专题二 统计与概率教案4

时间:2019-05-12 20:44:00下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《专题二 统计与概率教案4》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《专题二 统计与概率教案4》。

第一篇:专题二 统计与概率教案4

专题二 统计与概率(2)

【教学目标】:

1、计算和分析材料中的数据

2、用树状图、列表法计算简单事件的概率 【教学重点】:用树状图、列表法计算简单事件的概率 【教学难点】:用树状图、列表法计算简单事件的概率 【教学过程】:

一、知识点回顾:

1、描述数据常用的统计图:、、2、方差公式:

2、一般的,在一次实验中,可能出现的结果有n种,并且它们发生的可能性,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=

二、典型例题:

中招考点:条形统计图、扇形统计图分析、计算数据

1、学习成为商城人的时尚,义乌市新图书馆的启用,吸引了大批读者.有关部门统计了2011年10月至2012年3月期间到市图书馆的读者的职业分布情况,统计图如下:

(1)在统计的这段时间内,共有 万人到市图书馆阅读,其中商人所占百分比是,并将条形统计图补充完整

(2)若今年4月到市图书馆的读者共28000名,估计其中约有多少名职工?

中招考点:用树状图、列表法计算简单事件的概率

2、为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.

请你根据统计图解答下列问题:

(1)在这次调查中一共抽查了 名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为,喜欢“戏曲”活动项目的人数是 人;

(2)若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.

中招考点:用树状图、列表法计算简单事件的概率

3、西宁市教育局自实施新课程改革后,学生的自主学习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下不完整的统计图,请你根据统计图解答下列问题:

(1)本次调查中,张老师一共调查了 名同学;(2)将上面的条形统计图补充完整;

(3)为了共同进步,张老师想从被调查的A类和D类学生分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法列出所有等可能的结果,并求出所选两位同学恰好是一位男同学和一位女同学的概率.

三、当堂检测:

1、中招考点:方差公式:说明与检测P78第3题

2、中招考点:求简单事件的概率:说明与检测P79第6、7题

3、中招考点:分析、计算统计图中的数据:说明与检测P81第13题

四、延伸拓展:

1、高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图:

(1)该校近四年保送生人数的极差是 .请将折线统计图补充完整;

(2)该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进人高中阶段的学习情况.请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.

五、课后作业

1、见学案

第二篇:统计与概率教案

第1课时 统计与概率(1)

【教学内容】 统计表。

【教学目标】

使学生进一步认识统计的意义,进一步认识统计表,掌握整理数据、编制统计表的方法,学会进行简单统计。【重点难点】

让学生系统掌握统计的基础知识和基本技能。【教学准备】 多媒体课件。

【情景导入】 1.揭示课题

提问:在小学阶段,我们学过哪些统计知识?为什么要做统计工作? 2.引入课题

在日常生活和生产实践中,经常需要对一些数据进行分析、比较,这样就需要进行统计。在进行统计时,又经常要用统

计表、统计图,并且常常进行平均数的计算。今天我们开始复习简单的统计,这节课先复习如何设计调查表,并进行调

查统计。

【整理归纳】

收集数据,制作统计表。

教师:我们班要和希望小学六(2)班建立“手拉手”班级,你想向“手拉手”的同学介绍哪些情况? 学生可能回答:(1)身高、体重(2)姓名、性别(3)兴趣爱好

为了清楚记录你的情况,同学们设计了一个个人情况调查表。课件展示:

为了帮助和分析全班的数据,同学们又设计了一种统计表。六(2)班学生最喜欢的学科统计表

组织学生完善调查表,怎样调查?怎样记录数据?调查中要注意什么问题? 组织学生议一议,相互交流。指名学生汇报,再集体评议。

组织学生在全班范围内以小组形式展开调查,先由每个小组整理数据,再由每个小组向全班汇报。填好统计表。【课堂作业】

教材第96页例3。【课堂小结】

通过本节课的学习,你有什么收获? 【课后作业】

完成练习册中本课时的练习。

第1课时 统计与概率(1)(1)统计表

(2)统计图:折线统计图 条形统计图 扇形统计图

第2课时 统计与概率(2)

【教学内容】

统计与概率(2)。【教学目标】

1.使学生初步掌握把原始数据分类整理的统计方法 2.渗透统计意识。【重点难点】

能根据统计图提供的信息,做出正确的判断或简单预测。【教学准备】 多媒体课件。

【情景导入】

上节课我们复习了如何设计调查表,今天我们来一起整理一下制作统计图的相关知识。

【归纳整理】 统计图

1.你学过几种统计图?分别叫什么统计图?各有什么特征? 条形统计图(清楚表示各种数量多少)折线统计图(清楚表示数量的变化情况)扇形统计图(清楚表示各种数量的占有率)教师:结合刚才的数据例子,议一议什么类型的数据用什么样的统计图表示更合适?

组织学生议一议,相互交流。2.教学例4 课件出示教材第97页例4。

(1)从统计图中你能得到哪些信息? 小组交流。重点汇报。

如:从扇形统计图可以看出,男、女生占全班人数的百分率; 从条形统计图可以看出,男、女生分别喜欢的运动项目的人数;

从折线统计图可以看出,同学们对自己的综合表现满意人数的情况变化趋势。(2)还可以通过什么手段收集数据? 组织学生议一议,并相互交流。

如:问卷调查,查阅资料,实验活动等。

(3)做一项调查统计工作的主要步骤是什么? 组织学生议一议,并相互交流。

指名学生汇报,并集体订正,使学生明确并板书: a.确定调查的主题及需要调查的数据; b.设计调查表或统计表; c.确定调查的方法; d.进行调查,予以记录; e.整理和描述数据;

f.根据统计图表分析数据,作出判断和决策。【课堂作业】

教材第98页练习二十一第2、3题。【课堂小结】

通过本节课的学习,你有什么收获? 【课后作业】

完成练习册中本课时的练习。

第2课时 统计与概率(2)

做一项调查统计工作的主要步骤: ①确定调查的主题及需要调查的数据; ②设计调查表或统计表; ③确定调查的方法; ④进行调查,予以记录; ⑤整理和描述数据;

⑥根据统计图表分析数据,作出判断和决策。

第3课时 统计与概率(3)

【教学内容】

平均数、中位数和众数的整理和复习。【教学目标】

1.使学生加深对平均数、中位数和众数的认识。体会三个统计量的不同特征和使用范围。

2.使学生经历解决问题的过程,发展初步的推理能力和综合应用意识。3.灵活运用数学知识解决实际问题,激发学生的学习兴趣。【重点难点】

进一步认识平均数、中位数和众数,体会三个统计量的不同特征和使用范围。【教学准备】 多媒体课件。

【情境导入】

教师:CCTV-3举行青年歌手大奖赛,一歌手演唱完毕,评委亮出的分数是: 9.87,9.65,9.84,9.78,9.75,9.72,9.90,9.83,要求去掉一个最高分,一个最低分,那么该选手的最后得分是多少?

学生独立思考,然后组织学生议一议,然后互相交流。指名学生汇报解题思路。由此引出课题:

平均数、中位数、众数 【复习回顾】 1.复习近平均数

教师:什么是平均数?它有什么用处? 组织学生议一议,并相互交流。

指名学生汇报,并组织学生集体评议。使学生明确:平均数能直观、简明地反映一组数据的一般情况,用它可以进行不

同数据的比较,看出组与组之间的差别。课件展示教材第97页例5两个统计表。

①提问:从上面的统计表中你能获取哪些信息? 学生思考后回答

②小组合作学习。(课件出示思考的问题)a.在上面两组数据中,平均数是多少?

b.不用计算,你能发现上面两组数据的平均数大小吗? c.用什么统计量表示上面两组数据的一般水平比较合适? ③小组汇报。

第一组数据:平均数是(1.40+1.43×3+1.46×5+1.49×10+1.52×12+1.55×6+1.58×3)÷(1+3+5+10+12+6+3)≈1.50(m)

第二组数据:平均数是(30×2+33×4+36×5+39×12+42×10+45×4+48×3)÷40=39.6(kg)

④用什么统计量表示上面两组数据的一般水平比较合适?为什么? 组织学生议一议,相互交流。

学生汇报:上面数据的一般水平用平均数比较合适。因为它与这组数据中的每个数据都有关系。2.复习中位数、众数

(1)教师:什么是中位数?什么是众数?它们各有什么特征? 组织学生议一议,并相互交流。指名学生汇报。

使学生明白:在一组数据中出现次数最多的数叫做这组数据的众数。将一组数据按大小依次排列,把处在最中间位置上 的一个数(或最中间两个数据的平均数)叫做这组数据的中位数。

(2)课件展示教材第97页例5的两个统计表,提问:你能说说这两组数据的中位数和众数吗?

学生认真观察统计表,思考并回答。指名学生汇报,并进行集体评议。【归纳小结】

1.教师:不用计算,你能发现上面每组数据的平均数、中位数、众数之间的大小关系吗?

组织学生议一议,并相互交流。指名学生汇报并进行集体评议。

2.教师:用什么统计量表示两组数据的一般水平比较合适? 组织学生议一议,并相互交流。指名学生汇报。师生共同评议。师根据学生的回答进行板书。【课堂作业】

教材第98页练习二十一第4、5题,学生独立完成,集体订正。答案:

第4题:(1)不合理,因为从进货量和销售量的差来看,尺码是35、39、40三种型号的鞋剩货有些多。

(2)建议下次进货时适当降低35、39、40三种型号鞋的进货量,根据销货量的排名来看,每种型号的鞋的进货量的比

例总体上不会有大的变化。第5题:(1)平均数:(9.8+9.7×2+9.6×4+9.5+9.4×2+9.1)÷11≈9.55(分)(2)有道理,因为平均数与一组

数据中的每个数据都有关系,但它易受极端数据的影响,所以为了减小这种影响,在评分时就采取“去掉一个最高分和

一个最低分”,再计算平均数的方法,这样做是合理的。平均分:(9.7×2+9.6×4+9.5+9.4×2)÷9≈9.57(分)【课堂小结】

通过这节课的学习活动,你有什么收获?学生谈谈学到的知识及掌握的方法。

【课后作业】

完成练习册中本课时的练习。

第3课时 统计与概率(3)

平均数:能较充分的反映一组数据的“平均水平”,但它容易受极端值的影响。

中位数:部分数据的变动对中位数没有影响

众数:一组数据的众数可能不止一个,也可能没有。

第4课时 统计与概率(4)

【教学内容】

可能性的整理与复习。【教学目标】 1.使学生加深认识事件发生的可能性和游戏规则的公平性,会求简单事件发生的可能性,并会对事件发生的可能性作出

预测。

2.培养学生依据数据和事件分析并解决问题,作出判断、预测和决策的能力。3.使学生体验到用数学知识可以解决生活中的实际问题,激发学生的学习兴趣。【重点难点】

认识事件发生的可能性和游戏规则的公平性,会求简单事件发生的可能性,并会对事件发生的可能性作出预测,掌握用

分数表示可能性大小的方法。【教学准备】 多媒体课件。

【情景导入】

1.教师出示情境图。表哥:我想看足球比赛。表弟:我想看动画片。表妹:我想看电视剧。

教师:3个人只有一台电视,他们都想看自己喜欢的节目,那么如何决定看什么节目呢?必须想出一个每个人都能接受 的公平的办法来决定看什么节目。

提问:你能想出什么公平的办法确定谁有权决定看什么节目吗? 学生:抽签、掷骰子。2.揭示课题。

教师:同学们想出的方法都不错。这节课我们来复习可能性的有关知识。(板书课题)

【复习讲授】

1.教师:说一说学过哪些有关可能性的知识。(板书:一定、可能、不可能)

2.教师:在我们的生活中,同样有些事情是一定会发生的,有些事情是可能发生的,还有些事情是不可能发生的。下面

举出了几个生活中的例子,请用“一定”“可能”或“不可能”来判断这些事例的可能性。课件展示:

(1)我从出生到现在没吃一点东西。(2)吃饭时,有人用左手拿筷子。(3)世界上每天都有人出生。组织学生独立思考,并相互交流。指名学生汇报,并进行集体评议。3.解决问题,延伸拓展

(1)教师:用“一定”“不可能”“可能”各说一句话,在小组内讨论交流。指名学生汇报并进行集体评议。(2)课件展示买彩票的片段。

组织学生看完这些片段,提问:你有什么想法吗?

你想对买彩票的爸爸、妈妈、叔叔、阿姨说点什么呢? 【课堂作业】 1.填空。(1)袋子里放了10个白球、5个黄球和2个红球,这些球除颜色外其它均一样,若从袋子里摸出一个球来,则摸到()色球的可能性最大,摸到()色球的可能性最小。

(2)一个盒子里装有数量相同的红、白两种颜色的球,每个球除了颜色外都相同,摸到红球甲胜,摸到白球乙胜,若

摸球前先将盒子里的球摇匀,则甲、乙获胜的机会()。2.选择。

(1)用1、2、3三个数字组成一个三位数,组成偶数的可能性为()。A.B.C.D.(2)一名运动员连续射靶10次,其中两次命中十环,两次命中九环,六次命中八环,针对某次射击,下列说法正确的

是()。

A.命中十环的可能性最大 B.命中九环的可能性最大 C.命中八环的可能性最大 D.以上可能性均等

3.有一个均匀的正十二面体的骰子,其中1个面标有“1”,2个面标有“2”,3个面标有“3”,2个面标有“4”,1个

面标有“5”,其余面标有“6”,将这个骰子掷出。(1)“6”朝上的可能性占百分之几?(2)哪些数字朝上的可能性一样? 答案:

1.(1)白 红(2)相等 2.(1)A(2)D 3.(1)25%(2)标有“1”和“5”,标有“2”与“4”,标有“3”和“6”的可能性一样。【课堂小结】

通过这节课的学习,你有哪些收获?学生畅谈学到的知识和掌握的方法。【课后作业】

完成练习册中本课时的练习。

第4课时统计与概率(4)

一定 可能 不可能 必然发生 可能发生 不会发生

第三篇:统计与概率教案

小学六年级数学总复习〖统计与概率〗 复习建议

一、统计

统计知识在生产和生活中,特别是进行科学研究时,应用非常广泛。小学阶段,学习内容是统计学中最初步的知识,它包括单式、复式统计表和条形、折线、扇形统计图的用途、结构及绘制方法等问题。在这里我谈谈自己对在《统计与概率》的认识,以求抛砖引玉。复习内容:

1、数据的收集 整理 统计图表

2、对图表进行分析,解决问题。

3、条形(单式,复式),折线(单式,复式),扇形统计图的特点及选择方法。

4、统计图的选用与制作。复习目标:

1、通过复习已学过的统计的初步知识,加深学生对统计的意义及其应用的理解。

2、培养学生会看、会分析、会制作简单统计图表的能力和综合运用统计知识解决实际问题的能力。

3、通过复习使学生进一步感受、了解数学在生活中的实际应用,以提高学生学数学、用数学的意识。复习重难点: 重点:

1、体会统计在实际生活中的应用,发展统计观念。

2、用自己的语言描各种统计图的特点。难点:

用自己的语言描述各种统计图的特点。复习要点:

1、统计表:把统计数据填写在一定的表格内,用来反映情况 说明问题。

种类:单式统计表、复式统计表、百分数统计表。

2、统计图:用点、线、面积等来表示相关的量之间的数量关系的图形。

分类:(1)条形统计图:用一个单位长度表示一定的数量,根据数量的多少画 成长短不同的直条,然后把这些直条按照一定的顺序排列起来。优点:很容易看出来各种数量的多少。

注意:画条形统计图时,直条的宽窄必须相同。复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区分开,并在制图日期下面注明图列。

(2)折线统计图:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次联系起来。

优点:不但可以表示数量的多少而且能够清楚表示出数量增减变化的情况。

注意:折线统计图的横轴表示不同的年份、月份等时间,不同时间之间的距离要根据年份或月份的间隔来确定。

(3)扇形统计图:用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。优点:很清楚的表示出各部分同总数之间的关系。例

一、填空、选择、判断题各一例。

1、常用的统计图有 条形 统计图,折线 统计图和 扇形 统计图。

2、为了清楚地表示出数量的多少,常用(A)统计图,为了表示出数量的增减变化情况,用(B)统计图比较合适,而(C)统计图却能清楚地表示出部分量与总体的关系。A.条形统计图 B.折线统计图 C.扇形统计图

3、用统计表表示的数量不能用统计图表示。()例

二、下面是淘淘一天的活动情况统计图。(1)算出淘淘各种活动占用的时间。

(2)你对淘淘关于时间的安排有何看法?你能提出什么建议?

二、概率

表示一个事件发生的可能性大小的数,叫做该事件的概率。它是随机事件出现的可能性的量度,同时也是概率论最基本的概念之一。人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实列。但如果意见事情发生的概率是1/n,不是指n次事件里必有一次发生该事件,而是指此事件发生的概率接近于1/n这个数值。复习内容:

可能性的大小。(语言描述,分数表示,预测),根据要求设计方案。复习目标:

1、通过复习使学生能进一步熟练地判断简单事件发生的可能性。

2、通过复习使学生能熟练地用分数表示事件发生的概率,并且会用概率的思维去观察、分析和解释生活中的现象。复习重难点: 重点:

体验不确定现象,复习如何计算事件发生的可能性。难点:

体验不确定现象,复习如何计算事件发生的可能性。复习要点:

1、可能性分为能确定的和不能确定的两种。事件发生的可能的结果数

2、可能性大小的求法:可能性大小= 所有可能的结果总数,即可能性就是用一定能出现的次数与可能出现所有次数的最简整数比。例

一、填空、选择、判断题各一例。

1、箱子里装有大小相同的4个白球,1个黄球,任意摸出1个,摸到黄球的可能性是 1/5。

2、某地的天气预报中说:“明天的降水概率中80%。”根据这个预报,下面说法正确的是()

A 明天一定下雨 B 明天不可能下雨 C 明天下雨的可能性很大

3、掷硬币10次,恰好出现5次正面朝上,5次反面朝上。()例

二、试一试。

桌子上摆着9张卡片,分别写着2-10这几个数,如果摸到单数小明赢,如果摸到双数红的赢。

① 这个游戏公平吗? ②小明一定会输吗?

③怎样增加一张或减少一张卡片使游戏公平

三、近年考试题的考点及分值情况: 2009年: 这部分知识在总分12分。

1、填空题1道,可能性,分值2分;

2、选择题1道,统计图的概念,分值1分;

3、解决问题1道,统计的综合应用,分值9分。2010年:这部分知识在总分3分。

1、填空题1道,可能性,分值2分;

2、选择题1道,可能性,分值1分;

2011年:这部分知识在总分9分。

1、判断题2道,统计图的概念和可能性,分值2分;

2、选择题1道,可能性,分值1分;

3、填空题1道,可能性,分值1分;

4、解决问题1道,对复式统计表进行分析,解决问题分值5分。

四、复习建议:

小学数学“统计与概率”领域包含四个方面的基本内容:收集、整理和描述数据,包括整理调查数据、绘制统计图表等;处理数据;从数据中提取信息并进行简单的判断与预测;简单随机事件及其发生的概率。复习的一般任务大体上包括以下几个方面:查漏补缺,展开认知矫正;系统梳理,优化认知结构;综合训练,提高学习能力;激发探究,拓展学习空间。因而,本领域的复习需要帮助学生进一步澄清概念、掌握方法,以提高学生分析数据、提取信息、进行预测和决策的能力,并通过学习进一步深化统计活动体验,为后续的中学数学学习奠定扎实的基础。以上都是我个人的观点,还有汗多不全面和不妥之处,望各位老师加以指正,谢谢大家!

五、今年考点及分值预测: 这部分知识在总分9分左右。

1、填空题1道,可能性,分值2分;

2、选择题1道,统计图,分值1分;

3、解决问题1道,统计的综合应用,分值6分。

六、附检测题一套: 小学六年级数学总复习资料 〖统计与概率〗检测题 班级: 姓名: 评价等级 优 良 达标 待达标 在相应等级上划“√”

一、填空题:

1、抛出一枚硬币,落下后有()种结果。出现反而的可能性有()

2、李明和高飞下跳棋,他们用掷骰子的方式决定谁走几步,骰子各面分别写着1、2、3、4、5、6,抛出每个数字的可能性是()。

3、一个装满白球的盒子里,()摸出红球,()摸出白球。

4、商业大厦电梯的载重限额是1250千克,那么电梯最多可以运送()个75千克的人而不超载。

5、医生想用统计图记录病人24小时的体温变化情况,他选用()统计图比较合适。

6、要表示本校三至六年级各年级的人数,用()统计图表示比较合适。

7、根据统计图填空

东风机械厂2001年全年产值统计图

⑴平均每个季度产值()万元。⑵全年平均每月产值约()万元。⑶第四季度比第一季度增产()%。⑷第三季度比第四季度少产()%。⑸下半年的产值占全年产值的()%。

8、完成统计表。

东新村总收入和村办企业收入统计表 2004年3月制 项目 金额(元)

全村总收入 其中村办企业 收入 村办企业收入占总收入的百分数 2001年 750万 420万 2002年 875万 530万 2003年 1800万 1439万 合计

9、小明从家去相距4千米远的图书馆看书和借书。从所给的折线图中可以看出小明在图书馆呆了()分钟,去时平均速度是每小时()千米,返回时平均速度是每小时()千米。

10、下面是2006年4月某地三个药店中西药销售情况统计图,请看图填空。(1)这是()统计图。

(2)中药销售额最多的是(),最少的是()。(3)西药销售额最多的是(),最少的是()。(4)康复药店中西药销售总额是()万元。

(5)东方药店西药销售额比风华药店销售额多()%。

11、下面是程苏六年级第一学期四次数学平时成绩和数学期末测试成绩统计图。

⑴程苏四次平时成绩的平均分是()分。

⑵数学学期成绩是这样算的:平时成绩的平均分×60%+期末测验成绩×40%。程苏六年级第一学期的数学学期成绩是()分。

二、判断题。正确的在()打“√”,错误的在()打“×”。

1、体检时学生的体重记录是一份原始数据单。()

2、为了清楚地表示各个课外兴趣小组人数的多少,选用扇形统计图比较合适。()

3、掷硬币10次,恰好出现5次正面朝上,5次反面朝上。()

4、画线条统计图时,应该注意直条的宽窄必须一样。()

5、小明的身高是1.4米,在平均水深1.2米的游泳池中游泳没有危险。()

三、选择题。新-课-标-第-一-网

1、省疾控中心为做好甲型H1N1流感防控工作,每天都进行疫情统计。既反映出每天患病人数,又反映出疫情变化的情况和趋势,他们应选用()统计图。A 条形 B 折线 C 扇形

2、下面的信息资料中,适合用扇形统计图表示的是()A 学校各年纪的人数 B 6月份气温变化情况 C 学校各年纪学生人数占学生总数的情况

3、六

(一)班同学到社区参加公益活动,社区主任问班长出勤的情况,班长说:“我们班共有50人,没有全部到齐,但大部分来了。”出勤率可能是()。A 50% B 48% C 96%

4、某地的天气预报中说:“明天的降水概率中80%。”根据这个预报,下面说法正确的是()

A 明天一定下雨 B 明天不可能下雨 C 明天下雨的可能性很大

四、解决问题。

1、由2、3、5、6这四个数字组成任意三位数,这个三位数末尾是5的可能性是多少?

2、下面记录的是某班一次数学测验的成绩。将整理数据的结果填写在表格里。甲组:98 76 80 94 88 94 75 96 87 95 98 58 100 100 95 53 92 乙组:78 92 97 82 85 89 96 79 96 95 92 86 80 94 89 84 76 分数 100 90~99 80~89 70~79 60~69 60以下 甲组 乙组

你认为本次测验甲组和乙组哪个情况要好一些?写出你的理由?

3、李军、张明、陆强、王宏四人参加100米跑和推铅球两项体育测验,成绩在下面表中。

李军 张明 陆强 王宏

100米跑 17秒 15秒 16秒 19秒 推铅球 6米 4米 9米 7米

根据他们两项测试的成绩排一排名次,把各的姓名填入下表

第一名 第二名 第三名 第四名 100米跑 推铅球

综合两项测试的名次,谁的成绩最好?你是怎样想的?

4、下表是“十一”黄金周期间,我国龙丰景区每天游客人数变化情况。(数字前的“十”和“一”号分别表示当天比前一天多和少的人数)

日期 10月1日 10月2日 10月3日 10月4日 10月5日 10月6日 10月7日 人数

变化 +160 +80 +40 —40 —80 +20 —30

(1)若9月30日的游客人数为A,请用含有字母A的式子表示10月2日的游客人数。

(2)请判断哪一天人数最多?哪一天人数最少?它们相差多少人?(3)假定9月30日游客人数为120人,请在上表第三行填出每天的人数。

5、下表是某菜场1—12月份每500克西红柿售价情况统计表: 月 份 一 二 三 四 五 六 七 八 九 十 十一 十二

售 价(元)2.00 3.50 3.00 2.00 1.50 1.00 1.50 1.00 1.00 2.00 2.50 3.00 请根据上表中的数据,制成折线统计图,并回答问题:

某菜场1—12月份西红柿售价情况统计图 2005年6月制 单位:元

4.00 3.50 3.00 2.50 2.00 1.50 1.00 0.50 0

第四篇:复习教案统计与概率

统计与概率 第1课时

教材内容

1.本节课复习的是教材114页6题及相关习题。

2.6题以我国城市空气质量为素材,让学生根据扇形统计图所提供的信息解决实际问题,在这里,“273个城市空气质量达到二级标准”是一个多余信息,要求学生在解决问题时学会选择有效的信息。在此基础上,让学生通过调查、记录、查询等手段了解所在城市的空气质量状况,提出改善空气质量的建议。教材117页17题主要复习根据统计图中部分量与总量之间的关系,灵活选用乘法或除法解决问题。

3.教材通过复习,帮助学生进一步体会扇形统计图能清楚地反映各部分数量同总量之间关系的特点,并能根据给出的信息解决一些问题,提高分析信息、解决问题的能力。教学目标 知识与技能

1.进一步认识扇形统计图,能对统计图提供的信息进行分析解读。2.灵活运用统计知识进行相关的计算或解决问题,加深对所学知识的理解。过程与方法

1.经历整理和复习知识的过程,培养学生观察、思考、总结的能力,渗透比较思想。

2.通过复习,提高学生收集信息、处理信息、解决问题的能力。情感、态度与价值观

1.引导学生将数学知识与现实生活相结合,解决一些实际问题,感受数学的实用价值,激发学生的学习兴趣。

2.通过小组合作学习,鼓励学生乐于合作、善于交流、敢于表达。重点难点

重点:巩固所学的统计知识,提高解决问题的能力。难点:根据统计图准确分析数据。

课前准备

教师准备 PPT课件

教学过程

⊙谈话导入

1.我们一共学过哪几种统计图?

(条形统计图、折线统计图、扇形统计图)这几种统计图分别具有什么特点?(1)小组内交流。(2)学生汇报。

生1:条形统计图的特点是很容易比较各种数量的多少。

生2:折线统计图的特点是不但可以表示数量的多少,还可以清楚地看出数量的增减变化情况。

生3:扇形统计图的特点是能清楚地表示各部分数量与总数之间的关系。2.什么是扇形统计图?

(扇形统计图用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分比)

设计意图:在复习扇形统计图意义的基础上,复习学过的统计图的种类及特点,在对比中进一步加深对扇形统计图的了解。

⊙复习用扇形统计图知识解决问题 1.根据扇形统计图解决问题。(课件出示教材114页6题)

我国城市空气质量正逐步提高,在2010年监测的330个城市中,有273个城市空气质量达到二级标准。监测城市的空气质量情况如下图所示。

(1)空气质量达到三级标准的城市有多少个?

(2)了解你所在城市的空气质量,讨论一下如何提高空气质量。2.解决问题。(1)解决问题(1)。

①思考:题中的有效信息有哪些?无用信息有哪些? ②汇报。

生1:题中“有273个城市空气质量达到二级标准”是无用信息。生2:对于问题(1)而言,题中“330个城市”和“16.1%”是有效信息。③根据统计图算出空气质量达到三级标准的城市有多少个。330×16.1%≈53(个)(2)解决问题(2)。

①组内交流:说一说你所在城市的空气质量问题。②全班交流:如何提高空气质量? 生1:要改善取暖工程。生2:加强环保意识。

生3:严禁开私家车,统一乘坐公交车,这样避免二氧化碳大量排放。生4:减少工厂废气排放。

设计意图:根据从扇形统计图中获取的信息进行相关的计算,进一步培养学生获取信息、解决问题的能力。

⊙巩固练习

1.小红收集的各种邮票统计如上图。

(1)小红收集的风景邮票、人物邮票和建筑邮票数量的比是()。(2)小红收集的()邮票数量最多。

(3)小红共收集了200张邮票,其中风景邮票有()张。2.完成教材117页17题。⊙课堂总结

通过这节课的复习,你有什么收获? ⊙布置作业

查资料,进一步了解扇形统计图的应用范围。

第五篇:第四章统计与概率教案

第四章 统计与概率 §4.1 50年的变化(二课时)

学习目标: 经历数据的收集、整理,描述与分析的过程,进一步发展统计意识和数据处理能力.通过具体情境,认识一些人为的数据及其表示方式可能给人造成一些误导,提高学生对数据的认识,判断和应用能力.

学习重点、难点: 把握统计图的特点,尤其是折线统计图,其为对应点的连线,数值与点有关,条形统计图两个比较时,单位长度要一致等,便可掌握本节的要求.扇形统计图只能知道各部分所占的比例. 学习方法: 活动——交流.学习过程:

一、例题分析:

【例1】 一文具店老板购进了一批不同价格的书包,它们的售价分别为10元、20元、30元、40元、50元;7天中各种规格书包的销售量依次为6个、17个、15个、9个、3个.这批书包售价的平均数、众数和中位数分别是多少?

【例2】 2002年8月,某书店各类图书销售情况如图1.(1)8月份书店售出各类图书的众数是

(2)这个月数学书与自然科学书销售量的比是多少?

(3)数学、自然科学、文化艺术、社会百科各类图书的频数大约是

二、课内练习:

课后练习:

作业:

小结: 教后记:

§4.2 哪种方式更合算

学习目标: 发展合作交流的意识和能力,体会如何评判某件事情是否合理,并学会利用它对现实生活中的一些现象进行评判.

学习重点: 学会对某些事情做出评判,这是学习概率的目的.学习是为了应用,帮助人们解决生活中的问题,这有很好的现实应用价值.在学习中注意从实验中积累经验,寻找方法,获得体验,从而提炼出数学上的理论解释. 学习难点:

理解掌握“转盘平均获益”的理论计算方法,对此也可以联想加权平均数的算法,转盘转出各种颜色的概率是可以直接得到的结论,而与对应的金额的乘积的和,与其获益,其不同概率的大小,可理解为权,金额为数据,计算平均数. 学习方法: 实验——引导法.学习过程:

一、例题分析:

【例1】 某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图4-2-2),并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得100元、50元、20元的购物券,凭购物券可以在该商场继续购物.顾客每转动一次转盘可平均获利多少元?

【例2】 某商店举办有奖销售活动,办法如下:凡购货满100元者得奖券一张,多购多得,每10000张奖券为一个开奖单位,设特等奖1个,一等奖50个,二等奖100个,那么买100元商品的中奖概率应该是()

150100151A.10000 B.10000

C.10000

D.10000

【例3】 某电视台综艺节目接到热线电话3000个,现要从中抽取“幸运观众”10名,张华同学打通了一次热线电话,那么他成为“幸运观众”的概率为 .

【例4】 有一个屋的地面是用黑、白、红三种颜色的地转镶嵌而成,其中三种地砖镶嵌的面积比是7:25:1,现在屋内顶棚上有一鸟,随意飞行,若小鸟飞落在地面上,则落在每种地砖上的概率各是多少?

【例5】 某福利彩票中心发行200000张福利彩票,每张价值2元,其中特等奖1名,一等奖10名,二等奖100名,三等奖500名,小明购买了三张彩票,中奖的概率是多少?

二、课堂练习:

课后练习:

作业:

小结: 教后记:

§4.3 游戏公平吗

学习目标: 体会如何评判某件事情是否“合算”,并学会对一些游戏活动的公平性作出评判. 学习重点: 本节重点是不仅对一些游戏活动的公平性作出评判,还要会合理的设计得分规则,使游戏公平.在生活中我们不仅要会评判事件,还要做出决策,对事件进行合理的设计,因而有很好的实用价值,也是我们在概率学习内容中的一个重要方面.对此只要能计算出双方获胜的概率,合理设计分数即可. 学习难点:

本节中,游戏获胜的概率可通过列表方法求得,如何设计得分规则是本节的难点.只要计算出双方的概率,如双方获胜概率为n1mn2mn1m,n2m,则得分规则只需满足a=·b即可,即其获胜后的得分分别为a、b,则游戏公平.

学习方法: 实验——引导法.学习过程:

一、例题分析:

【例1】 某一家庭有两个孩子,请问这两个孩子是一个男孩一个女孩的概率是多少?你是怎样知道的.

【例2】 在掷骰子的游戏中,当两枚骰子的和为质数时,小明得1分,否则小刚得1分.你认为该游戏对谁有利?如果当两枚骰子的点数之和大于7时,小刚得1分,否则小明得1分呢?

【例3】 乘火车从A站出发,沿途经过3个车站方可到达B站,那么在A、B两站之间需要安排 种不同的车票.

二、课内练习:

1.小东和小明设计了两个掷骰子的游戏,每个游戏每次都是掷两枚骰子. 游戏一:和为7或者8,则小东得1分;和是其他数字,小明得1分. 游戏二:和能够被3整除,小东得3分;和不能被3整除,小明得1分. 这两个游戏公平吗?说说你的理由;若不公平,你能将它们改为公平吗? 2.小明和小芳用如下转盘图进行配紫色游戏,分别转动两个转盘,若配成紫色则小明得1分,否则小芳得1分,这个游戏对双方公平吗?如果你认为不公平,如何修改得分规则才能使游戏对双方公平?

课后练习:

作业:

小结: 教后记:

下载专题二 统计与概率教案4word格式文档
下载专题二 统计与概率教案4.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    统计与概率总结

    “统计与概率”课题实施总结 一年多来,我校课题组全体成员解放思想,勇于创新,以推进素质教育为出发点,认真学习相关理论,围绕《统计与概率》课堂教学改革和课题的实验工作,认真分......

    概率与统计教学大纲

    《概率论和数理统计》教学大纲 学时: 48 学分:3 一、 课程的目的和任务 概率论与数理统计是研究随机现象的客观规律的一门数学学科。随着现代科学技术的发展,它已经被广泛应......

    统计与概率 教学设计 教案

    教学准备 1. 教学目标 知识与技能:掌握整理数据、编制统计表、绘制统计图。 过程与方法:比较不同统计图的特点及不同统计图的画法。 情感态度与价值观:通过对统计知识的整理......

    概率统计教案2

    第三章 多维随机变量及其分布 一、教材说明 本章内容包括:多维随机变量的联合分布和边际分布、多维随机变量函数的分布、多维随机变量的特征数,随机变量的独立性概念,条件分布......

    概率统计教案1

    第一章概率论的基本概念 1.确定性现象: 在一定条件下必然发生的现象. 2.统计规律性: 在个别试验或观察中可以出现这样的结果,也可以出现那样的结果,但在大量重复试验或观察中......

    概率统计教案5

    第五章 大数定律及中心极限定理 §5.1 大数定律 1.设Y1 , Y2 ,  , Yn , 是一个a是一个常数. 随机变量序列,若对于任意正数,有 limP{Ya}1, nn则称序列Y1 , Y2 ,  , Yn , 依概 P......

    《应用概率统计》综合作业二

    《应用概率统计》综合作业二一、填空题(每小题2分,共20分)1.某箱装有100件产品,其中一、二、三等品分别为80,10和10件,现从中随机地抽取一件,记,则,的联合分布律为(X1,X2)~(0,0)(0,1)(1,0)(1,1......

    统计与概率复习课

    《统计与概率复习课》教学设计 胡桂芬 一、教学目标 (一)知识与技能 让学生经历收集数据、整理数据、分析数据的活动,使他们在解决问题的整个过程中进一步巩固所学的统计知识,......