始点为A,终点为B的向量,记作,其模记做.注:为方便起见,今后除少数情形用向量的始、终点字母标记向量外,我们一般用小写黑体字母a、b、c„„标记向量,而用希腊字母λ、μ、ν„„标记数量.三、两种特殊向量:
1、零向量:模等于0的向量为零向量,简称零向量,以0记之.注:零向量是唯一方向不定的向量.2、单位向量:模等于1的向量称为单位向量.特别地,与非0向量同向的单位向量称为的单位向量,记作.四、向量间的几种特殊关系:
1、平行(共线):向量a平行于向量b,意即a所在直线平行于b所在直线,记作a∥b,规定:零向量平行于任何向量.2、相等:向量a等于向量b,意即a与b同向且模相等,记作a=b.注:二向量相等与否,仅取决于它们的模与方向,而与其位置无关,这种与位置无关的向量称为自由向量,我们以后提到的向量都是指自由向量.3、反向量:与向量a模相等但方向相反的向量称为a的反向量,记作-a,显然,零向量的反向量还是其自身.4、共面向量:平行于同一平面的一组向量称为共面向量.易见,任两个向量总是共面的,三向量中若有两向量共线,则三向量一定共面,零向量与任何共面向量组共面.注意:应把向量与数量严格区别开来:
①向量不能比较大小,如
没有意义; ②向量没有运算,如类似的式子没有意义.§1.2 向量的加法
一 向量的加法: 定义1 设、为,以与
与
为邻边作一平行四边形,取对角线向量,记,如图1-1,称之和,并记作(图1-1)
这种用平行四边形的对角线向量来规定两个向量之和的方法称作向量加法的平行四边形法则.如果向量若与与向量在同一直线上,那么,规定它们的和是这样一个向量: 的指向相同时,和向量的方向与原来两向量相同,其模等于两向量的模之和.若与的指向相反时,和向量的模等于两向量的模之差的绝对值,其方向与模值大的向量方向一致.由于平行四边形的对边平行且相等,可以这样来作出两向量的和向量: 定义2 作,以的终点为起点作,联接
(图1-2)得
(1-2)
该方法称作向量加法的三角形法则.(图1-2)向量加法的三角形法则的实质是:
将两向量的首尾相联,则一向量的首与另一向量的尾的连线就是两向量的和向量.据向量的加法的定义,可以证明向量加法具有下列运算规律: 定理1 向量的加法满足下面的运算律:
1、交换律 ,(1.2-2)
2、结合律.(1.2-3)证 交换律的证明从向量的加法定义即可得证.下证结合律.自空间任一点O开始依次作
所以
由定理1知,对三向量.二 向量的减法 定义3 若,则我们把叫做与的差,记为,.,只要把与、长度相同而方向相反的向量,以
与
加到向量上去.由平行,则
.相加,不论其先后顺序和结合顺序如何,结果总是相同的,可以简单的写作
,则有
显然,特别地,由三角形法则可看出:要从减去四边形法可如下作出向量对角线向量..设
为邻边作一平行四边形例1 设互不共线的三向量、与,试证明顺次将它们的终点与始点相连而成一个三角形的充要条件是它们的和是零向量.证 必要性 设三向量、、可以构成三角形
(图1-3),(图1-3),那么, 即 充分性 设
.,作
那么,所以,从而,所以、、可以构成三角形.例2 用向量法证明:对角线互相平分的四边形是平行四边形.证 设四边形因此从图可看出:所以,∥,且,即四边形的对角线、交于
点且互相平分(图1-4),为平行四边形.(图1-4)
定义1.3.1 设是一个数量,向量与
§1.3 数量乘向量 的乘积是一向量,记作时,向量的方向与,其模等于的方向相同;当的倍,即时,向量
是.;且方向规定如下:当零向量,当时,向量的方向与的方向相反.特别地,取,则向量的模与的模相等,而方向相反,由负向量的定义知: 据向量与数量乘积的定义,可导出数乘向量运算符合下列运算规律: 定理1.3.1.数量与向量的乘法满足下面的运算律: 1)1²2)结合律 3)分配律 =,(1.3-1),(1.3-2)
4)证 1)据定义显然成立.2)显然,向量且 = 或、=、=
.(1.3-3)的方向是一致,.3)分配律 如果反之 ⅰ)若 ,中至少有一个为0,等式显然成立;
显然同向,且
所以ⅱ)若若所以不妨设则有
由ⅰ)可得,对的情形可类似证明.一个常用的结论: 定理3.若行且设由于即,则是非零向量,用与(为数量),则向量(是数量).同方向的单位向量.与
亦同方向,而且,与向量
平行,记作
;反之,若向量
与向量
平表示与同方向,从而.我们规定:若,.于是.这表明:一个非零向量除以它的模是一个与原向量同方向的单位向量.请注意:向量之间并没有定义除法运算,因此决不能将式子十分显然,这种错误是受实数运算法则的“惯性作用”所造成.例1 设AM是三角形ABC的中线,求证
.改写成形式.(图1-5)
证 如图1-5,因为,所以
但 因而,即.例2 用向量法证明:连接三角形两边中点的线段平行于第三边且等于第三边的一半.证 设△ABC两边AB,AC中点分别为M,N,则所以,且.§1.4 向量的线性关系与向量的分解
定义1.4.1 由向量
与数量
所组成的向量
线性表示,或称可以分解成向量
叫做向量的的线性组合,或称可以用向量线性组合.定理1.4.1 如果向量使得 并且系数证 若存在实数再证,那么向量与向量共线的充要条件是可用向量线性表示,即存在实数,(1.4-1)被,唯一确定.成立,那么由定义1.3.1知向量与向量共线.反之,如果向量与向量共线,那么一定使得(见1.3节中1.3.5的证明).,那么不共线,那么向量与,而,所以,.线性表示,即 的唯一性:如果定理1.4.2 如果向量 并且系数证: 被
共面的充要条件是可用向量,(1.4-2),唯一确定.(图1-6)因与不共线,由定义1.1.4知,其中,并设
.设与都不共线,中之一共线,那么由定理1.4.1有中有一个为零;如果与,于,把它们归结共同的始点别作设反之,设如果共面.最后证,那么,那么经过的终点分,由定理 1.4.1,可.的平行线依次交直线(图1-6),因,即,那么
与,所以由平行四边形法则得,如果
中有一个为零,如
共线,因此与共面.,从向量加法的平行四边形法则知与
=,,将有,这与假设矛盾,所以
都共面,因此与的唯一性.因为那么 如果,那么,这就证明了唯一性.定理1.4.3 如果向量数
.同理
不共面,那么空间任意向量可以由向量线性表示,即存在一组实使得,(1.4-3)
并且系数x,y,z被,唯一确定.证明方法与定理1.4.2类似.定义1.4.2 对于个向量,若存在不全为零的实数,(1.4-4)
则称向量线性相关.线性无关:.定理1.4.4 在组合.证 设向量时,向量
线性相关的充要条件是其中至少有一个向量是其余向量的线性,使得
不是线性相关的向量叫做线性无关,即向量线性相关,则存在不全为零的实数,且
使得,中至少有一个不等于0,不妨设则 反过来,设向量 即 中有一个向量,不妨设为
;,它是其余向量的线性组合,即,.因为数,-1不全为0,所以向量线性相关.定理1.4.5 如果一组向量中的部分向量线性相关,那么这一组向量就线性相关.证 设使得中有一部分,不妨设前r个向量线性相关,即存在不全为零的实数
.则有,因为,不全为零,所以线性相关.推论 如果一组向量中含有零向量,那么这一组向量就线性相关 类似地可证明下面的定理: 定理1.4.6 两向量与共线
线性相关.定理1.4.7 三向量与共面线性相关.定理1.4.8 空间任意四个或四个以上的向量总是线性相关的.例1 试证明:点,其中在线段
上的充要条件是:存在非负实数,使得,且是任意取定的一点.在线段.,证(先证必要性)设所以 任取一点所以,取,所以,上,则与同向,且,.,则,,使得
.,且,(充分性)若对任一点则 所以 有非负实数
与共线,即在直线上.又,所以在线段上.例2设证 为两不共线向量,证明共线,线性相关,使,共线的充要条件是.即存在不全为0的实数即,(1.4-5)
.又因为不共线 即线性无关,故方程有非零解
.§1.5 标架与坐标
一 空间点的直角坐标:
平面直角坐标系使我们建立了平面上的点与一对有序数组之间的一一对应关系,沟通了平面图形与数的研究.为了沟通空间图形与数的研究,我们用类似于平面解析几何的方法,通过引进空间直角坐标系来实现.1、空间直角坐标系
过空间一定点,作三条互相垂直的数轴,它们以为原点,且一般具有相同的长度单位,这三条轴分别叫轴(横轴)、轴(纵轴)、轴(竖轴),且统称为坐标轴.通常把轴,轴配置在水平面上,而
轴则是铅垂线,它们的正方向要符合右手规则:
(图1-7)右手握住轴,当右手的四个指头从三条坐标轴就组成了一个空间直角坐标系,点
角度转向轴与
轴正向时,大拇指的指向就是轴正向.左右.当然,它们的实
轴的正向以
叫做坐标原点.轴间的夹角画成注:为使空间直角坐标系画得更富于立体感,通常把际夹角还是.2、坐标面与卦限
三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称为坐标面.由轴与轴所决定的坐标面称为面,另外还有面与三个坐标面把空间分成了八个部分,这八个部分称为卦限.面.(图1-8)
3、空间点的直角坐标
取定空间直角坐标系之后,我们就可以建立起空间点与有序数组之间的对应关系.7 设为空间的一已知点,过点分别作垂直于
点的坐标.轴、轴、轴的三个平面,它们与轴、轴、轴的交点依次为了一个有序数组依次称,,这三点在轴、,这组数叫为点
轴、轴的坐标依次为
.的点,于是:空间点就唯一地确定的横坐标、纵坐标和竖坐标,记为,我们可以在、、轴上取坐标为
轴、反过来,若已知一有序数组在轴取坐标为的点,在轴上取坐标为的点,然后过分别作轴、轴的垂直平面,这三个平面的交点就是以有序数组为坐标的空间点.和有序数组
之间的一一对应关系..这样,通过空间直角坐标系,我们建立了空间点定义1 我们把上面有序数组
二 空间两点间的距离公式 定理1 设、叫点
在此坐标系下的坐标,记为
为空间的两点,则两点间的距离为
(1.5-1)
证 过、体,如图所示 各作三个分别垂直于三坐标轴的平面,这六个平面围成一个以为对角线的长方
(图1-9)
是直角三角形,故因为是直角三角形,故
;,,故 特别地,点与坐标原点的距离为.三 空间向量的坐标
.,从而 而
定义2 设使得标,记为定理
2设向量是与坐标轴,同向的单位向量,对空间任意向量都存在唯一的一组实数,,那么我们把这组有序的实数或
.、叫做向量在此坐标系下的坐的始终点坐标分别为,那么向量
.(1.5-2)的坐标为
证 由点及向量坐标的定义知所以
=由定义知
定理3 两向量和的分量等于两向量对应的分量的和.证 设,==所以
类似地可证下面的两定理: 定理
4设定理5 设,则,则+,.(1.5-3),那么
..,.共线的充要条件是
定理6
三非零向量,.(1.5-4),共面的充要条件是 证 因为.(1.5-5)
不共面,所以存在不全为0的实数
使得,由此可得
因为不全为0,所以.§1.6 向量在轴上的射影
一、空间点在轴上的投影:
设已知点及轴,过点作轴的垂直平面,则平面
与轴的交点叫做点
在轴
上的投影.(图1-10)
二、向量在轴上的投影: 定义1 设向量叫做向量的始点在轴与终点
在轴的投影分别为、,那么轴称为投影轴.上的有向线段的值上的投影,记作,轴(图1-11)这里,(1)的值是这样的一个数: 即,数的绝对值等于向量
;当的模.的方向与
(2)当的方向与轴的正向一致时,三、空间两向量的夹角:
轴的正向相反时,.设有两向量、交于点(若、不相交,可将其中一个向量平移使之相交),将其中一向量绕点在两向量所决定的平面内旋转,使它的正方向与另一向量的正方向重合,这样得到的旋转角度(限定)称为、间的夹角,记作
.(图1-12)
若、平行,当它们指向相同时,规定它们之间的夹角为;当它们的指向相反时,规定它们的夹角为.类似地,可规定向量与数轴间的夹角.将向量平行移动到与数轴相交,然后将向量绕交点在向量与数轴所决定的平面内旋转,使向量的正方向与数轴的正方向重合,这样得到的旋转角度四 投影定理: 定理1.6.1 向量在轴上的投影等于向量的模
称为向量与数轴的夹角.乘以轴与向量的夹角的余弦.即 ,(1.6-1)
(图1-13)证 过向量等于轴的始点引轴,且轴
与轴
平行且具有相同的正方向,那未轴
与向量的夹角与向量的夹角,而且有
故 由上式可知:向量当非零向量在轴
上的投影是一个数值,而不是向量.成锐角时,向量
都有,设,.分别是的投影为正..(1.6-2)
在轴上的投影,那么显然与投影轴定理1.6.2 对于任何向量证 取有 因为 所以 即 类似地可证下面的定理:,那么定理1.6.3 对于任何向量与任何实数
有.(1.6-3)
§1.7 两向量的数性积
定义1.7.1 对于两个向量a和b把它们的模|a|,|b|及它们的夹角 的余弦的乘积称为向量和的数量积记作ab,即 ab=|a||b|cos.由此定义和投影的关系可得ab|b|Prjb a=|a|Prjab.数量积的性质
2(1)a²a=|a|,记a²aa,则a|a|.(2)对于两个非零向量 a、b如果 a²b=0则 ab 反之如果ab则a²b0.定理1.7.1 如果认为零向量与任何向量都垂直则aba²b0.定理1.7.2 数量积满足下面运算律:(1)交换律 a²b= b²a(2)分配律(ab)cacbc
((3)a)²b a²(b)(a²b)(a)²(b)(a²b)
证(1)由定义知显然.(2)的证明
因为当c0时 上式显然成立
当c0时 有
(ab)c|c|Prjc(ab)|c|(PrjcaPrjcb)|c|Prjca|c|Prjcb acbc
(3)可类似地证明.例1 试用向量证明三角形的余弦定理
证 设在ΔABC中∠BCA c 记2|c| 2
2||=a ||=b |
|=c 要证
a 2+b 22 a b cos ab=c则有 cc
c(ab)(ab)a2-2 2 2
ab 从而
2ab+b|a|2+|b|22|a||b|cos(a^b)
即 ca+b2 a b cos
数量积的坐标表示:
定理1.7.3 设a{ax ay az }b{bx by bz } 则
a²baxbxaybyazbz
证 a²b(ax i ay j az k)²(bx i by j bz k)ax bx i²i ax by i²j ax bz i²k
ay bx j ²i ay by j ²j ay bz j²k
az bx k²i az by k²j az bz k²k ax bx ay by az bz
定理1.7.4 设a={ |a|=证 由定理1.7.2知
|a|=a=2
},则向量a的模
.,所以 |a|=.向量的方向角和方向余弦:向量与坐标轴所成的角叫做向量的方向角,方向角的余弦叫向量的方向余弦.定理1.7.5 设a={
},则a的方向余弦为
cos =, cos,cos且 其中
;,分别是向量a与x轴,y轴,z轴的夹角.证 因为 ai=|a|cos
且ai==,所以 |a|cos从而 cos=.同理可证 cos
cos且显然
两向量夹角的余弦的坐标表示
定理1.7.6
设(a ^ b)则当a
0、b0时有
.证 因为 a²b|a||b|cos
,所以
.例2 已知三点M(111)、A(221)和B(212)求AMB
解 从M到A的向量记为a 从M到B的向量记为b 则AMB 就是向量a与b的夹角.a{110}b{101}
因为
ab1110011
所以 从而.
§1.8 两向量的向量积
定义1.8.1 两个向量a与b的向量积(也称外积)是一个向量,记做ab或,它的模|ab||a||b|sin,它的方向与a和b垂直并且按a,b, ab确定这个顺序构成右手标架{O;a,b,ab}.从定义知向量积有下列性质:(1)aa0
(2)对于两个非零向量a,b如果ab0则a//b;反之如果a//b则ab 0.定理1.8.1 两不共线向量a与b 的向量积的模,等于以a与b为边所构成的平行四边形的面积.定理1.8.2 两向量a与b共线的充要条件是ab0.证 当a与b共线时,由于sin(a、b)=0,所以|ab|=|a||b| sin(a、b)=0,从而ab0;反之,当ab0时,由定义知,a =0,或b =0,或a//b,因零向可看成与任向量都共线,所以总有a//b,即a与b共线.定理1.8.3 向量积满足下面的运算律
(1)反交换律 abba,(2)分配律(ab)cacbc,(3)数因子的结合律(a)ba(b)(ab)().证(略).推论: c(ab)c a c b
定理1.8.4 设a ax i ay j az kb bx i by j bz k,则 ab(aybz azby)i(azbx axbz)j(axby aybx)k
证 由向量积的运算律可得
ab(ax iay jaz k)(bx iby j bz k)axbx iiaxby ij axbz ik
aybx jiayby jjaybz jkazbx kiazby k azbz kk
由于 iijjkk0ijkjkikij 所以 ab(aybz azby)i(azbx axbz)j(axby aybx)k.为了帮助记忆利用三阶行列式符号上式可写成
aybzi+azbxj+axbykaybxkaxbzjazbyi
(ay bz az by)i(az bx ax bz)j(ax by ay bx)k
例1 设a(2 1 1)b(11 2)计算ab
解 =2ij2kk4ji i5j 3k
例2 已知三角形ABC的顶点分别是A(123)、B(345)、C(247)求三角形ABC的面积
解 根据向量积的定义可知三角形ABC的面积
由于(222)(124)因此
4i6j2k
于是
例3 设刚体以等角速度 绕l 轴旋转计算刚体上一点M的线速度
解 刚体绕l 轴旋转时我们可以用在l 轴上的一个向量n表示角速度它的大小等于角速度的大小它即以右手握住l 轴当右手的四个手指的转向与刚体的旋转方向一致时大姆指的指向就是n的方向
设点M到旋转轴l的距离为a 再在l轴上任取一点O作向量r并以 表示n与r的夹角那么
a|r| sin
设线速度为v那么由物理学上线速度与角速度间的关系可知v的大小为
|v||n|a |n||r| sin
v的方向垂直于通过M点与l轴的平面即v垂直于n与r又v的指向是使n、r、v符合右手规则因此有
vnr
§1.9 三向量的混合积
定义1.9.1 给定空间的三个向量或.定理1.9.1 三个不共面向量且当右手系时构成右手系时混合积为正;当,当构成左手系时的混合积的绝对值等于以
为棱的平行六面体的体积
=
当,并构成,我们把
叫做三向量的混合积,记做
构成左手系时混合积为负,也就是.可构成以证 由于向量的底面是以不共面,所以把它们归结到共同的试始点,它的高为,为棱的平行六面体,它
.为边的平行四边形,面积为,体积是根据数性积的定义其中是当与的夹角.构成右手系时,.,.共面的充要条件是共面,由定理1.9.1知,因而可得
当构成左手系时,因而可得
定理1.9.2 三向量证 若三向量.反过来,如果,即
.,所以,从而,那么根据定理1.7.1有,另一方面,有向性积的定义知,所以共面.定理1.9.3轮换混合积的三个因子,并不改变它的值;对调任何俩因子要改变混合积符号,即
.证 当共面时,定理显然成立;当
不共面时,混合积的绝对值等于以
为棱的平行六面体的体积,又因轮换的顺序时,不改变左右手系,因而混合积不变,而对调任意两个之间的顺序时,将右手系变为左,而左变右,所以混合积变号.推论: 定理1.9.4设
.,,那么
证 由向量的向性积的计算知
.再根据向量的数性积得,==
=推论: 三向量
.共面的充要条件是
例1 设三向量证明:由
且所以例2 已知四面体,求它的体积。,即
满足
.,证明:
两边与做数量积,得:,共面。
共面。,,的顶点坐标解:
,,所以,§1.10三向量的双重外积
定义1.10.1 给定空间三向量,先做其中两个的向量积,再把所得的向量与第三个向量做向量积,那么,最后的结果仍然是一个向量,叫做三个向量的双重向量积。
就是三向量也垂直,所以定理1.10.1 证 若中有一个是零向量,或定理显然成立。
现设都为非零向量,且的一个双重向量积。且和
共面。
(1.10.1)
共线,或与
都垂直,则(1.10.1)两边都是零向量,与
都垂直,与
不共线,为了证明(1.10.1)成立,先证
(1)
由于(2)式两边分别与,解得,即(1)式成立。共面,而
不共线,故可设,(2)
作数量积可得
下证(1.10.1)成立。由于则有利用(1)式可得例1.试证: 证明:
三式相加得例2. 证明: 证明:设,则
不共面,对任意,可设。
。,小 结
知识点回顾:
解析几何的基本思想就是用代数的方法来研究几何问题,为了把代数运算引到几何中来,最根本的做法就是把空间的几何结构有系统地代数化,数量化。因此在本章中主要引入了向量及它的运算,并通过向量了坐标系,从而使得空间中的点都和三元有序数组建立了一一对应的关系,为空间的几何结构代数化打好了基础。
通过本章的学习,应掌握向量及其各种运算的概念,熟练掌握线性运算和非线性运算的基本性质、运算规律和分量表示,会利用向量及其运算建立空间坐标系和解决某些几何问题,如利用两向量的数量积为零来判断各种垂直关系,两向量的向量积为零向量来判断各种平行问题,三向量的混合积为零来判断共面问题,以及在空间直角坐标系下,利用向量积的模求面积,混合积来求体积等问题。
1.向量加法的运算规律:
(1)
(2)(3)
(4)
2.数乘的运算规律:
(1)1²(2)
(3)(4),.=,.3.两向量的数量积
(1)ab=|a||b|cos.(2)aba²b0.(3)在空间直角坐标系下,设a a²b 4.两向量的向量积
{ax ay az }baxbxaybyazbz
{bx by bz } 则
(1)两个向量a与b的向量积(也称外积)是一个向量,记做ab或,它的模|ab||a||b|sin,它的方向与a和b垂直并且按a,b, ab确定这个顺序构成右手标架{O;a,b,ab}
(2)两向量a与b共线的充要条件是ab0..(3)在空间直角坐标系下设a ax i ay j az kb bx i by j bz k,则 ab(aybz azby)i(azbx axbz)j(axby aybx)k
(4)两不共线向量a与b 的向量积的模,等于以a与b为边所构成的平行四边形的面积
5.三向量的混合积
(1)三个不共面向量并且当也就是
.(2)三向量
共面的充要条件是,.,的混合积的绝对值等于以构成右手系时混合积为正;当=
当
构成右手系时
为棱的平行六面体的体积,构成左手系时混合积为负,当
构成左手系时(3)在空间直角坐标系下设那么
.典型习题
1.已知四面体ABCD的顶点坐标A(4,3,0),B(6,0,6),C(0,0,0),D。
求(1)△BCD的面积。
(2)四面体ABCD的体积。(3)C到△BCD的距离。解:(1)
所以 △BCD的面积,-------2分
(2)四面体ABCD的体积为
(3)设C到BCD平面的距离为h,则
从而有。
.,即
2.用向量法证明:P是ΔABC重心的充要条件为证明:设P为△ABC的重心,D为BC边中点,则 又因为PD为△PBC的中线,所以 所以有 设D为BC边中点,则,即。
又因为,与共线,即P在BC边的中线上,同理可得P也在AB,AC边的中线上,从而有P为△ABC的重心。
3.证明:四面体每一个顶点与对面重心所连的线段共点,且这点到顶点的距离是它到对面重心距离的三倍.用四面体的顶点坐标把交点坐标表示出来.[证明]:设四面体A1A2A3A4,Ai对面重心为Gi, 欲证AiGi交于一点(i=1, 2, 3, 4).在AiGi上取一点Pi,使=3, 从而设Ai(xi, yi, zi)(i=1, 2, 3, 4),则
=,G1G2G3G4所以 , , ,P1(P1(同理得P24.在四面体,,)
P3P
4,).P1,所以AiGi交于一点P,且这点到顶点距离等于这点到对面重心距离的三倍.是的重心(三中线之交点),求矢量
对于矢量 中,设点的分解式。
解:是的重心。连接并延长与BC交于P 同理
(1)
由(1)(2)(3)得
(2)
(3)
即
第二章 轨迹与方程
本章教学目的:通过本章学习,使学生理解空间坐标系下曲面与空间曲线方程之定义及表示,熟悉空间中一些特殊曲面、曲线的方程.本章教学重点:空间坐标系下曲面与空间曲线方程的定义.本章教学难点:(1)空间坐标系下母线平行于坐标轴的柱面方程与平面坐标系下有关平面曲线方程的区别;(2)空间坐标系下,空间曲线一般方程的规范表示.本章教学内容:
§2.1平面曲线的方程
在平面上或空间取定了坐标系之后,平面上或空间的点就与有序数组(坐标):或建立了一一对应的关系.曲线、曲面(轨迹)就与 方程
或建立一一对应的关系.1.平面上的曲线: 具有某种特征性质的点的集合(轨迹).曲线的方程:1 曲线上的点都具有这些性质.2具有这些性质的点都在曲线上.2.曲线的方程, 方程的图形
定义2.1.1 当平面上取定了坐标系之后,如果一个方程与一条曲线有着关系:1满足方程的线上某一点的坐标;2曲线上任何一点的坐标这条曲线叫做这个方程的图形.例1.求圆心在原点,半径为R的圆的方程.必是曲
满足这个方程,那么这个方程叫做这条曲线的方程,而解: 任意点类似地, 圆心在 例2.已知两点解: 动点在圆上,半径为R的圆的方程为和在轨迹上,求满足条件
..的动点的轨迹方程.即
平方整理得
再平方整理得
.为所求轨迹方程.注: 在求曲线的方程时,化简过程中可能造成范围 的变化,得到的方程所代表曲线上的点与条件并不
完全相符,必须补上或除去.3.曲线的参数方程 变向量: 随的变化而变化的向量.:对每一个
都唯一确定的一个.()叫做曲线的向量式 向量函数= 定义2.1.2 在坐标系上,向量函数==参数方程.曲线的坐标式参数方程: 曲线的普通方程:.21
例3.一个圆在一直线上无滑动地滚动,求圆周上一点的轨迹.(图2-3)
解:取直角坐标系,设半径为的圆在轴上滚动,开始时点P恰好在原点O(图2-3),经过一段时间的滚动,圆与直线轴的切点移到A点,圆心移到C点,这时有
.设为到的有向角,则到的角为,则
.又
, ,这即是P点轨迹的向量式参数方程.其坐标式参数方程为:取时,消去参数,得其在的一段的普通方程: 这种曲线叫做旋轮线或称为摆线.例4.已知大圆半径为,小圆半径为,设大圆不动,而小圆在大圆内无滑动地滚动,动圆周上某一点P的轨迹叫做内旋轮线(或称内摆线),求内旋轮线的方程.解:
设运动开始时动点P与大圆周上的A点重合,并取大圆中心O为原点,OA为x轴,过O与OA垂直的直线为y轴建立坐标系,经过某一过程后,小圆与大圆的接触点为B,小圆中心为C,则C一定在OB上,且有,设为到则有又由弧AB等于弧BP可得所以
.的有向角,为
到的有向角,从而有到的有向角为,23 即为P点的向量式参数方程,其坐标式参数方程为
(-∞﹤<+∞)
例5 把线绕在一个固定的圆周上,将线头拉紧后向反方向旋转,以把线从圆周上解放出来,使放出来的部分成为圆的切线,求线头的轨迹.解 设圆的半径为是圆周上的点,如右图,建立坐标系,那么 设 且矢量 所以 =从而得,,那么,对轴所成的有向角为,线头的最初位置
,这就是所求点轨迹的矢量式参数方程.由上式可得该轨迹的坐标式参数方程为
该曲线叫渐伸线或切展线.一、曲面的方程:
§2.2 曲面的方程
定义2.2.1 设Σ为一曲面,F(x,y,z)=0或以后,若Σ上任一点P(x,y,z)的坐标都满足F(x,y,z)=0或都在曲面Σ上,则称F(x,y,z)=0或
为一三元方程,空间中建立了坐标系,而且凡坐标满足方程的点
为曲面Σ的方程,而曲面Σ叫做方程F(x,y,z)=0或的图形.不难看出,一点在曲面Σ上〈═〉该点的坐标满足Σ的方程,即曲面上的点与其方程的解之间是一一对应的 ∴Σ的方程的代数性质必能反映出Σ的几何性质.三元方程的表示的几种特殊图形:
空间中任一曲面的方程都是一三元方程,反之,是否任一三元方程也表示空间中的一个曲面呢?一般而言这是成立的,但也有如下特殊情况
1° 若F(x,y,z)=0的左端可分解成两个(或多个)因式F1(x,y,z)与F2(x,y,z)的乘积,即F(x,y,z)≡F1(x,y,z)F2(x,y,z),则
F(x,y,z)=0〈═〉F1(x,y,z)=0或F2(x,y,z)=0,此时 F(x,y,z)=0表示两叶曲面与,它们分别以F1(x,y,z)=0,F2(x,y,z)=0为其方程,此时称F(x,y,z)=0表示的图形为变态曲面.如
即为三坐标面.2方程 仅表示坐标原点和点(1,2,3)3°方程可能表示若干条曲线,如
0
即表示z轴和x轴 4°方程 不表示任何实图形,如,此时,称所表示的图形为虚曲面 3 求法:
例1:求平行于坐标面的平面的方程.解:设平行于 面的平面为π,π与z轴的交点为∈π〈═〉
共面,则
=0 即
同理,平行于其他两坐标面的平面的方程为
例2:求作两定点A(1,-2,1),B(0,1,3)等距离的点的轨迹.解:
(图2.1)
设所求轨迹为Σ,则
=
〈═〉-2x+4y-2z+6=-2y-6z+10
〈═〉2x-6y-4z+4=0〈═〉x-3y-2z+2=0
即所求轨迹为x-3y-2z+2=0
例3:求半径为R的球面的方程
解:建立直角坐标系{O;i,j,k},并设球心 P(x,y,z)球面Σ〈═〉∣
(a,b,c),则
∣=R〈═〉
特别地,若M.(a,b,c)为坐标原点,则球面Σ的方程为 x²+y²+z²=R²
综合上述条例,可归纳出求曲面方程的一般步骤如下: 1°建立适当的坐标系;(方程易求且求出的方程简单)
2°设动点Σ坐标为P(x,y,z),并根据已知条件,推出曲面上的点的坐标应满足的方程; 3°对方程作同解化简.二、曲面的参数方程:
定义2.2.2 设DR²为有序数对集,若对任意(u,v)∈D,按照某对应规则,有唯一确定的向量r与之对应,称这种对应关系为D上的一个二元向量函数,记作
r=r(u,v),(u,v)∈D
定义2.2.3 设Σ为一曲面,r=r(u,v),(u,v)∈D为一二元向量函数,在空间坐标系下,若对任意(u,v)∈D,径向
=r(u,v)的终点P总在曲面Σ上,而且对任意P∈Σ,也必能找到(u,v)∈D,使=r
(u,v),则 称r=r(u,v)为Σ的向量式参数方程,记作Σ:r=r(u,v),(u,v)∈D.若令 r(u,v)={x(u,v),y(u,v),z(u,v)},则 称
(u,v)∈D
为Σ的坐标式参数方程,记作Σ:(u,v)∈D
(图2.2)(图2.3)例:建立球面的参数方程:
解:为简单起见,设坐标原点位于球心,球面半径为R,如图
对任意M(x,y,z)∈球面Σ;令P为M 在x.y面上投影,并令=∠(r= =,),则
∣cos
i+∣
∣sin
j+∣∣sin sinj +Rcos
∣cos
j+∣
∣cos =∣ =∣∣sin cos i+ ∣ =Rsin cos i+Rsin sin ∴球面的参数方程 为: 0π 0<2π
三、球坐标系与柱坐标系
定义2.2.4 空间中建立了直角坐标系之后,对空间中任一点M(x,y,z),设∣OM∣=ρ 则M在以O为中心,以ρ为半径的球面上,从而存在φ,θ,使
(*)
反之,对任意ρ(ρ≣0),φ(0π),θ(0<2π),通过(*)也能确定空间中一点M(x,y,z),我们称有序三数组ρ,φ,θ为M点 的球坐标(空间极坐标),记作M(ρ,φ,θ)
注:1°空间中的点与其球坐标间并非一一对应.2°已知M点的球坐标,通过(*)可求其直角坐标,而若已知M的直角坐 标,则
(**)
便可求其球坐标.定义2.2.5 空间中建立了直角坐标系之后,对
M(x,y,z),设其到z轴的距离为ρ,则 M落在以z轴为中心轴,以ρ为半径的圆柱面上,从而θ,u,使
(*)
反之,对给的ρ(ρ≣0),θ(0≦θ<2π),u(∣u∣<),依据(*)式
也可确定空间中一点M(x,y,z),称有序三数组ρ,θ,u为M点的柱坐标,记作M(ρ,θ,u).注:1°空间中的点与其柱坐标并非一一对应.2°由柱面坐标求直角坐标,利用(*)即可,而由直角坐标求柱坐标,则需按下式进行.例:在直角坐标系下,圆柱面的图形如下:,双曲柱面,平面
和抛物柱面 27
(图2.4)
(图2.5)
(图2.6)(图2.7)
§2.3 空间曲线的方程
一、空间曲线的一般方程
1.定义2.3.1 设L为空间曲线,为一三元方程组,空间中建立了坐标系之后,若L上任一点M(x,y,z)的坐标都满足方程组,而且凡坐标满足方程组的点都在曲线L上,则称
为曲线L的一般方程,又称普通方程,记作L:
28(图2.8)
注: 1°在空间坐标系下,任一曲线的方程定是两方程联立而成的方程组;
2°用方程组去表达曲线,其几何意义是将曲线看成了二曲面的交线(如图2.8);3°空间曲线的方程不唯一(但它们同解),如
与 均表示z轴
2.用曲线的射影柱面的方程来表达曲线
以曲线L为准线,母线平行于坐标轴的柱面称为L的射影柱面,若记L的三射影柱面的方程为
(x,y)=0,(y,z)=0,(z,x)=0,则
,便是L的用射影柱面表达的方程
若已知曲线L:的方程(y,z)=0, ,只需从L的方程中,分别消去x,y,z便三射影柱面(z,x)=0,(x,y)=0
例:设有曲线L: ,试求L的射影柱面,并用射影柱面方程表达曲线.解:从L的方程中分别消去x,y,z得到 z²-4y=4z,x²+z²=4z,x²+4z=0 它们即为L的射影柱面,而
(1),便均是L的用射影柱面表达的方程
注:利用方程(2)即可作出L的草图 二、空间曲线的参数方程:
(2),(3)
1.定义2.3.2 设L为一空间曲线,r=r(t),t∈A为一元向函数,在空间坐标系下,若对P∈L,t∈A,使 =r(t),而且对t∈A,必有P∈L,使r(t)=,则称r=r(t),t∈A为曲线L的向量式参数方程,记作L=r=r(t),t∈A,t ——参数
若点r(t)={x(t),y(t),z(t)}
则称 t∈A
为L的坐标式参数方程
注:空间曲线的参数方程中,仅有一个参数,而曲面的参数方程中,有两个参数,所以习惯上,称曲线是单参数的,而曲面是双参数的。
2.求法: 例:一质点,在半径=a的圆柱面上,一方面绕圆柱面的轴作匀速转动,一方面沿圆柱面的母线方向作匀速直线运动,求质点的运动轨迹。
解:以圆柱面的轴作为z轴,建立直角坐标系{O;i,j,k},如图,不妨设质点的起始点在x轴上,质点的角速率与线速率分别为ω。,ν。,质点的轨迹为L,则对∈L,在x。y面上的投影为′,(图2.9)r= = +,=acos=b,则
i+asin
j+
k
若令 r=acos i+asin j+b k ————L的向量式参数方程
而
小结
知识点回顾:
在平面上或空间取定了坐标系后,平面上或空间的点就与有序实数组(x,y)或(x,y,z)建立了一一对应的关系,在此基础上,把平面上的曲线或空间的曲面都看成具有某种特征性质的点的集合,而其特征性质在坐标系中反映为它的坐标之间的某种特定关系,把这种关系找出来,就是它的方程,而图形的方程和图形间有一一对应的关系,这样就把研究曲线与曲面的几何问题转化为了代数问题。如曲面的方程为F(x,y,z)=0,要研究空间中三曲面是否有公共点的问题就可归结为求三曲面方程的公共解,也就是解三元联立方程组的问题。例如方程组
如果有实数解,则三曲面点的坐标。若方程组无实数解,三曲面就没有公共点。
平面曲线的普通方程为
就有公共点,方程组的解就是公共,参数,参数方程为单参数的;曲面的普通方程为方程为双参数的;空间曲线的普通方程为,参数方程为单参数的。
参数方程若能消去参数可得到普通方程,普通方程化为参数方程时形式却是不唯一的,但一定要保证与原方程等价。典型习题:
1.有一长度为段中点的轨迹。解:设 >0)的线段,它的两端点分别在轴正半轴与,为两端点,为此线段的中点。
.在中有
轴的正半轴上移动,是求此线
:.则即.∴此线段中点的轨迹为.2.有一质点,沿着已知圆锥面的一条直母线自圆锥的顶点起,作等速直线运动,另一方面这一条母线在圆锥面上,过圆锥的顶点绕圆锥的轴(旋转轴)作等速的运动,这时质点在圆锥面上的轨迹叫做圆锥螺线,试建立圆锥螺线的方程.解:取圆锥面的顶点为坐标原点,圆锥的轴为z轴建立直角坐标系,并设圆锥顶角为,旋转角速度为,直线运动速度为V,动点的初始位置在原点,而且动点所在直母线的初始位置在xoz面上,t秒后质点到达P点,P点在xoy面上的射影为N,N在x轴上的射影为M,则有
而
所以,圆锥螺旋线的向量式参数方程为
坐标式参数方程为
(﹣∞ 本章教学目的: 通过本章的学习,使学生掌握空间坐标系下平面、直线方程的各种形式,掌握确定平面与直线的条件,熟练掌握点、平面与空间直线间各种位置关系的解析条件及其几何直观概念.本章教学重点:(1)空间坐标系下平面方程的点位式和点法式、直线方程点向式与标准式;(2)点、平面与空间直线间各种位置关系的解析条件;(3)平面与空间直线各种度量关系的量化公式.本章教学难点:(1)异面直线的公垂线方程;(2)综合运用位置关系的解析条件求平面、空间直线方程.本章教学内容: §3.1平面的方程 1.平面的点位式方程 在空间给定了一点M0与两个不共线的向量a,b后,通过点M0且与a,b平行的平面 就惟一被确定.向量a,b叫平面 的方位向量.任意两个与平行的不共线的向量都可作为平面 的方位向量.取标架==,设点M0的向径,平面 上任意一点M的向 = {x,y,z}(如图).点M在径为r =平面上的充要条件为向量与向量a,b共面.由于a,b不共线,这个共面的条件可以写成 = ua+vb 而= r -r0,所以上式可写成 r = r0+ua+vb(3.1-1) 此方程叫做平面 的点位式向量参数方程,其中u,v为参数.31 若令a = {,},b = {,},则由(3.1-1)可得 (3.1-2) 此方程叫做平面 的点位式坐标参数方程,其中u,v为参数.(3.1-1)式两边与a³b作内积,消去参数u,v得 (r -r0,a,b)= 0(3.1-3) 此即 =0(3.1-4) 这是 的点位式普通方程.例1:已知平面上三非共线点 (i = 1,2,3).求通过 ={,(i = 1,2,3)的平面方程。},i = 1,2,3.对动点M,设r = ={x,解: 建立坐标系{O;e1, e2, e3},设ri = y,z},取次为 和为方位向量,M1为定点,则平面的向量参数方程,坐标参数方程和一般方程依r = +u(-)+v(-r1)(3.1-5) (3.1-6) = 0(3.1-7) (3.1-5),(3.1-6)和(3.1-7)统称为平面的三点式方程.特别地,若是 与三坐标轴的交点,即≠0,则平面 的方程就是 (a,0,0),(0,b,0),(0,0,c),其中abc=0(3.1-8) 即 (3.1-9) 此方程叫平面的截距式方程,其中a,b,c称为 在三坐标轴上的截距.2.平面的一般方程 在空间,任一平面都可用其上一点M0(x0,y0,z0)和两个方位向量a = {,},b = {,}确定,因而任一平面都可用方程(3.1-4)表示.将(3.1-4)展开就可写成 Ax+By+Cz+D = 0(3.1-10)其中 A =,B =,C = 由于a = {,}与b = {,}不共线,所以A,B,C不全为零,这说明空间任一平面都可用关于a,b,c的一三元一次方程来表示.32 反之,任给一三元一次方程(3.1-10),不妨设A≠0,则(3.1-10)可改写成 即 它显然表示由点M0(-D / A,0,0)和两个不共线的向量{B,-A,0}和{C,0,-A }所决定的平面.于是有 定理3.1.1 空间中任一平面的方程都可表为一个关于变数x,y,z的三元一次方程;反过来,任一关于变数x,y,z的三元一次方程都表示一个平面.方程(3.1-10)称为平面 的一般方程.现在先来讨论几种特殊的平面方程(平面对于坐标系来讲具有某种特殊位置): 1.D=0的平面都通过原点。 2.A、B、C中有一个为0,例如C=0,则平面通过Z轴。 3.A、B、C中有两个为0,若D,B=C=0,平面平行于yoz坐标面。.其余情况同学们自己讨论。 3.平面的法式方程。 若给定一点M0和一个非零向量n,则过M0且与n垂直的平面也被惟一地确定.称n为的法向量.在空间坐标系{O;i,j,k}下,设={x,y,z},则因总有 = ={x0,y0,z0},n = {A,B,C},且平面上任一点M的向径r =⊥n,有 n(r-r0)= 0(3.1-11)也就是 A(x-x0)+B(y-y0)+C(z-z0)= 0(3.1-12) 方程(3.1-11)和(3.1-12)叫平面 的点法式方程.(3.1-12)中的系数A,B,C有简明的几何意义,它们就是平面 的一个法向量的分量.特别地,取M0为自O向 所作垂线的垂足,而n为单位向量.当平面不过原点时,取n为与00的单位向量n,当平面过原点时取n的正向为垂直与平面的两个方向中的任一个.设|| = p,则0n(r-p n0)= 0 = p n,由点P和n确定的平面的方程为,上式可写成 n0r-p = 0(3.1-13) 0 0 同向式中r是平面的动向径.由于此方程叫平面的向量式法式方程.0若设r = {x,y,z},n = {cos,cos,cos},则由(3.1-13)得 x cos+y cos+z cos-p = 0(3.1-14) 此为平面的坐标法式方程,简称法式方程.平面的坐标法式方程有如下特征: 1°一次项系数是单位向量的分量,其平方和等于1; 2°常数项-p≢0(意味着p ≣ 0).3°p是原点到平面的距离.例3: 求通过点 且平行于z轴的平面方程。,所以有2A 解:设平行于z轴的平面方程为Ax+By+D = 0,因为它又要通过-B+D = 0,3A-2B+D = 0,由上两式得A:B:C= 所以所求平面方程为x+y-1= 0 4.化一般方程为法式方程 在直角坐标系下,若已知的一般方程为Ax+By+Cz+D = 0,则n = {A,B,C}是的法向量,Ax+By+Cz+D = 0可写为 nr+D = 0(3.1-15) 与(3.1-13)比较可知,只要以 去乘(3.1-15)就可得法式方程 Ax+By+Cz+D = 0(3.1-16) 其中正负号的选取,当D≠0时应使(3.1-16)的常数项为负,D=0时可任意选.以上过程称为平面方程的法式化,而将例2:已知两点解: 中点坐标为: 化为法式方程,并求出原点指向平面的单位法向量。,,求线段 叫做法化因子.垂直平分面的方程。 平面的点法式方程为: 整理后得:例3:把平面 解: :所以 法式方程为: §3.2平面与点的相关位置 平面与点的位置关系,有两种情形,就是点在平面上和点不在平面上.前者的条件是点的坐标满足平面方程.点不在平面上时,一般要求点到平面的距离,并用离差反映点在平面的哪一侧.1.点到平面的距离 定义3.2.1 自点M0向平面 引垂线,垂足为Q.向量面之间的离差,记作 = 射影 n0 在平面的单位法向量n0上的射影叫做M0与平 (3.2-1) 显然 = 射影n0当0.0 = ²n =∣ 0 0 ∣cos∠(,n)=±∣ 0 ∣ 与n同向时,离差 > 0;当与n反向时,离差 < 0.当且仅当M0在平面上时,离差 = 显然,离差的绝对值就是点M0到平面 的距离.定理3.2.1 点M0与平面(3.1-13)之间的离差为 = n0r0-p(3.2-2)证:根据定义3.2.2和上图得 = 射影n0 其中q== n(0 0 -)= n(r0-q)= nr0-n q 0 000,而Q在平面(3.1-13)上,因此n q= p,所以 = nr0-p。,则 与间的离差 推论1 若平面 的法式方程为 3) 推论2 点与平面Ax+By+Cz+D = 0间的距离为 (3.2- (3.2-4) 2.平面划分空间问题 三元一次不等式的几何意义 设平面的一般方程为 Ax+By+Cz+D = 0 则空间中任一点M(x,y,z)与间的离差为 = (Ax+By+Cz+D)式中为平面的法化因子,由此有 Ax+By+Cz+D =(3.2-5) 对于平面同侧的点, 的符号相同;对于在平面的异侧的点, 有不同的符号,而一经取定,符号就是固定的.因此,平面:Ax+By+Cz+D = 0把空间划分为两部分,对于某一部分的点M(x,y,z)Ax+By+Cz+D > 0;而对于另一部分的点,则有Ax+By+Cz+D < 0,在平面上的点有Ax+By+Cz+D = 0.§3.3 两平面的相关位置 空间两平面的相关位置有3种情形,即相交、平行和重合.设两平面1与2的方程分别是 1:(1) 2:(2) 则两平面1与2相交、平行或是重合,就决定于由方程(1)与(2)构成的方程组是有解还是无解,或无数个解,从而我们可得下面的定理.定理3.3.1两平面(1)与(2)相交的充要条件是 (3.3-1) 平行的充要条件是 (3.3-2) 重合的充要条件是 (3.3-3) 由于两平面1与2的法向量分别为,当且仅当n1不平行于n2时1与2相交,当且仅当n1∥n2时1与2平行或重合,由此我们同样能得到上面3个条件.下面定义两平面间的夹角.设两平面的法向量间的夹角为,称1与2的二面角∠(1,2)= 或-为两平面间的夹角.显然有 =±cos =±定理3.3.2两平面(1)与(2)垂直的充要条件是 (3.3-5) 例 一平面过两点 和且垂直于平面x+y+z = 0,求它的方程.解 设所求平面的法向量为n = {A,B,C},(3.3-4) 由于在所求平面上,有,即.又n垂直于平面x+y+z = 0的法线向量{1,1,1},故有A+B+C = 0 解方程组 得 所求平面的方程为,约去非零因子C得,即 2x-y-z =0,§3.4 空间直线的方程 1.直线的点向式方程 在空间给定了一点与一个非零向量v = {X,Y,Z},则过点M0且平行于向量v的直线l就惟一地被确定.向量v叫直线l的方向向量.显然,任一与直线l上平行的飞零向量均可作为直线l的方向向量.下面建立直线l的方程.如图,设M(x,y,z)是直线l上任意一点,其对应的向径是r = { x,y,z },而对应的向径是r0,则因有 //v,有t∈R,= t v.即r-r0= t v 所以得直线l的点向式向量参数方程 r = r0+t v(3.4-1) 以诸相关向量的分量代入上式,得 根据向量加法的性质就得直线l的点向式坐标参数方程为 -∞ < t < +∞(3.4-2) 消去参数t,就得直线l的点向式对称方程为 (3.4-3) 此方程也叫直线l的标准方程.今后如无特别说明,在作业和考试时所求得的直线方程的结果都应写成对称式.例1 设直线L通过空间两点M1(x1,y1,z1)和M2(x2,y2,z2),则取M1为定点,就得到直线的两点式方程为 (3.4-4) 根据前面的分析和直线的方程(3.4-1),可得到 为方位向量,这个式子清楚地给出了直线的参数方程(3.4-1)或(3.4-2)中参数的几何意义:参数t的绝对值等于定点M0到动点M之间的距离与方向向量的模的比值,表明线段M0M的长度是方向向量v的长度的 |t| 倍.0特别地,若取方向向量为单位向量v = {cos,cos,cos} 则(3.4-1)、(3.4-2)和(3.4-3)就依次变为 0 r = r0+t v(3.4-5) -∞ < t < +∞(3.4-6) 和 (3.4-7) 此时因 |v| = 1,t的绝对值恰好等于l上两点M0与M之间的距离.直线l的方向向量的方向角,, cos,cos,cos 分别叫做直线l的方向角和方向余弦.由于任意一个与v平行的非零向量v'都可作为直线l的方向向量,而二者的分量是成比例的,我们一般称X :Y :Z为直线l的方向数,用来表示直线l的方向.2.直线的一般方程 空间直线l可看成两平面1和2的交线.事实上,若两个相交的平面1和2的方程分别为 1: 那么空间直线l上的任何一点的坐标同时满足这两个平面方程,即应满足方程组 2: (3.4-8) 反过来,如果点不在直线l上,那么它不可能同时在平面1和2上,所以它的坐标不满足方程组(3.4-8).因此,l可用方程组(3.4-8)表示,方程组(3.4-8)叫做空间直线的一般方程.一般说来,过空间一直线的平面有无限多个,所以只要在无限多个平面中任选其中的两个,将它们的方程联立起来,就可得到空间直线的方程.直线的标准方程(3.4-3)是一般方程的特殊形式.将标准方程化为一般式,得到的是直线的射影式方程.将直线的一般方程化为标准式,只需在直线上任取一点,然后取构成直线的两个平面的两个法向量的向量积为直线的方向向量即可.例 将直线的一般方程 化为对称式和参数方程.解 令y = 0,得这直线上的一点(1,0,-2).两平面的法向量为 a = {1,1,1},b = {2,-1,3} 因a³b = {4,-1,-3},取为直线的法向量,即得直线的对称式方程为 令,则得所求的参数方程为 §3.5 直线与平面的相关位置 直线与平面的相关位置有直线与平面相交,直线与平面平行和直线在平面上3种情形.设直线l与平面 的方程分别为 l:(1) :Ax+By+Cz+D = 0(2) (1)也就是 .将(2)代入(1),整理可得 (AX+BY+CZ)t = -(Ax0+By0+Cz0+D)(3) 当且仅当AX+BY+CZ≠0时,(3)有惟一解 这时直线l与平面 有惟一公共点;当且仅当AX+BY+CZ = 0,Ax0+By0+Cz0+D≠0时,(3)无解,直线l与平面 没有公共点;当且仅当AX+BY+CZ = 0,Ax0+By0+Cz0+D = 0时,(3)有无数多解,直线l在平面 上.于是有 定理3.5.1 关于直线(1)与平面(2)的相互位置,有下面的充要条件: 1)相交: AX+BY+CZ≠0 2)平行: AX+BY+CZ = 0,Ax0+By0+Cz0+D≠0 3)直线在平面上: AX+BY+CZ = 0,Ax0+By0+Cz0+D = 0 以上条件的几何解释:就是直线l的方向向量v与平面 的法向量n之间关系.1)表示v与n不垂直; 2)表示v与n垂直且直线l上的点(x0,y0,z0)不在平面 上; 3)表示v与n垂直且直线l上的点(x0,y0,z0)在平面 上.当直线l与平面 相交时,可求它们的交角.当直线不与平面垂直时,直线与平面的交角 是指直线和它在平面上的射影所构成的锐角;垂直时规定是直角.设v = {X,Y,Z}是直线l的方向向量,n = {A,B,C}是平面 的法向量,则 令 ∠(l,)=,∠(v,n)= ,就有 = 或= -( 为锐角) (3.5-1)因而,sin =∣cos∣==从这个公式也可直接得到定理3.5.1中的条件.§3.6 空间直线与点的相关位置 任给一条直线l的方程和一点M0,则l和M0的位置关系只有两种:点在直线上和点不在直线上。从代数上,这两种情况对应点的坐标满足方程和点的坐标不满足方程.当点不在直线上时,可求此点到直线的距离.设空间中有一点M0(x0,y0,z0),和一条直线l: l: 此处M1(x1,y1,z1)是l上的一点,v = {X,Y,Z}是l的方向向量.以v和 为邻边作一平行四变形,则其面积为 | v³|,点M0到直线l的距离d就是此平行四变形的对应于底 | v | 的高,所以 =(3.7-1) 在实际计算中,记忆上式的第二个等号后面的部分是没有实际意义的.只需根据公式的前半部分计算即可.§3.7空间两直线的相关位置 1.空间两直线的位置关系: 空间两直线的相关位置有异面与共面,共面时又有相交、平行和重合3种情形.设二直线的方程为 : i = 1,2 此处直线l1是由点和方向向量v1 = {X1,Y1,Z1}决定的,而直线l2是由点和方向向量v2 = {X2,Y2,Z2}决定的.由图容易看出,两直线的相关位置决定于三向量,v1,v2的相互关系.当且仅当这三个向量异面时,两直线异面;当且仅当这三个向量共面时,两直线共面.共面时,若v1,v2不平行,则l1和l2相交,若v1∥v2但不与平行,则l1和l2平行,v1∥v2∥则l1和l2重合.因此有 定理3.6.1 空间两直线l1和l2的相关位置有下面的充要条件 1)异面: (3.6-1) 2)相交:(3.6-2)3)平行:(3.6-3)4)重合:(3.6-4)2.空间两直线的夹角 平行于空间两直线的两向量间的夹角,叫空间两直线的夹角.显然,若两直线间的夹角是,则也可认为它们之间的夹角是-.定理3.6.2 空间两直线l1和l2的夹角的余弦为 (3.6-5),推论 两直线l1与l2垂直的充要条件是 X1X2+Y1Y2+Z1Z2 = 0(3.6-6) 3.二异面直线间的距离与公垂线的方程 空间两直线的点之间的最短距离叫这两条直线之间的距离.两相交或两重合直线间的距离为零;两平行直线间的距离等于其中一直线上的任意一点到另一直线的距离.与两条异面直线都垂直相交的直线叫两异面直线的公垂线.两异面直线间的距离就等于它们的公垂线夹在两异面直线间的线段的长.39 设两异面直线l1和l2的方程如前,l1和l2与它们的公垂线的交点分别为N1和N2,则l1和l2之间的距离 也就是 (3.6-6) 现在求两异面直线l1和l2的公垂线的方程.如上图,公垂线l0的方向向量可取作= {X,Y,Z},而公垂线l0可看作两个平面的交线,这两个平面一个通过点M1,以v1和 和为方向向量,另一个平面通过点M2,以v2和 和为方向向量.因此公垂线l0的一般方程可写为(3.6-7).例1求通过点方程。 解:设直线方程为:由条件可得: 而与平面平行,且与直线相交的直线的即 从而,且所以,直线方程为:例2 已知两直线: 与 ⑴ 证明它们为异面直线; ⑵ 求它们公垂线的方程 解: ⑴ ⑵ 公垂线方向为:,所以,两直线异面。 公垂线方程为:,化简得: 即: §3.8平面束 1.平面束 定义3.8.1 空间中过同一直线l的所有平面的集合称为有轴平面束,l称为这平面束的轴.定义3.8.2 空间中平行于一定平面的所有平面的集合称为平行平面束.有轴和平行平面束统称为平面束.定理3.8.1 如果两个平面 1:x+y+z+= 0(1) 2:x+y+z+= 0(2) 交于一条直线L,那么以直线L为轴的有轴平面束的方程是 (x+y+z+)+(x+y+其中 和 是不全为零的任意实数.证 先证(3.8-1)表示过L的平面.z+)= 0(3.8-1) (3.8-1)即为(+)x+(+)y+(+ 上式中x,y,z的系数必不全为零,若不然,则有 -: = : = :)z+= : + = 0 这与与相交矛盾.故表示(3.8-1)一平面,显然通过与的交线L.再证明对于过L的任一平面,必存在不全为零的实数,,使的方程为(3.8-1).首先,若是一般地,若≠件是,取 = 1, = 0;若是,取 = 0, =1即可.,i = 1,2,取上一点A(a,b,c)L,则由于(3.8-1)表示的平面要通过L的条(a+b+c+)+(a+b+ b+c+ c+)= 0 即 : =-(a+):(a+b+c+) 不妨取 =-(a+b+c+), =a+b+c+ 则由于A不在L上, 和 不全为零,因而过L且过A的平面 的方程必可写成(3.8-1)的形式.例 求过二平面4x-y+3z-1 = 0与x+5y-z+2 = 0的交线,且过原点的平面的方程.解 略(讲解时实推).定理3.8.2 如果两个平面 1:x+y+z+= 0(1) 2:x+y+z+= 0(2) 为平行平面,那么方程 41)+(x+y+z+)= 0(3.8-1) 为平行平面束,平面束中任一平面都和1或2平行.式中 和 是不全为零的任意实数,且 - :≠A1 :A2 = B1 :B2 = C1 :C2 定理3.8.3平行于平面:Ax+By+Cz+D = 0的所有平面的方程可表为 Ax+By+Cz+ = 0(3.8-2) 例 求与平面3x+y-z+4 = 0平行,且在z轴的截距等于-6的平面的方程.解 设所求的平面是3x+y-z+t = 0,则由于点(0,0,-6)在平面上,有 t+6 = 0, t =-6 所求的平面方程为 3x+y-z-6 = 0 2.平面把 定义3.8.3 空间中过一定点的所有平面的集合称为平面把,称为把心.(x+y+z+定理3.8.4 过定点(,)的所有平面的方程为 A(x-x0)+B(y-y0)+C(z-z0)= 0(3.8-3) 其中A,B,C是任意不全为零的实数.更一般地,我们有 定义3.8.3 空间中过一定点的所有平面的集合称为平面把,称为把心.定理3.8.5 过定点(,)的所有平面的方程为 A(x-x0)+B(y-y0)+C(z-z0)= 0(3.8-4) 其中A,B,C是任意不全为零的实数.定理3.8.6 对任意不全为0的 , ,,方程 (3.8-5) 表示过三平面 :的(惟一)交点(,,使 的方程为(3.8-4).)的一个平面;反之,对任意过, 3 的平面,必存在不全为零的 , ,小结 知识点回顾: 通过本章的学习,使学生掌握空间坐标系下平面、直线方程的各种形式,掌握确定平面与直线的条件,熟练掌握点、平面与空间直线间各种位置关系的解析条件及其几何直观概念.(1)空间坐标系下平面方程的点位式和点法式.在空间取仿射坐标系则平面设点的向量式参数方程为的坐标分别为,并设点的向径其中,那么,平面 为参数。 ;并设 上任意一点的向径为 则平面的坐标式参数方程为,为参数。 平面的点位式方程为 空间中任一平面的方程都可以表示成一个关于变量 x,y,z 的一次方程;反过来,每一个关于变量 x,y,z 的一次方程都表示一个平面,Ax+By+Cz+D=0 叫做平面的一般方程 取空间直角坐标系,设点的向径为 ,平面上的任意一点的向径为,则平面的点法式方程.(2)空间直线的各种方程.42 在空间取仿射坐标系则其向量式参数方程为,已知直线上一点。,动点,方向向量.坐标式参数方程为:对称式方程或标准方程为: .。 设有两个平面的方程为中的系数行列式 (*)如果,即方程组(*) 不全为零,那么相交,它们的交线设为,因为 上的任意一点同在这两平面上,所以它的坐标必满足方程组(*);反过来,坐标满足方程组(*)的点同在两平面上,因而一定在这两平面的交线即直线 上,因此方程组(*)表示直线的方程,把它叫做直线的一般方程(3)点的离差和点到平面的距离; 如果自点与平面到平面引垂线,其垂足为,那么向量 在平面的单位法向量 上的射影叫做点之间的离差,记做点到平面距离公式:(4)点到直线的的距离:.(5)异面直线的公垂线方程 两异面直线 典型习题: 1、一平面过两点 和,求它的方程.解 设所求平面的法线向量为 显然,故 即 又垂直于平面故有 ; 且垂直于平面,在所求平面上,,.的法线向量,43 解方程组 得 据点法式方程有,约去非零因子 得,故所求方程为 2、用对称式方程及其参数方程硎局毕?/span> 解 先找出这直线上的一点,如:取 代入方程组得 解此二元一次方程组得 于是,得到直线上的一点 再找该直线的一个方向向量都垂直,可取 .,由于两平面的交线与两平面的法线向量,因此,所给直线的对称式方程为 ; 直线的参数方程为 3分别在下列条件下确定(1)使(2)使与的值: 和 表示二平行平面; 表示同一平面; (3)使与表示二互相垂直的平面。解:(1)欲使所给的二方程表示同一平面,则: 即: 从而:。 (2)欲使所给的二方程表示二平行平面,则: 所以:。 所以: : 。(3)欲使所给的二方程表示二垂直平面,则:4.试验证直线:解: 直线与平面相交。 与平面 相交,并求出它的交点和交角。 又直线的坐标式参数方程为: 设交点处对应的参数为,从而交点为(1,0,-1)。又设直线与平面的交角为,则:,5.给定两异面直线:解:因为公垂线方程为:,与,试求它们的公垂线方程。 即,亦即 第四章 柱面、锥面、旋转曲面及常见二次曲面 本章教学目的: 使学生掌握柱面、锥面和旋转曲面的定义、方程求法和方程特征;熟练掌握五种常见二次曲面的定义、标准方程及几何特征,了解它们的性质,会画它们的草图.本章教学重点:(1)常见二次曲面的定义、标准方程及图形的特征;(2)坐标面上的曲线绕坐标轴旋转时所产生旋转曲面方程的求法.(3)通过求柱面、锥面和旋转曲面的方程,理解动曲线产生曲面的思想方法.本章教学难点 :(1)柱面及锥面方程的求法中消去参数的几何意义的理解;(2)双曲抛物面的几何性质的分析;(3)二次曲面直纹性的证明.本章教学内容: §4.1 柱面 一 柱面 定义4.1.1 在空间,由平行于定方向且与一条定曲线相交的一族平行直线所产生的曲面叫做柱面.其中定方向叫柱面的方向,定曲呓兄条都叫柱面的母线.注:1°一个柱面的准线不惟一(举例).2°平面和直线也是柱面.以下建立柱面的方程.设在给定的坐标系下,柱面S的准线为 (1) 母线的方向数为X,Y,Z.若M1(x1,y1,z1)为准线上任一点,则过M1的母线方程为 (2) 且有(3) 从(2)、(3)4个等式中消去参数x1,y1,z1,最后得一个三元方程 F(x,y,z)= 0 就是以(1)为准线,以{X,Y,Z}为方向的柱面的方程.这里需要特别强调的是,消去参数的几何意义,就是让点M1遍历准线上的所有位置,就是让动直线(1)“扫”出符合要求的柱面.例1 已知一个柱面的准线方程为,其母线的方向数是-1,0,1,求该柱面的方程.解 设M1(x1,y1,z1)是准线上的点,过M1(x1,y1,z1)的母线为 (1) 且有 (2)(3) 由(1)得 将(4)代入(2)和(3)得 (4) (5) (6) 由(5)和(6)得 (7) 将(7)代入(5)(或(6))得所求柱面方程为即.例2 已知圆柱面的轴为,点M1(1,-2,1)在此柱面上,求这个圆柱面的方程.解法一 记所求的圆柱面为S.因S的母线平行于其轴,母线的方向数为1,-2,-2,若能求得圆柱面的准线圆,则用例1的方法即可解题.空间的圆总可看成某一球面与某一平面的交线,故圆柱面的准线圆可看成以轴上的点.M0(0,1,-1)为中心,为半径的球面的交线,即准线圆 是 设为 上的任意点,则 (1)(2) 与过已知点M1(1,-2,1)且垂直于轴的平面S的过的母线为 (3) 由(1)、(2)、(3)消去参数x1,y1,z1,得S的方程为.将圆柱面看成动点到轴线等距离点的轨迹,这里的距离就是圆柱面的半径,那么例2就有下面的第二种解法.解法二 因轴的方向向量为v = {1,-2,-2},轴上的定点为M0(0,1,-1),M1(1,-2,1)是S上的定点,点M1到l的距离 .设M(x,y,z)是圆柱面上任意一点,则M到轴l的距离为,即 化简整理就得S的方程为 二、柱面的判定定理 定理4.1.1 在空间直角坐标系中,只含有两个元(坐标)的三元方程所表示的曲面是一个柱面,它的母线平行于所缺元(坐标)的同名坐标轴。 在空间直角坐标系里,因为这些柱面与 xoy坐标面的交线分别是椭圆,双曲线与抛物线,所以它们依次叫做椭圆柱面,双曲柱面,抛物柱面,统称为二次柱面.三、空间曲线的射影柱面 空间曲线L:(15),如果我们从(15)中依次消去一个元,可得,任取其中两个方程组,比如(16)那么方成这样(16)和(15)是两个等价的 方程组,也就是(16)表示的曲线和(15)是同一条,从而曲面都通过已知曲线(15);同理方程知,曲面 表示的曲面也通过已知曲线(15)。有定理4.1.1表示一个母线平行于z轴的柱面,在直角坐标系下,起母线垂直于xoy坐标面,我们把曲面叫做空间曲线(15)对xoy坐标面射影的射影柱面,而曲线曲线(15)在xoy坐标面上的射影曲线。同理,与 叫做空间 分别叫做曲线(15)对xoz坐标面与yoz坐标面射影的射影柱面,而曲线和叫做空间曲线(15)在xoz坐标面与yoz坐标面上的射影曲线。 §4.2 锥面 定义4.2.1 在空间,通过一定点且与一条定曲线相交的一族直线所产生的曲面叫做锥面.这里定点叫做锥面的顶点,定曲线叫锥面的准线,直线族中的每一条都叫锥面的母线.注:1°一个锥面的准线不惟一(举例).2°平面既是柱面也是锥面.3°一条直线也是锥面.4°若将柱面的母线看成在无穷远处相交的话,则柱面是一个顶点在无穷远点的锥面.以下建立锥面的方程.设锥面S的准线为 (1) 顶点为A(x0,y0,z0).若M1(x1,y1,z1)为准线上任一点,则过M1的锥面的母线方程为 (2) 且有(3) 从(2)、(3)4个等式中消去参数x1,y1,z1,最后得一个三元方程F(x,y,z)= 0 就是以(1)为准线,以A为顶点的锥面的方程.这里消去参数的几何意义与柱面的情形类似,就是让点M1跑遍准线上的所有点,从而让动直线(2)“扫”出符合要求的锥面.下面的定理给出了锥面方程的特征.先介绍齐次函数的概念.设为实数,对于函数,若 此处t的取值应使有确定的意义,则称为n元次齐次函数,对应的方程= 0为次齐次方程.22例 u = xy+2yz+xyz为三次齐次函数.定理4.2.1 一个关于x,y,z的齐次方程总表示一个顶点在原点的锥面.48 证: 由齐次方程的定义有当设直线的方程为 时有,故曲面S:为S上非原点的任意点,则 .过原点.满足,即有 .而 代入= 0,得,即直线 上的所有点的坐标满足曲面S的方程.因此直线在曲面S:上,故曲面S:是由这种通过坐标原点的直线组成,因而是以原点为顶点的锥面.推论 一个关于x-x0,y-y0,z-z0的齐次方程总表示一个顶点在(x0,y0,z0)的锥面.证 设有x-x0,y-y0,z-z0的齐次方程 F(x-x0,y-y0,z-z0)=0(*) 作坐标变换(**)为齐次方程,故表示顶点在点的锥面.的齐次方程可能只表示原点.例如 .这样的曲面,表示以,则(*)化为(**) 为顶点的锥面.从而 注 在特殊情况下,一个关于一般称为有实顶点的虚锥面.例1 锥面的顶点为原点,准线为解 设,求锥面的方程.为准线上任意一点,则过M1的母线为: (4) 且有(5) (6) 将(6)代入(4)得(7) 将(7)代入(3)得(4.2-1)这就是所求的锥面,称为为二次锥面.二次锥面的方程(4.2-1)所表示的图形,当a = b时就是我们熟悉的圆锥面.例2 已知一圆锥面的顶点为A(1,2,3),轴l垂直于平面30°的角,试求该圆锥面的方程.解 设,母线与轴l组成为所求曲面S的任一母线上的任一点,则过M的母线的方向向量为 n = {2,2,-1}.由题,圆锥的轴线的方向向量即为平面根据题意v和n的夹角是30°或150°,故有 即 化简整理得圆锥面的方程是 这是一个关于x-1,y-2,z-3的二次齐次方程.此结果也是对定理4.2.1的推论的一个直接验证.因圆锥面是一种特殊的锥面,上面的解法是一种适合于圆锥面的特殊方法.我们当然可以先求出圆锥面的准线,再利用顶点与准线求出该圆锥面的方程.§4.3 旋转曲面 1.一般的旋转曲面方程 定义4.3.1 在空间,一条曲线 绕一定直线l旋转一周所产生的曲面S叫做旋转曲面(或回转曲面).叫做S的母线,l称为S的的旋转轴,简称为轴.设为旋转曲面S的母线上的任一点,在 绕轴l旋转时,也绕l旋转而形成一个圆,称其为S的纬圆、纬线或平行圆.以l为边界的半平面与S的交线称为S的经线.S的纬圆实际上是过母线 上的点且垂直于轴l的平面与S的交线.S的所有纬圆构成整个S.S的所有经线的形状相同,且都可以作为S的母线,而母线不一定是经线.这里因为母线不一定为平面曲线,而经线为平面曲线.在直角坐标系下,设旋转曲面S的母线为 :旋转轴为 (1) l这里为l上一点,X,Y,Z为l的方向数.(2) 设M1(x1,y1,z1)为母线 上的任意点,过M1的纬圆总可看成过中心,(3) 为半径的球面的交线.故过M1的纬圆的方程为 且垂直于轴l的平面与以P0为 (4) 当M1跑遍整个母线时,就得出旋转曲面的所有纬圆,所求的旋转曲面就可以看成是由这些纬圆构成的.由于M1(x1,y1,z1)在母线 上,有 (5) 从(3)、(4)、(5)4个等式消去参数x1,y1,z1得一个方程 F(x,y,z)= 0 即为S的方程.例1 求直线 :绕直线旋转所得的旋转曲面S的方程.解 设M1(x1,y1,z1)为母线 上的任一点,因旋转轴过原点,过M1的纬圆方程为 (7) 第一章 矢量与坐标 教学目的: 1、理解矢量的有关概念,掌握矢量线性运算的法则及其运算性质; 2、理解矢量的乘法运算的意义,熟悉它们的几何性质,并掌握它们的运算规律; 3、利用矢量建立坐标系概念,并给出矢量线性运算和乘法运算的坐标表示; 4、能熟练地进行矢量的各种运算,并能利用矢量来解决一些几何问题。教学重点:矢量的概念和矢量的数性积,矢性积,混合积。教学难点:矢量数性积,矢性积与混合积的几何意义。教学时数:18学时 §1.1~§1.3 矢量的概念,矢量的加法,数量乘矢量 由于这部分内容已下放到高中教材中,学生基本上已掌握,因此我们这里就不作重点讲解,只对某些基本知识作简单复习.§1.4 矢量的线性关系与矢量的分解 教学要求:掌握矢量线性组合的定义,共线矢量,平面矢量,空间矢量用其基底表示的方法,线性相关,线性无关的概念以及相关的重要定理.前面已学过矢量的加法和数与矢量的乘法,它们称为矢量的线性运算,且我们知道有限个矢量通过线性计算,它的结果仍然是一个矢量,下面首先给出 1线性组合 定义1.4.1 由矢量a1,a2,...,an与数1,2,...,n所组成的矢量a1a12a2...nan 称为矢量a1,a2,...,an的线性组合.注:线性组合也可说成线性表示,线性分解,a也称为a的线性组合.2 线性关系 (1)线性相关和无关性:(定义1.4.2)对于n(n1)个矢量a1,a2,...,an,如果存在不全为零的n个 .nan0 (1.4.1)数1,2,...,n,使得: 1a12a2..那么n个矢量a1,a2,...,an叫做线性相关。a1,a2,...,an 推论:一个矢量a线性相关的充要条件为a0 a1,a2,...,an线性无关, 当且仅当: 1a12a2...nan0时12...n0 例:判断下列向量组是相关还是无关? (2)一些基本性质: 定理1.4.1 在n2时,矢量a1,a2,...,an线性相关的充要条件是其中有一个矢量是其余矢量的线性组合.证明: 定理1.4.2 如果一组矢量中的一部分矢量线性相关,那么这一组矢量就线性相关.推论:一组矢量如果含有零矢量,那么这组矢量必线性相关.定理1.4.3 矢量a1,a2,...,an线性相关, a1,a2,...,an1线性无关,则an可写成 a1,a2,...,an1的线性组合。 即an1a1n1an1,且系数由a1,a2,...,an唯一确定。 3线性组合及关系的几何意义: 定理1.4.4 矢量r与矢量e共线的充要条件r和e线性相关。 推论:如果矢量e0,那么r可写成e的线性组合,即 rxe (1.4-2)并且系数x被r,e唯一确定 定理1.4.5三矢量共面的充要条件是它们线性相关 证明: 若r与e1,e2共面 若e1//e2 由定理1.4.4以及定理1.4.2结论显然。 若e1,e2不平行如图。 反过来若r与e1,e2线性相关 推论:如果矢量e1,e2不共线,那么矢量r与e1,e2共面的充要条件是r可分解成e1,e2的线性组合,即 rxe1ye 2(1.4-3)并且系数x,y被r,e1,e2唯一确定 这里e1,e2称为共面(平面)矢量的基底.定理1.4.6 空间任何四个或以上矢量总是线性相关 推论:如果矢量e1,e2,e3不共面,那么空间任意矢量r可由e1,e2,e3线性表示或r可分解成e1,e2,e3的线性组合,即 rxe2ye2ze(1.4-3)并且系数x,y,z被e1,e2,e3,r唯一确定 这里e1,e2,e3称为空间矢量的基底.总结:这一节我们应重点把握好矢量的几个线性分解式和线性相关,线性无关的应用定理 例题见书上 课堂练习:P24 7,8,9 作业:P24,10题 1.5 标架与坐标 教学要求:了解各种标架的定义,掌握坐标的定义,掌握坐标在标架中各个卦线的符号,掌握矢量的坐标运算.引言 前面我们已知道空间中任何矢量可由三个不共面的矢量来线性表示,于是在空间中任取一点O,再引出三个不共面的矢量e1,e2,e3,那么空间中任何矢量r可由e1,e2,e3线性表示,即 rxe1ye2ze3 (1) 并且这里的x,y,z是唯一的一组有序实数.我们把0,e1,e2,e3的集合称为仿射标架,记作0;e1,e2,e3的坐标。标架分为右手系和左手系标架.如果eiej,且eii,j=1…3 称0;e1,e2,e3右手直角坐标系.例: 点关于坐标面、坐标轴、原点的对称点,设P(x,y,z) 关于0点的对称点为x,y,z 关于xoy面的对称点为x,y,z 关于x轴的对称点为x,y,z 1矢量的基本坐标运算 (1)矢量的坐标分量等于其终点的坐标减去其始点的坐标。., x,y,z称为向量r在该标架下 为直角标架,常用0;i,j,k表示空间 特别OP称为点P的径矢 P1x1,y1,z1,P2x2,y2,z2,则P1P2x2x1,y2y1,z2z1 (2)aX1,Y1,Z1(3)设aX,Y,Z,bX2,Y2,Z2,则abX1,则aX,Y,Z X2,Y1Y2,Z1Z2 例:用坐标方法证明:四面体对边中点连线交于一点且互相平分 2共线和共面向量的坐标性质 (1) aX1,Y1,Z1,bX2,Y2,Z2共线X1X2Y1Y2Z1Z 2当分母为0时,约定分子也为0 推论: 三个点A(x1,y1,z1),B(x2,y2,z2)和C(x3,y3,z3)共线的充要条件是 AB//ACx2x1x3x1y2y1y3y1z2z1z3z 1(2)三个非零矢量aX1,Y1,Z1,bX2,Y2,Z2和cX3,Y3,Z3共面的充要条件是 X1XX23Y1Y2Y3Z1Z20 Z3证明: 复习:平面向量aX1,Y1,bX2,Y2共线 X1X2X1Y1Y2Y1Y2Y30 Z1Z2称为三向量张成的有向体积 Z3四维向量共空间是否可以类似讨论? 事实上X2X3推论:四个点Aixi,yi,zii1,2,3,4共面的充要条件是 x2x1x3x1x4x1y2y1y3y1y4y1z2z1z3z10 z4z1x1x2x1x3x1x4x1y1y2y1y3y1y4y1z1z2z1z3z1z4z110000 或 x1x2x3x4y1y2y3y4z1z2z3z411110 (1.5-7’)3定比分点 对于有向P1P2(P1P2)线段,如果点P满足P1PPP2,则称点P为P1P2的分点(定比分点)定理1.5.6 设有向线段P1P2的始点P1x1,y1,z1,终点为P2x2,y2,z2,则分P1P2成定比1的分点P的坐标是 x1x21y1y21z1z21x,y,z (1.5-8) 推论:设Pixi,yi,zii1,2,那么线段P1P2的中点坐标是 xx1x22,yy1y22,zz1z22 (1.5-9)总结:本节重点掌握用坐标进行矢量的运算,三矢量共面,两矢量共线的条件,有向线段的分点的坐标公式,应注意点和矢量坐标的区别和联系。课堂练习:P33,4,10题 作业:P34,7(2),8(2)题 例题见书上 1.6 矢量在轴上的射影 教学要求:了解射影的定义,掌握射影的公式。1 基本概念 ① 点在有向直线l上的射影定义:设有空间中的一点和轴l,过A作垂直轴l的平面交l与A点,则称A为A在轴l上的射影。② 矢量在有向直线上的射影矢量及射影:设A,B两点在轴l上的射影分别为A,B,则矢量AB称为AB在l上的射影矢量,记为射影矢量lAB。 规定l方向为正向,称线段AB的有向长度为AB在l上的射影,记为射影lAB。或射影eAB,显然上述射影满足:ABxe e为l方向的单位矢量 ③ 矢量在矢量上的射影:设e是向量a方向的单位矢量,向量bxe,称x 为b在a上的射影记为射影ab 2 两向量的角 规定两矢量夹角在0到之间,即0(a,b),若a,b同向a,b0,a,b反向,则a,b,在平面上,还可以定义方向角 下面给出射影公式。 定理1.6.1 矢量AB在轴l上的射影等于矢量的模乘以轴与该矢量的夹角的余弦: 射影lABABcos, =(l,AB).(1.6-2) 注:定理1.6.2和1.6.3表明矢量的射影满足加法和数乘两种运算。总结:本节内容相对简单,重点掌握矢量在轴l上的射影的计算公式。作业:P38,1题 1.7 两矢量的数性积 教学要求:掌握两矢量数性积的定义,两矢量垂直的充要条件,数性积的运算律,利用矢量的坐标(分量)表示数性积,两点距离公式,方向余弦,两矢量的夹角余弦。0引言 前面我们已学过矢量的加法和数乘运算,这两种运算的结果仍然是矢量,这一节我们将进行两矢量的一种乘积运算,这种运算的结果是一个数,一个非常典型的例子是物理学上一个外力,经过一定的位移所作的功Wfscos 定义:两个矢量a和b的模和它们夹角的余弦的乘积叫做矢量a和b的数性积(也称内积),记或,即ab或ab ababcosa,b 注:数性积是一个数,零矢量与任何矢量的数性积为0。由上一节射影公式,ab=a射影ab=b射影ba 若be,则,ae射影ea 2若ab,则aaa,记作a,为a的数量平方。2下面给出 定理1.7.1 两矢量a与b互相垂直的充要条件是ab0 该定理有许多应用,值得重视。 定理1.7.2 矢量的数性积满足下面的运算规律 1)交换律 abba 2)关于数因子的结合律 (a)b(ab)a(b)3)分配律 (ab)cacbc 推论:(ab)c(ac)(bc) 我们在这里指出,矢量的数性积运算可以像数的乘法那样进行。现在给出数性积的坐标表示。 定理1.7.3 设aX1iY1jZ1k,bX2iY2jZ2k 那么abX1X2Y1Y2Z1Z2 (1.7-6)推论:设aXiYjZk,那么 下面给出几个重要的公式 1)两点距离公式 定理1.7.4 设aXiYjZk,那么 aa2X2Y2Z2 (1.7-8) 定理1.7.5 空间两点P1X1,Y1,Z1,P2X2,Y2,Z2间的距离是 d(x2x1)(y2y1)(z2z1) (1.7-9)2222)矢量的方向余弦:矢量与坐标轴所成的角叫方向角,而方向角的余弦叫矢量的方向余弦,我们有 定理1.7.6 非零矢量aXiYjZk的方向余弦是 XaYaZaXXXX2cosα=YY2Z2 cosβ=2YZ2Z2 (1.7-10)cosγ=2Y2Z2 且cos2α+cos2β+cos2γ=1 (1.7-11)这里α,β,γ分别为矢量a与x轴,y轴,z轴的交角,即矢量的三个方向角。特别地,a0={cosα,cosβ,cosγ} (1.7-12)3)两矢量的交角 定理1.7.7 设空间中两个非零矢量a{X1,Y1,Z1}和b{X2,Y2,Z2},那么它们夹角的余弦是 cos(a,b)ababXX1X2Y1Y2Z1Z221Y1Z221X22Y22Z22 (1.7-13)推论:矢量a{X1,Y1,Z1}和b{X2,Y2,Z2}相垂直的充要条件是 X1X2Y1Y2Z1Z20 (1.7-14)平面的两矢量有类似的结论。 总结:这一节重点掌握数性积的定义,利用分量表示数性积及其应用。作业:P48,5题 例题见书上。 1.8 两矢量的矢性积 教学要求:掌握矢性积的定义,几何意义,运算律,坐标表示。引言 前面已学过数性积,它表示一个数,这一节我们将引入两矢量的饿乘积运算的另一种形式,它的结果是一个新的矢量。首先看一下它的定义: 定义1.8.1 两矢量a与b的矢性积(也称外积)是一个矢量,记做ab,它的模是 ababsin(a,b),(1.8-1)它的方向与a,b都垂直,且按a,b, ab的顺序构成右手标架{O;a,b, ab} 由平行四边形面积公式,我们有 定理1.8.1 两不共线矢量a与b的矢性积的模等于以a与b为边所构成的平行四边形的面积。这个定理刻画了矢性积的饿几何意义。定理1.8.2 两矢量共线的充要条件是ab=0 该定理的应用也相当广泛,需重视。 定理1.8.3 矢性积是反交换的,即 ab=-(ba) (1.8-2)定理1.8.4 矢性积满足关于数因子的结合律,即 (ab)(a)ba(b) (1.8-3)推论 设,为任意实数,那么 (a)(b)()(ab) (1.8-4) 定理1.8.5 矢性积满足分配律,即 (ab)cacbc (1.8-5) 推论 c(ab)cacb (1.8-6)值得注意的是,矢性积在运算过程中,如果顺序发生改变,一定要变号 下面用分量来表示矢性积 定理1.8.6 如果aX1iY1jZ1k,bX2iY2jZ2k,那么 Y1Y2iabZ1Z2ijY1Y2Z1Z2kX1X2jX1X2Y1Y2k (1.8-7)或abX1X2Z1 (1.8-8)Z2总结:本节重点掌握矢性积的定义,几何意义和分量表示形式。作业:P54,5题 例题见书上。 1.9 三矢量的混合积 教学要求:掌握混合积的定义,几何含义,三矢量共面的充要条件,分量表示。引言 我们在前面两节学习的是两个矢量的乘积运算,但三个矢量的乘积运算还未涉及,总的来说有下面几种情况,矢量a,b作数性积再与c作积,即(ab)c,此时结论为与c共线的矢量,没必要讨论,另外一种是,矢量a,b作矢量积再与c作数性积,即(ab)c,此时为一个数,还有一种是,a,b作矢性积再与c作矢性积,即(ab)c,我们在这一节只讨论第二种情况,首先给出 定义1.9.1 给定空间的三个矢量a,b,c,如果先做前两个矢量a与b的矢性积,再做所得矢量与第三个矢量c的数性积,最后所得的这个数叫三矢量a,b,c的混合积,记做(ab)c,或(a,b,c),或(abc)定理1.9.1 三个不共面矢量a,b,c的混合积的绝对值等于以a,b,c为棱的平面六面体的体积V,并且当a,b,c构成右手系时混合积是正数;当a,b,c构成左手系时,混合积是负数,也就是有(abc)=εV (1.9-1)当a,b,c是右手系时ε=1,反之ε=-1 定理1.9.2 三矢量a,b,c共面的充要条件是(a,b,c)=0 定理1.9.3 轮换混合积的三个因子,并不改变它的值,对调任何两个因子要改变符号,即(abc)=(bca)=(cab)=-(bac)=-(cba)=-(acb) (1.9-2)推论 (ab)ca(bc) (1.9-3)下面用分量表示矢性积 定理1.9.4 如果aX1iY1jZ1k,bX2iY2jZ2k,cX3iY3jZ3k,则 X1(abc)X2X3Y1Y2Y3Z1Z2 (1.9-4)Z3三矢量a,b,c共面的充要条件是 X1X2X3Y1Y2Y3Z1Z20 Z3总结:本节重点掌握混合积的定义,几何意义,三矢量共面的充要条件,混合积的特点,分量表示。 作业:P60,5题 例题参见书上。 第二章 轨迹与方程 教学目的: 1、理解曲面与空间曲线方程的意义; 2、掌握求轨迹方程(矢量式与坐标式参数方程及普通方程)的方法; 3、会判断已知方程所表示的轨迹名称。教学重点:曲面和空间曲线的方程求法。 教学难点:判断已知的参数方程或普通方程所表示的图形。教学时数:6学时 2.1平面曲线的方程 这一节的内容不在课堂上讲,由学生在课后自学,因为后面要讲的空间曲线的方程包含了这一节内容。 2.2 曲面的方程 教学要求:掌握曲面方程的定义,求曲面方程的方法,曲面参数方程的定义、形式。引言 曲面方程的意义与平面曲线一样,即点所满足的式子,曲面方程通常由下列形式来表示: F(x,y,z)=0或z=f(x,y)求曲面方程的方法通常是:利用轨迹的性质,列出曲面上的点所满足的条件建立等式,再把坐标代入化简即可得曲面方程,举例如书上 曲面的矢量式参数方程为 r(u.v)x(u,v)e1y(u,v)e2z(u,v)e3 其中u,v(aub,cvd)为参数,e1,e2,e3为空间矢量的基底。曲面的坐标式参数方程为 xx(u,v)yy(u,v)zz(u,v)这里u,v同上。 总结:这一节重点掌握曲面方程的形式,参数方程的形式。作业:P88,5题 例题见书上 2.3 母线平行于坐标轴的柱面方程 这类方程比较特殊,分别有下面三种形式 F(x,y)=0,母线平行于z轴 F(x,z)=0,母线平行于y轴 F(y,z)=0,母线平行于x轴 例如:xya, 圆柱面(轴为z轴)2.4 空间曲线的方程 教学要求:掌握空间曲线方程的定义,了解它的求法,掌握曲线射影柱面的求法。引言 空间曲线方程的意义与曲面一样,我们把空间曲线看作是两个曲面的交线,于是方程为 222F1(x,y,z)0 (2.4-1)L:F(x,y,z)02具体举例见书上。 对于空间曲线L(2.4-1)的射影柱面,就是以L为准线,作母线分别平行于三坐标的柱面,在代数上就是在方程(2.4-1)中分别消去三个坐标x,y,z,就可得L对于yoz面,xoz面,xoy面三坐标面的射影柱面 例子见书上 作业:P97,3题,8题 第三章 平面与空间直线 教学目的: 1、深刻理解在空间直角坐标系下平面方程是一个关于x,y,z的三元一次方程;反过来任何一个关于x,y,z的三元一次方程都表示一个平面。直线可以看成两个平面的交线,它可以用两个相交平面的方程构成的方程组来表示; 2、掌握平面与空间直线的各种形式的方程,明确方程中常数(参数)的几何意义,能根据决定平面或决定直线的各种导出它们的方程,并熟悉平面方程的各种形式的互化与直线各种方程形式的互化; 3、能熟练地根据平面和直线的方程以及点的坐标判别有关点、平面、直线之间的位置关系与计算它们之间的距离和交角。 教学重点:平面与空间直线的方程求法及点、平面、直线之间的相关位置。教学难点:平面与空间直线各种形式方程的互化。教学时数:10学时 3.1平面的方程 教学要求:掌握平面方程的几种形式,包括参数方程,点位式方程,截距式方程,法式方程以及一般方程,平面的一般方程的法式化。 引言 我们知道,平面可以由一个点和不共线的两方向矢量决定,于是可得如下的矢量式参数方程。 rr0a 其中,为参数,a,b为两不共线矢量,r0为定值 (3.1-1)变形又可得坐标式参数方程 xx0x1x2yy0y1y2 (3.1-2)zzzz012消参可得点位式方程 xx0X1X2yy0Y1Y2zz0Z1Z20 (3.1-4)或(rr0,a,b)0,共面三矢量的条件 (3.1-3)平面也可由三点决定,于是有下面的三点式方程 rr1(r2r1)(r3r1) (3.1-5)xx1(x2x1)(xx1)yy1u(y2y1)v(y3y1) (3.1-6)zz1u(z2z1)v(z3z1)(rr1,r2r1,r3r1)0 (3.1-7)xx1x2xx3x1xx1x2x3xayy1y2y1y3y1zz1z2z3zczz1z2z10 (3.8-8)z3z1yy1yy3yb11110 (3.8-8)特别地,我们还有截距式方程 1 abc0 (3.1-9)平面的一般方程是下面的三元一次方程 AxByCzD0 (3.1-10)其中,A,B,C不全为0 对于一些特殊情形,必须非常熟悉。 对于平面,还可由一点和垂直于已知非0矢量的矢量决定,平面的方程为下面的点法式方程 n(rr0)0 (3.1-11)即 A(xx0)B(yy0)C(zz0)0 (3.1-12)如果取单位法矢量ncos,cos,cos0,则 nrP0 (3.1-13)0即 xcosycoszcosP (3.1-14)这里的P表示原点到平面的距离P0 对于平面的一般方程(3.1-10),用1ABC222 可以法式化,符号的造取须使P0 具体的一些例子参见书上。 总结:本节重点掌握平面的几个方程形式和法式化。作业:P109,5,6,7题 3.2平面与点的相关位置 3.3两平面的相关位置 教学要求:掌握离差的定义,点与平面的距离公式,两平面位置关系的判定条件。引言 点与平面只有两种位置关系,点在平面上即点满足平面方程,由前一节可得,于是我们只考虑点在平面外的情形,离差的定义为 =射影n0QM0 (3.2-1)以及 n0r0Px (3.2-2,3)0cosy 0cosz0cosP 点M0(x0,y0,z0)与平面AxByCzD0间的距离为 dAx0By0Cz0D (3.2-4)A2B2 C2 两平面的关系有相交,平行,重合,具体的条件决定于下述方程组 A1xB1yC1zD10,(1)A2xB2yC2zD 20,(2)的解的情况。 平面(1)与(2)相交的充要条件是 A1:B1:C1A2:B2:C2 (3.3-1)平行的充要条件是 A1B11A (3.3-2)2BC12CD2D 2重合的充要条件是 A1AB1C11 (3.3-3)2B2CD2D 2两平面夹角的余弦 cos(A1A2B1B2C1C21,2)cosn1n2n1n2A2B2222211C1A2B2C2由此可得,两平面垂直的充要条件是 A1A2B1B2C1C20 (3.3-6)总结:这两节重点掌握点到平面的距离公式,两平面位置关系的判定条件。(3.3-5) 作业:P113,10题,P115,6题 3.4 空间直线的方程 教学要求:掌握直线的几种方程形式,包括参数方程,标准方程,两点式方程,一般方程,射影方程。引言 我们知道,直线可以由一个点和一个方向矢量决定,于是得到直线的参数方程。 rr0t (3.4-1)或 xx0tXyy0tY zz0tZ再消去参数t,即得直线的标准方程 xx0yy0zz0XYZ 直线的两点式方程为 xx1y1x 2xyzz11y2y1z 2z1如果取V0cos,cos,cos,则 trr0MM0 参数t的绝对值是l上两点M0与M间的距离 用X:Y:Z表示方向数 直线的一般方程是下面的三元一次方程组 A1xB1yC1zD10xB A22yC2zD20其中A1:B1:C1A2:B2:C2 它的射影式方程为 xazc ybzd 其中 aXZ,bYZ,cx0XZz0,dy0YZz0 由(3.4-11)可得直线的标准方程 (3.4-2) (3.4-3) (3.4-6) (3.4-11)(3.3-12) xx0B1B2C1C2yy0C1C2A1A2zz0A1A2B1B2 其中 B1x0B2A1A2D1D2B1B2,y0D1D2A1A2A1A2B1B2,z01 另外,直线的方向矢量v可取n1n2 具体的例题见书上 总结:本节重点掌握直线的方程形式及求解方法。作业:P123,4题 3.5 直线与平面的相关位置 3.6空间两直线的相关位置 3.7 空间直线与点的相关位置 3.8平面束 教学要求:掌握直线与平面位置关系的判定,两直线相关位置的判定,两直线夹角的余弦,两异面直线间的距离,公垂线方程,点到直线的距离公式,有轴平面束,平行平面束的方程及其应用。引言 直线与平面有相交,平行,直线在平面上三种关系。判定要求是: (1)相交AXBYCZ0(2)平行AXBYCZ0 (3)直线在平面上AXBYCZ0,Ax0By0Cz0D0 xx0Xyy0Yzz0Z其中l:,平面:AxByCzD0 直线L与平面的交角为0到nvnv2之间,有 sinAxByCzABCyy1Y1yy2Y2222X2Y2Z2 (3.5-4)直线L1:xx1X1xx2X2zz1Z1 直线L2:zz2Z2 相关位置的充要条件是 异面: 0x2x1X1X202 相交: y2y1Y1Y2z2z1Z1Z20 (3.6-1)0,X1:Y1:Z1X2:Y2:Z2 (3.6-2)30平行: 0,X1:Y1:Z1X2:Y2:Z2(x2x1):(y2y1):(z2z1) 重合: X1:Y1:Z1X2:Y2:Z2(x2x1):(y2y1):(z2z1) 空间两直线的夹角余弦 cos(1X2Y1Y2Z1Z21,2)X X222 1Y1Z1X22Y22Z22垂直的充要条件: X1X2Y1Y2Z1Z2 异面直线1与2间的距离为 x1x2y1y2z1z2X1Y1Z1dX2Y2Z2Y222 1Z1YZ1X1X1Y12Z2Z2X2X2Y2公垂线0的方程为 xxyy11zz1X1Y1Z10XYZ xx2yy2zz 2X2Y2Z20XYZ其中XY1Z111Y1YYZ1X2Z,2Z2X,ZX2X2Y 2(3.6-3) (3.6-4) (3.6-5) (3.6-6) (3.6-7) (3.6-8) 点到直线的距离公式为 vM1Mdvy0y10z0z1Z2Yz0z1ZX2x0x1X2x0x1Xy0y1Y2Y2Z2 (3.7-1)以直线L为轴的有轴平面束的方程是 (A1xB1yC1zD1)m(A2xB2yC2zD2)0,(3.8-1)由平面AxByCzD0决定的平行平面束的方程是 AxByCz0,为任意实数 (3.8-2)相关例题参见教材 总结:重点掌握直线与平面,直线与直线的判定条件,点到直线的距离公式,平面束的方程以及应用。 作业:P127,6题,P133,8题,P134,2题,P139,4题 解析几何教案 一、位移向量:既有大小又有方向的量,简称向量; 两点的距离公式: 中点公式: 例题: 二、直线的倾斜角和斜率 1.直线方程: 一次函数的图象是直线,直线不一定是一次函数的图象,如直线x=a连函数都不是 2.直线的倾斜角: 一条直线l向上的方向与x轴的正方向所成的最小正角,叫做这条直线的倾斜角,如图1-21中的α.特别地,当直线l和x轴平行时,我们规定它的倾斜角为0°,因此,倾斜角的取值范围是0°≤α<180°. 直线倾斜角角的定义有下面三个要点:(1)以x轴正向作为参考方向(始边);(2)直线向上的方向作为终边;(3)最小正角. 3.直线的斜率 倾斜角不是90°的直线.它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示,即 对于上面的斜率公式要注意下面四点:(1)当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到. 例1 如图1-23,直线l1的倾斜角α1=30°,直线l2⊥l1,求l1、l2的斜率. ∵l2的倾斜角α2=90°+30°=120°,例2 求经过A(-2,0)、B(-5,3)两点的直线的斜率和倾斜角. ∴tgα=-1.∵0°≤α<180°,∴α=135°.因此,这条直线的斜率是-1,倾斜角是135°. 三、直线方程的一般形式:点斜式、斜截式、两点式和截距式 在直角坐标平面内,已知直线上一点和直线的斜率或已知直线上两点,会求直线的方程;给出直线的点斜式方程,能观察直线的斜率和直线经过的定点;能化直线方程成截距式,并利用直线的截距式作直线.(一)点斜式 设点P(x,y)是直线l上不同于P1的任意一点,根据经过两点的斜率公式得 当直线的斜率为0°时,k=0,直线的方程是y=y1. 当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1. (二)斜截式 已知直线l在y轴上的截距为b,斜率为k,求直线的方程. 这个问题,相当于给出了直线上一点(0,b)及直线的斜率k,求直线的方程,是点斜式方程的特殊情况,代入点斜式方程可得:y-b=k(x-0)也就是 它是由直线的斜率和它在y轴上的截距确定的. 当k≠0时,斜截式方程就是直线的表示形式,这样一次函数中k和b的几何意义就是分别表示直线的斜率和在y轴上的截距. (三)两点式 已知直线l上的两点P1(x1,y1)、P2(x2,y2),(x1≠x2),直线的位置是确定的,也就是直线的方程是可求的,请大家求直线l的方程. (1)方程只适用于与坐标轴不平行的直线,当直线与坐标轴平行(x1=x2或y1=y2)时,可直接写出方程;(2)要记住两点式方程,只要记住左边就行了,右边可由左边见y就用x代换得到,规律完全一样. (四)截距式 例1 已知直线l在x轴和y轴上的截距分别是a和b(a≠0,b≠0),求直线l的方程. 解:因为直线l过A(a,0)和B(0,b)两点,将这两点的坐标代入两点式,得当y1≠y2时,为了便于记忆,我们把方程改写成就是 学生也可能用先求斜率,然后用点斜式方程求得截距式. 对截距式方程要注意下面三点:(1)如果已知直线在两轴上的截距,可以直接代入截距式求直线的方程;(2)将直线的方程化为截距式后,可以观察出直线在x轴和y轴上的截距,这一点常被用来作图;(3)与坐标轴平行和过原点的直线不能用截距式表示. 例2 三角形的顶点是A(-5,0)、B(3,-3)、C(0,2)(图1-27),求这个三角形三边所在直线的方程. 解:直线AB的方程可由两点式得: 即 3x+8y+15=0这就是直线AB的方程. BC的方程本来也可以用两点式得到,为简化计算,我们选用下面途径: 由斜截式得:由截距式方程得AC的方程是 即 5x+3y-6=0.这就是直线BC的方程. 即 2x+5y+10=0.这就是直线AC的方程. 例3 证明:三点A(1,3)、B(5,7)、C(10,12)在同一条直线上. 证法一 直线AB的方程是: 化简得 y=x+2.将点C的坐标代入上面的方程,等式成立.∴A、B、C三点共线. ∴A、B、C三点共线. 例4 直线x+2y-10=0与过A(1,3)、B(5,2)的直线相交于C,此题按常规解题思路可先用两点式求出AB的方程,然后解方程组得到点C的坐标,再求点C分AB所成的定比,计算量大了一些.如果先用定比分点公式设出点C的坐标(即满足点C在直线AB上),然后代入已知的直线方程求λ,则计算量要小得多. 代入x+2y-10=0有:解之得 λ=-3. 在直角坐标系内,已知两点A(x1,y1),B(x2,y2);在两点连线上有一点P,设它的坐标为(x,y),且线段AP比线段PB的比值为λ,那么我们说P分有向线段AB的比为λ 且P的坐标为 x=(x1 + λ · x2)/(1 + λ)y=(y1 + λ · y2)/(1 + λ)例4 直线x+2y-10=0与过A(1,3)、B(5,2)的直线相交于C,此题按常规解题思路可先用两点式求出AB的方程,然后解方程组得到点C的坐标,再求点C分AB所成的定比,计算量大了一些.如果先用定比分点公式设出点C的坐标(即满足点C在直线AB上),然后代入已知的直线方程求λ,则计算量要小得多. 代入x+2y-10=0有:解之得 λ=-3. 定比分点公式的特殊情况 中点公式: 已知两点A(x1,y1),B(x2,y2),设两点中点为P(x,y) 则 x=(x1+x2)/2;y=(y1+y2)/2.三角形重心公式: 已知三角形ABC [A(x1,y1),B(x2,y2),C(x3,y3)],设三角形重心为G(x,y) 则x=(x1+x2+x3)/3;y=(y1+y2+y3)/3 分点的不同情况 当P为内分点时,λ>0; 当P为外分点时,λ<0(λ≠-1); 当P与A重合时,λ=0;当P与B重合时λ不存在 四、两条直线的位置关系:两条直线的平行与垂直 (一)特殊情况下的两直线平行与垂直 当两条直线中有一条直线没有斜率时:(1)当另一条直线的斜率也不存在时,两直线的倾斜角为90°,互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直. (二)斜率存在时两直线的平行与垂直 设直线l1和l2的斜率为k1和k2,它们的方程分别是l1: y=k1x+b1; l2: y=k2x+b2. 两直线的平行与垂直是由两直线的方向来决定的,两直线的方向又是由直线的倾斜角与斜率决定的,所以我们下面要解决的问题是两平行与垂直的直线它们的斜率有什么特征. 我们首先研究两条直线平行(不重合)的情形.如果l1∥l2(图1-29),那么它们的倾斜角相等:α1=α2.∴tgα1=tgα2.即 k1=k2.反过来成立 结论:两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,则它们平行,即(,b1不等于b2)l1与l2重合《==》k1= k2,b1= b2 两条直线都有斜率,如果它们互相垂直,则它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,则它们互相垂直,即 例1 已知两条直线l1: 2x-4y+7=0,L2: x-2y+5=0.求证:l1∥l2. 证明两直线平行,需说明两个要点:(1)两直线斜率相等;(2)两直线不重合. 例2求过点 A(1,-4),且与直线2x+3y+5=0平行的直线方程. 因所求直线与2x+3y+5=0平行,可设所求直线方程为2x+3y+m=0,将A(1,-4)代入有m=10,故所求直线方程为 2x+3y+10=0. 例3 求过点A(2,1),且与直线2x+y-10=0垂直的直线方程:x-2y=0. 五、两条直线的位置关系:两条直线所成的角 一条直线与另一条直线所成角的概念及其公式,两直线的夹角公式,能熟练运用公式解题. l1到l2的角正切 两条直线l1和l2相交构成四个角,它们是两对对顶角.为了区别这些角,我们把直线l1依逆时针方向旋转到与l2重合时所转的角,叫做l1到l2的角.图1-27中,直线l1到l2的角是θ1,l2到l1的角是θ2(θ1+θ2=180°). l1到l2的角有三个要点:始边、终边和旋转方向. 现在我们来求斜率分别为k1、k2的两条直线l1到l2的角,设已知直线的方程分别是 l1∶y=k1x+b1 l2∶y=k2x+b2 如果1+k1k2=0,那么θ=90°,下面研究1+k1k2≠0的情形.征进行记忆.(四)例题 解:k1=-2,k2=1. 上面的关系记忆时,可抓住分子是终边斜率减始边斜率的特 ∴θ=arctg3≈71°34′. 例3等腰三角形一腰所在的直线l1的方程是x-2y-2=0,底边所在的直线l2的方程是x+y-1=0,点(-2,0)在另一腰上,求这腰所在直线l3的方程. 解:先作图演示一腰到底的角与底到另一腰的角相等,并且与两腰到底的角与底到另一腰的角相等,并且与两腰的顺序无关.设l1、l2、l3的斜率分别是k1、k2、k3,l1到l2的角是θ1,l2到l3的角是θ2,则 因为l1、l2、l3所围成的三角形是等腰三角形,所以θ1=θ2.tgθ2=tgθ1=-3. 解得 k3=2.因为l3经过点(-2,0),斜率为2,写出点斜式为y=2[x-(-2)],即 2x-y+4=0.这就是直线l3的方程. 讲此例题时,一定要说明:无须作图,任一腰到底的角与底到另一腰的角都相等,要为锐角都为锐角,要为钝角都为钝角. 六、两条直线的位置关系:两条直线的交点(一)两直线交点与方程组解的关系 设两直线的方程是 l1: A1x+B1y+c1=0,l2: A2x+B2y+C2=0. 如果两条直线相交,由于交点同时在两条直线上,交点的坐标一定是这两个方程的公共解;反之,如果这两个二元一次方程只有一个公共解,那么以这个解为坐标的点必是直线l1和l2的交点.因此,两条直线是否相交,就要看这两条直线的方程所组成的方程组 是否有唯一解. 例2 已知两条直线:l1: x+my+6=0,l2:(m-2)x+3y+2m=0. 当m为何值时,l1与l2:(1)相交,(2)平行,(3)重合. 解:将两直线的方程组成方程组 解得m=-1或m=3. (2)当m=-1时,方程组为∴方程无解,l1与l2平行. (3)当m=3时,方程组为两方程为同一个方程,l1与l2重合. 七、点到直线的距离公式 平面内一点P(x0,y0)到一条直线Ax+By+C=0的距离公式:例2 求平行线2x-7y+8=0和2x-7y-6=0的距离. 解:在直线2x-7y-6=0上任取一点,例如取P(3,0),则两平行线间的距离就是点P(3,0)到直线2x-7y+8=0的距离(图1-38). 例3 正方形的中心在C(-1,0),一条边所在的直线方程是x+3y-5=0,求其它三边所在的直线方程. 解:正方形的边心距 设与x+3y-5=0平行的一边所在的直线方程是x+3y+C1=0,则中心到 C1=-5(舍去0)或C1=7.∴与x+3y-5=0平行的边所在的直线方程是x+3y+7=0. 设与x+3y-5=0垂直的边所在的直线方程是3x-y+C2=0,则中心到这 解之有C2=-3或C2=9.∴与x+3y-5=0垂直的两边所在的直线方程是3x-y-3=0和3x-y+9=0. 一、圆的标准方程 1,标准方程:由两点间的距离公式得: 将上式两边平方得:(x-a)2+(y-b)2=r2.圆心是C(a,b)、半径是r 当圆心在原点即C(0,0)时,方程为 x2+y2=r2. 2,一般方程:我们已讨论了圆的标准方程(x-a)2+(y-b)2=r2,现将展开可得x2+y2-2ax-2by+a2+b2-r2=0.可见,任何一个圆的方程都可以写成x2+y2+Dx+Ey+F=0. 将方程x2+y2+Dx+Ey+F=0左边配方得: (1) (1)当D2+E2-4F>0时,方程(1)与标准方程比较,可以看出方程 半径的圆; (3)当D2+E2-4F<0时,方程x2+y2+Dx+Ey+F=0没有实数解,因而它不表示任何图形. 当二元二次方程 Ax2+Bxy+Cy2+Dx+Ey+F=0具有条件: (1)x2和y2的系数相同,不等于零,即A=C≠0;(2)没有xy项,即B=0;(3)D2+E2-4AF>0.它才表示圆.条件(3)通过将方程同除以A或C配方不难得出. 1.向量代数与空间解析几何 向量代数:向量的线性运算,向量的坐标,向量的数量积,向量积,两向量平行与垂直的条件。平面与直线:会利用已知条件求平面的方程、直线的方程。 曲面与空间曲线:了解曲面的概念,如坐标轴为旋转轴的旋转曲面,母线平行于坐标轴的柱面方程;了解空间曲线的参数方程和一般方程,会求空间曲线在坐标面上的投影。 2.多元函数微分学 多元函数:会求简单的二元函数的极限与判断二元函数的连续性。 偏导数与全微分:偏导数的计算,复合函数二阶偏导数的求法、隐函数的求偏导;会求全微分; 偏导数的应用:方向导数和梯度;空间曲线的切线与法平面,曲面的切平面与法线;最大值、最小值问题,条件极值,拉格朗日乘数法。 3.多元函数积分学 二重积分:化二重积分为二次积分、交换二次积分的次序;二重积分的计算(直角坐标、极坐标);利用二重积分求曲面面积、立体体积。 三重积分:三重积分的计算(直角坐标、柱面坐标、球面坐标); 曲线积分:两类曲线积分的计算方法;格林公式,平面曲线积分与路径无关的条件。 曲面积分:两类曲面积分的计算方法;高斯公式。 4.无穷级数 常数项级数:级数收敛的判定,几何级数和P—级数的敛散性;正项级数的比较、比值及根值审敛法,交错级数的莱布尼兹定理,绝对收敛与条件收敛的概念及其关系。 幂级数:较简单的幂级数的收敛半径和收敛域的求法,幂级数求和函数;函数展开成幂级数。傅里叶级数:函数展开为傅里叶级数,函数与和函数的关系,函数展开为正弦或余弦级数。 5.常微分方程 可分离变量微分方程,齐次方程,一阶线性微分方程。可降阶的高阶微分方程。二阶常系数齐次线性微分方程。利用切线斜率建立简单的微分方程并求解。 牢固掌握下列公式: 1、向量的数量积、向量积计算公式; 2、全微分公式; 3、方向导数公式; 4、拉格朗日乘数法; 5、格林公式、高斯公式; 6、函数的麦克劳林展开公式。 7、一阶线性方程的通解公式;第三篇:解析几何教案
第四篇:解析几何教案
第五篇:向量代数与空间解析几何