概率统计第五章教案(优秀范文五篇)

时间:2019-05-14 13:48:27下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《概率统计第五章教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《概率统计第五章教案》。

第一篇:概率统计第五章教案

第五章:大数定律和中心极限定理

1、引言:在刚开始我们提到事件发生的频率具有稳定性,随着试验次数的增加,事件发生的频率逐渐稳定于某个常数,在实践中,人们还认识到测量值的算术平均值也具有稳定性,这种稳定性就是本章所要讨论的大数定律的客观背景;中心极限定理则从理论上证明了在客观世界上所遇到的许多随机变量的和是服从正态分布或近似服从正态分布的.§5.1大 数 定 律

5.1.1切比雪夫不等式

2、切比雪夫不等式:对于任何具有有限方差的随机变量X,都有PXEXDX2,其中为任一正数.不等式

DX也可写成:PXEX12.证明:设随机变量X为离散型随机变量,其概率分布律为PXxp,k1,2,,则

kkPXEXxkEX122按概率的定义XEXPXxk

第一次放大XEXxkEXpk22 求和范围放大按概率的定义xkEXpk XEX21212xk1kEXpk2

按方差的定义DX2.若随机变量X为连续型随机变量,且概率密度函数为fx,则:

PXEXxEX122按概率的定义xEX2fxdx

第一次放大积分范围放大xEXxEXfxdx2

xEXfxdx 按方差的定义DX2122

3、结论:切比雪夫不等式具体地用随机变量X的数学期望EX和方差DX来估算随机变量X的概率分布,具体地用方差估算了随机变量X取值时以

的数学期望EX为中心的分散程度.4、例如:若X~N,,则 XPXEX1

DX22,即PX12.28PX310.8889; 当3时有239215当4时有PX4142160.9375; 224PX510.9600.当5时有2525而实际计算得:PX30.9974,这与用切比雪夫不等式估算的结果不矛盾.5、例1:已知正常男性成人的血液中,每一毫升的白细胞数平均是7300,均方差是700,利用切比雪夫不等式估计每毫升含白细胞数在5200~9400之间的概率.解:设随机变量X表示正常男性成人的血液中每一毫升 的白细胞数,则EX7300,DX700

2P5200X9400PX73002100

PXEX2100

1DX27002810.8889.221009

6、例

12:在每次试验中事件A以概率2发生,是否可以用大于等于0.975的概率确信,在1000 次试验中,事件A出现的次数在400与600范围内? 解:设在1000 次试验中,事件A出现的次数为X,则

7、例

X~B1000,12,EXnp100012500,DXnpq100011212250;

P400X600PX500100PXEX100

1250100212501000010.0250.975.所以可以用大于等于0.975的概率确信,在1000 次试验中,事件A出现的次数在400与600范围内

3:设电站供电网有10000盏电灯,夜晚每盏灯开灯的概率均为0.7,假设灯的开、关是相互独立的,估计夜晚同时开着的灯数在6800到7200盏之间的概率(见课本P124的例1).7 解:设随机变量X表示夜晚同时开着的灯的数量,由于每盏灯只有两个可能结果,而且灯的开、关是相互独立的,X~B10000,0.7,若用贝努里公式计算应为

P6800X72007199k6801kC100000.7k10.710000k,计算量很大,不易计算.下面用切比雪夫不等式来估算:

EXnp100000.77000,DXnpq100000.710.72100;

P6800X7200PX7000200

PXEX2002100210011220040000

10.05250.9475.此题说明:虽然10000盏灯,但是只要供应7200盏灯的电力就能以不低于94.75%的概率保证够用.5.1.2伯努利大数定律:

8、定理1(伯努利大数定律):设是n重伯努利试验中事件A出现的次数,而p是事件A在每次试验中出现的nnlimPp1 概率,则对于任意0,都有证明:设随机变量

nnX1,第i次试验中事件A出现i0,第i次试验中事件A不出现,i1,2,,n

Xi服从参数为p的两点01分布,EXip,DXipq,其中q1p,i1,2,,n,nX1,X2,,Xn相互独立,且nXii1,n从而EnXiEi11nnnEX1niEXini1ni1 1nnp1i1nnpp,nXiDnDi11nnnX1n2Di2DXnii1ni1 1npqnpq122npqi1nn,PDnnnEnnn12 pqPnnp1n21pqn2 则 由切比雪夫不等式得:即: 9

npqlimPplim11 n两边取极限得:nn2n

9、注意:

1伯努利大数定律的实际意义:

nn表示n次试验中事件A

出现的频率,当次数n很大时,事件A出现的频率与事件A出现的概率p的偏差小于任意正数的可能性很大,概率几乎达到1100%.2从伯努利大数定律可知:若事件A的概率很小,事件A出现的频率也很小,或者说事件A很少发生.从而得出小概率事件的实际不可能性原理“概率很小的随机事件在个别(或一次)试验中是不可能发生的”.3确定事件概率的方法:频率

nn与概率p的偏差任意小的概率接近1100%,那么我们就可以通过做试验来确定事件的频率,并把它作为随机事件发生的概率的估计,这种方法称为参数估计,它是数理统计主要的研究课题之一.10、序列Y,Y,,Y,依概率收敛于a(定义):设Y,Y,,Y,是一个相互独立的随机变量序列,a是一个常数,若对12n12n于任意正数,有limPYnna1,则称随机变量序列Y1,Y2,,Yn,依概率收敛于a.11、重新叙述伯努利大数定律:设是n次伯努利试验中事件A出现的次数,而p是事件A在每次试验中出现

n的概率,则频率

nn依概率收敛于概率p.5.1.3切比雪夫大数定律:

11、引言:人们在实践中还发现,除了频率具有稳定性以外,大量观察值的平均值也具有稳定性,这就是切比雪夫大数定律.12、定理2(切比雪夫大数定律): 设随机变量X,X,,X,相互独立,每一随机变量分别有数学期望EX,EX,,EX,和有限方差DX,DX,,DX,,且有公共上界c,即DXc,DXc,,DXc,则对于任意0,有12n12n12n12n1n1nlimPXiEXi1 nni1ni1 1n1n1nXiEXiEXi; 证明:Eni1ni1ni11n1nX1,X2,,Xn1DXi2DXi2ni1ni1相互独立n12nnccc2; nni1nDX

ii1n由切比雪夫不等式得:

1nDXninn111PXiEXi1i 2nni1i1 11

1n1nXiEXi即:Pnni1i11ncDXini1cn112122n

作为事件的概率都应有0p1,1nc1n12PXiEXi1 nnni1i1取极限得:

1nc1nlim12limPXiEXilim1nni1nnni1n

1n1n1limPXEX1ii即:n nni1i11n1nPXiEXi1.所以:limnni1ni1

13、切比雪夫大数定律的实际意义:相互独立的随机变量的算术平均值

1nXXini1与数学期望的算术平均值1nEXi的差在n充分大时是一个无穷小量,这也意ni1味着在n充分大时,经算术平均后得到的随机变量1nXXi的值将比较紧密地聚集在EXni1的附近.14、推论(由切比雪夫大数定律可得):设随机变量X,X,,X,服从同一分布,并且有(相同的)数学期望a及方差,则对于任意正数0,有12n21nliPmXinni1a.112

15、推论(切比雪夫大数定律的)的实际意义:假如我们要测量某一物理量a,在不变的条件下重复进行n次,得n个测量值X,X,,X,显然它们可以看成是n个相互独立的随机变量,具有相同的分布,并且有数学期望a,由推论可知,当n充分大时,n次测量结果

12nX1X2Xn的平均值可作为a的近似值:an,由此发生的误差可以任意小;这就是关于算术平均值的法则的理论依据.13 §5.2中 心 极 限 定 理

1、引言:正态分布在随机变量的一切可能的分布中占有特别重要的地位,实践中我们遇到的大量的随机变量都是服从正态分布的;在某些条件下,即使原来并不服从正态分布的一些独立的随机变量,它们的和的分布,当随机变量的个数无限增加时,也是趋于正态分布的.假如所研究的随机变量是由大量的相互独立的随机因素的综合影响所形成的,而其中每一个别因素在总的影响中所起的作用都是微小的,这种随机变量往往近似服从正态分布,在概率论中有关论证随机变量的和的极限的分布是正态分布的一类定理称为中心极限定理.5.2.1独立同分布的中心极限定理

2、定理1(独立同分布中心极限定理):设随机变量X,X,,X,相互独立,服从同一分布,且具有有限的数学期望和方差EX,DX0i1,2,,则随机变量12ni2inXEXiii1Yni1nDXii1nXi1ninn(这是随机变量X经标

ii1n准化后得到的随机变量)的分布函数Fx对任意的x,,都有

n

nXini1limFnxlimPxnnn

nXix1t2i1limPxe2dtn.n2证明略

3、说明:

1假设被研究的随机变量可以表示为大量独立的随机变量的和,其中每一个随机变量对于总和的作用都很微小,则可以认为这个随机变量总和实际上是服从正态分布的;实际上只要n足够大,便可认为随机变量总和是服从正态分布的.nXiEXii1i1Ynn2DXii1nXi1ninnn,当n很大时,近似服从标准正态分布N0,1,从而有

2X~Nn,nii1

5.2.2棣音同弟莫弗-拉普拉斯DeMoiverLaplace中心极限定理:

4、定理2:设随机变量n1,2,服从参数为n,p0p1的二项分布,则对于任意区间a,b,恒有

nlimPant2bnnp12bedt.a2np1p证明:由于服从二项分布的随机变量可视为n个相互独立、服从同一参数p0p1的01分布的随机变量X,X,,X之和,n12n即nXi,其中EXip,Di1nXipq,i1,2,,n,q1p,故由独立同分布中心极限定理可得:

nXint2x12i1nnplimPxlimPxedtnn,n2npq即n~Nn,npq,于是对于任意a,b有

limPant2bnnp12bedta.2np1p

5、说明:棣莫弗-拉普拉斯中心极限定理表明:正态分布是二项分布的极限分布,当n充分大时,服从二项分布的随机变量的概率计算可以转化为正态随机变量的概率计算.nanpnnpbnpbnpanpPanbP

npqnpqnpqnpqnpq

6、例1:设电站供电网有10000盏电灯,夜晚每盏灯开灯的概率均为0.7,假设灯的开、关是相互独立的,估计夜晚同时开着的灯数在6800到7200盏之间的概率(此题在本章讲稿的第三页已用切比雪夫不等式估算过).解:n~Bn,pB10000,0.7,Ennp100000.77000,Dnnpq100000.70.32100,Dn210045.8258,P6800n7200Pn7000200

7000nPDn Dn200n7000200P4.364445.825845.8258

4.36444.3644

4.364414.3644

24.3644120.99999510.99999.即亮灯数介于6800~7200之间的概率为0.99999.7、例2:某计算器进行加法计算时,把每个加数取为最接近于它的整数来计算,设所有取整误差是相互独立的随机变量,并且都在0.5,0.5上服从均匀分布.求:(1)1200个数相加时,误差总和的绝对值小于10的概率.(2)多少个数相加可使误差总和的绝对值小于10的概率大于0.9? ii解:设X表示第i个数相加时的误差,则X服从区间0.5,0.5上的均匀分布,即X~U0.5,0.5,i其密度函数为:

10.50.5,0.5x0.51,0.5x0.5fx其它0,0,其它2,0.50.50.50.51EX0DX从而有i,i; 21212120012001200EXiEXi00

i1i1i112001112001200DXiDXi1200100;

12i112i1i1(1)由于大量随机变量的和的分布是近似服从正态

分布的,1200Xi01200标准化10i1PXi10P1100100i1 查标准正态分布表11111211

20.841310.6826.(2)设需n个数相加可使误差总和的绝对值小于10的概

率大于0.9.则

nXin0n标准化10203i1PXi10Pnn i1nDXi12203203203210.9nn n20310.90.95n,2

查标准正态分布表得:1.6450.9

5203203从而有n1.645n1.645443.4289.n443

2(即不要多于443个数相加可使误差总和的绝对值小于10的概率大于0.9).8、例3:每发炮弹命中目标的概率为0.01,求500发炮弹至少命中5发的概率.解:用随机变量X表示500发炮弹命中目标的炮弹数,则X~B500,0.01,EXnp5000.015,DXnpq5000.010.994.95

DX4.952.223;

方法一:用二项分布来计算

kPX5C5000.01k10.01k54500500k

k1C5000.01k0.99500kk0012C5000.99500C5000.010.99499C5000.0120.9949813C0.0130.99497C40.0140.994965005000.56039.方法二:当n很大,p很小时的二项分布,可近似用泊松分布来计算X~Pnp.4kePX51PX41 k!k01k045000.01k!ke5000.01

5ke510.5595.k!k04方法三:用中心极限定理计算.23 1,第i发炮弹击中目标设Xi0,第i发炮弹未击中目标

Xi近似服从正态分布 则Xi1500XEX5EXPX5P

DXDX标准化55000.01XEXP

5000.010.99DXXEXXEX1P0P0 DXDX1010.50.5.

第二篇:概率统计教案2

第三章 多维随机变量及其分布

一、教材说明

本章内容包括:多维随机变量的联合分布和边际分布、多维随机变量函数的分布、多维随机变量的特征数,随机变量的独立性概念,条件分布与条件期望。本章仿照一维随机变量的研究思路和方法。

1、教学目的与教学要求 本章的教学目的是:

(1)使学生掌握多维随机变量的概念及其联合分布,理解并掌握边际分布和随机变量 的独立性概念;

(2)使学生掌握多维随机变量函数的分布,理解并掌握多维随机变量的特征数;(3)使学生理解和掌握条件分布与条件期望。本章的教学要求是:(1)深刻理解多维随机变量及其联合分布的概念,会熟练地求多维离散随机变量的联合分布列和多维连续随机变量的联合密度函数,并熟练掌握几种常见的多维分布;

(2)深刻理解并掌握边际分布的概念,能熟练求解边际分布列和边际密度函数;理解随机变量的独立性定义,掌握随机变量的独立性的判定方法;(3)熟练掌握多维随机变量的几种函数的分布的求法,会用变量变换法求解、证明题目;(4)理解并掌握多维随机变量的数学期望和方差的概念及性质,掌握随机变量不相关与独立性的关系;(5)深刻理解条件分布与条件期望,能熟练求解条件分布与条件期望并会用条件分布与条件期望的性质求解、证明题目。

2、本章的重点与难点

本章的重点是多维随机变量的联合分布和边际分布、多维随机变量函数的分布及条件分布、多维随机变量的特征数,难点是多维随机变量函数的分布及条件分布的求法。

二、教学内容

本章共分多维随机变量及其联合分布、边际分布与随机变量的独立性、多维随机变量函数的分布、多维随机变量的特征数、条件分布与条件期望等5节来讲述本章的基本内容。

3.1 多维随机变量及其联合分布

一、多维随机变量

定义3.1.1 如果X1(),X2(),,Xn()是定义在同一个样本空间{}上的n个随机变量,则称X()(X1(),...,Xn())为n维随机变量或随机向量。

二、联合分布函数

1、定义3.1.2 对任意n个实数x1,x2,,xn,则n个事件{X1x1},{X2x2},,{Xnxn}同时发生的概率 F(x1,x2,,xn)P{X1x1,X2x2,,Xnxn}

称为n维随机变量(X1,X2,,Xn)的联合分布函数。

n!n2p1n1p2prnr,n1!n2!nr!这个联合分布列称为r项分布,又称为多项分布,记为M(n,p1,p2,,pr).例3.1.4 一批产品共有100件,其中一等品60件,二等品30件,三等品10件。从这批产品中有放回地任取3件,以X和Y分别表示取出的3件产品中一等品、二等品的件数,求二维随机变量(X,Y)的联合分布列。

分析 略。

解 略。

2、多维超几何分布

多维超几何分布的描述:袋中有N只球,其中有Ni只i号球,i1,2,,r。记NN1N2Nr,从中任意取出n只,若记Xi为取出的n只球中i号球的个数,i1,2,,r,则

N1N2NrnnnP(X1n1,X2n2,Xrnr)12r.Nn其中n1n2nrn。

例3.1.5 将例3.1.4改成不放回抽样,即从这批产品中不放回地任取3件,以X和Y分别表示取出的3件产品中一等品、二等品的件数,求二维随机变量(X,Y)的联合分布列。

略。

3、多维均匀分布

设D为R中的一个有界区域,其度量为SD,如果多维随机变量(X1,X2,,Xn)的联合密度函数为 n1,(x1,x2,,xn)D, p(x1,x2,,xn)SD0,其他则称(X1,X2,,Xn)服从D上的多维均匀分布,记为(X1,X2,,Xn)~U(D).例3.1.6 设D为平面上以原点为圆心以r为半径的圆,(X,Y)服从D上的二维均匀分布,其密度函数为

12222,xyr, p(x,y)r2220,xyr.试求概率P(X).解 略。

4、二元正态分布

如果二维随机变量(X,Y)的联合密度函数为

1212(x1)2(x1)(y2)(y2)21exp{[2]},x,y22(12)1212212r2p(x,y)2则称(X,Y)服从二维正态分布,记为(X,Y)~N(1,2,12,2,).其中五个参数的取值范围分别是:1,2;1,20;11.以后将指出:1,2分别是X与Y的均值,12,22分别是X与Y的方差,是X与Y的相关系数。

2例3.1.7 设二维随机变量(X,Y)~N(1,2,12,2,).求(X,Y)落在区域D{(x,y):(x1)2212(x1)(y2)12(y2)2222}内的概率。

解 略。

注 凡是与正态分布有关的计算一般需要作变换简化计算。

3.2 边际分布与随机变量的独立性

一、边际分布函数

1、二维随机变量(X,Y)中

X的边际分布

FX(x)P(Xx)P(XY的边际分布

FY(y)F(,y)x,Y)limF(x,y)yF(x, 

2、在三维随机变量(X,Y,Z)的联合分布函数F(x,y,z)中,用类似的方法可得到更多的边际分布函数。

例3.2.1设二维随机变量(X,Y)的联合分布函数为

1exeyexyxy,x0,y0, F(x,y)0,其他这个分布被称为二维指数分布,求其边际分布。

解 略。

注 X与Y的边际分布都是一维指数分布,且与参数0无关。不同的0对应不

p(x1,x2,,xn)pi(xi)

i1n则称X1,X2,,Xn相互独立。

例3.2.7设二维随机变量(X,Y)的联合密度函数为

8xy,0xy1, p(x,y)0,其他.问X与Y是否相互独立?

分析 为判断X与Y是否相互独立,只需看边际密度函数之积是否等于联合密度函数。解 略。

3.3 多维随机变量函数的分布

一、多维离散随机变量函数的分布

以二维为例讨论,设二维随机变量(X,Y)的取值为(xi,yj),Zf(X,Y), 随机变量

Z的取值为zk.令Ck{(xi,yj):f(xi,yj)zk},则

P(Zzk)P(f(xi,yj)zk)P((xi,yj)Ck)(xi,yj)Ckpij.例3.3.2(泊松分布的可加性)设X~P(1),Y~P(2), 且X与Y相互独立。证明

ZXY~P(12).证明:略。

注 证明过程用到离散场合下的卷积公式,这里卷积指“寻求两个独立随机变量和的分布运算”,对有限个独立泊松变量有

P(1)P(2)P(n)P(12n).例3.3.3(二项分布的可加性)设X~b(n,p),Y~b(m,p),且X与Y相互独立。证明ZXY~b(mn,p).证明 略。

注(1)该性质可以推广到有限个场合

b(n1,p)b(n2,p)b(nk,p)b(n1n2nk,p)

(2)特别当n1n2nk1时,b(1,p)b(1,p)b(1,p)b(n,p)这表明,服从二项分布b(n,p)的随机变量可以分解成n个相互独立的0-1分布的随机

变量之和。

二、最大值与最小值的分布

例3.3.4(最大值分布)设X1,X2,,Xn是相互独立的n个随机变量,若

Ymax(X1,X2,Xn).设在以下情况下求Y的分布:

(1)Xi~Fi(x),i1,2,,n;

(2)Xi同分布,即Xi~F(x),i1,2,,n;

(3)Xi为连续随机变量,且Xi同分布,即Xi的密度函数为p(x),i1,2,,n;

(4)Xi~Exp(),i1,2,,n.解 略。

注 这道题的解法体现了求最大值分布的一般思路。

例3.3.5(最小值分布)设X1,X2,,Xn是相互独立的n个随机变量;若Ymin(X1,X2,Xn),试在以下情况下求Y的分布:

(1)Xi~Fi(x),i1,2,,n;

(2)Xi同分布,即Xi~F(x),i1,2,,n;

(3)Xi为连续随机变量,且Xi同分布,即Xi的密度函数为p(x),i1,2,,n;

(4)Xi~Exp(),i1,2,,n.解 略。

注 这道例题的解法体现了求最小值分布的一般思路。

三、连续场合的卷积公式

定理3.3.1设X与Y是两个相互独立的连续随机变量,其密度函数分别为pX(x)、pY(y),则其和ZXY的密度函数为

pZ(z)pX(zy)pY(y)dy.证明 略。

本定理的结果就是连续场合下的卷积公式。

例3.3.6(正态分布的可加性)设X~N(1,1),Y~N(2,2),且X与Y相互独立。证明ZXY~N(12,12).证明 略

2222

注 任意n个相互独立的正态变量的非零线性组合仍是正态变量。

四、变量变换法

1、变量变换法

设(X,Y)的联合密度函数为p(x,y),函数ug1(x,y),有连续偏导数,且存在唯一

vg(x,y).2xx(u,v),的反函数,其变换的雅可比行列式

yy(u,v)x(x,y)uJ(u,v)xv若yuyv1(u,v)(x,y)uxvxuyvy0.1Ug1(X,Y)则(U,V)的联合密度函数为

Vg2(X,Y),p(u,v)p(x(u,v),y(u,v))J.这个方法实际上就是二重积分的变量变换法,其证明可参阅数学分析教科书。例3.3.9设X与Y独立同分布,都服从正态分布N(,2),记试求(U,V)的联合密度函数。U与V是否相互独立?

解 略。

2、增补变量法

增补变量法实质上是变换法的一种应用:为了求出二维连续随机变量(X,Y)的函数

UXY,VXY.Ug(X,Y)的密度函数,增补一个新的随机变量Vh(X,Y),一般令VX或VY。先用变换法求出(U,V)的联合密度函数p(u,v),再对p(u,v)关于v积分,从而得出关于U的边际密度函数。

例3.3.10(积的公式)设X与Y相互独立,其密度函数分别为 pX(x)和pY(y).则UXY的密度函数为pU(u)证 略。

pX(uv)pY(v)1dv.v例3.3.11(商的公式)设X与Y相互独立,其密度函数分别为pX(x)和pY(y),则UXY的密度函数为pU(u)

pX(uv)pY(v)vdv.10111213

例3.5.5设(X,Y)服从G{(x,y):x2y21}上的均匀分布,试求给定Yy条件下X的条件密度函数p(x|y)。

解 略。

3、连续场合的全概率公式和贝叶斯公式 全概率公式的密度函数形式

pY(y)pX(x)p(y|x)dx,pX(x)pY(y)p(x|y)dy.pY(y)p(x|y)贝叶斯公式的密度函数形式

p(x|y)pX(x)p(y|x)pX(x)p(y|x)dx,p(y|x)pY(y)p(x|y)dy.注 由边际分布和条件分布就可以得到联合分布。

二、条件数学期望

1、定义3.5.4 条件分布的数学期望(若存在)称为条件数学期望,其定义如下:

xiP(Xxi|Yy),(X,Y)为二维离散随机变量;E(X|Yy)i

(X,Y)为二维连续随机变量。xp(x|y)dx,yjP(Yyj|Xx),(X,Y)为二维离散随机变量;jE(Y|Xx)

(X,Y)为二维连续随机变量。yp(y|x)dy,注(1)条件数学期望具有数学期望的一切性质。

(2)条件数学期望E(X|Y)可以看成是随机变量Y的函数,其本身也是一个随机变量。

2、定理3.5.1(重期望公式)设(X,Y)是二维随机变量,且E(X)存在,则

E(X)E(E(X|Y))。

证明 略。

注 重期望公式的具体使用如下

(1)如果Y是一个离散随机变量,E(X)(2)如果Y是一个连续随机变量,E(X)E(X|yy)P(Yy);

jjjE(X|Yy)pY(y)dy.例3.5.10(随机个随机变量和的数学期望)设X1,X2,,Xn是一列独立同分布的随机变量,随机变量N只取正整数值,且与{Xn}独立。证明

E(Xi)E(X1)E(N).i1N

第四章 大数定律与中心极限定理

一、教材说明

本章内容包括特征函数及其性质,常用的几个大数定律,随机变量序列的两种收敛性的定义及其有关性质,中心极限定理。大数定律涉及的是一种依概率收敛,中心极限定理涉及按分布收敛。这些极限定理不仅是概率论研究的中心议题,而且在数理统计中有广泛的应用。

1、教学目的与教学要求 本章的教学目的是:

(1)使学生掌握特征函数的定义和常用分布的特征函数;

(2)使学生深刻理解和掌握大数定律及与之相关的两种收敛性概念,会熟练运用几个大数定律证明题目;

(3)使学生理解并熟练掌握独立同分布下的中心极限定理。本章的教学要求是:

(1)理解并会求常用分布的特征函数;

(2)深刻理解并掌握大数定律,能熟练应用大数定律证明题目;

(3)理解并掌握依概率收敛和按分布收敛的定义,并会用其性质证明相应的题目;(4)深刻理解与掌握中心极限定理,并要对之熟练应用。

2、重点与难点

本章的重点是大数定律与中心极限定理,难点是用特征函数的性质证明题目,大数定律和中心极限定理的应用。

二、教学内容

本章共分特征函数、大数定律、随机变量序列的两种收敛性,中心极限定理等4节来讲述本章的基本内容。

4.1特征函数

一、特征函数的定义

1.定义4.1.1 设X是一个随机变量,称(t)=E(e),-∞ < t < + ∞,为X的特征函数。

itXitX注 因为e1,所以E(e)总是存在的,即任一随机变量的特征函数总是存在的。

itX

2.特征函数的求法

(1)当离散随机变量X的分布列为Pk= P(X= xk),k = 1,2,…,则X的特征函数为

φ(t)=ek1itxkPk,-∞ < t < + ∞。

(2)当连续随机变量X的密度函数为p(x),则X的特征函数为

φ(t)=eitxP(x)dx,-∞ < t < + ∞。

例4.1.1 常用分布的特征函数

(1)单点分布:P(X= a)= 1,其特征函数为φ(t)= eita。(2)0 –1分布:P(X= x)=px(1

证明 略。

定理4.1.1(一致连续性)随机变量X的特征函数φ(t)在(-∞,+ ∞)上一致连续。定理4.1.2(非负定性)随机变量X的特征函数φ(t)是非负定的。定理4.1.4(唯一性定理)随机变量的分布函数由其特征函数唯一决定。例4.1.3 试利用特征函数的方法求伽玛分布Ga(α,λ)的数学期望和方差。解 因为Ga(α,λ)的特征函数φ(t)= φ(t)= ‘

‘iii(1)1;φ(0)= (1it),’‘’1)i2it;φ(t)= ((1)2;φ(0)= 2(1)2,所以由性质4.1.5得

E(X)'(0)i;Var(X)''(0)('(0))22.4.2大数定律

一、何谓大数定律(大数定律的一般提法)

定义4.2.1设{Xn}为随机变量序列,若对任意的0,有

1n1nlimPXiE(Xi)1.(4.2.5)nni1ni1则称{Xn}服从大数定律。

二、切比雪夫大数定律

定理4.2.2(切比雪夫大数定律)设{Xn}为一列两两不相关的随机变量序列,若每个Xi的方差存在,且有共同的上界,即Var(Xi)c,i1,2,,则{Xn}服从大数定律,即对任意的0,式(4.2.5)成立。

利用切比雪夫不等式就可证明。此处略。

推论(定理4.2.1:伯努利大数定律)设n为n重伯努利试验中事件A发生的次数,P为每次试验中A出现的概率,则对任意的0,有

limPnp1.nn分析 n服从二项分布,因此可以把n表示成n个相互独立同分布、都服从0–1分布的随机变量的和。

三、马尔可夫大数定律

定理4.2.3(马尔可夫大数定律)对随机变量序列{Xn},若马尔可夫条件n1Var(Xi)0成立,则{Xn}服从大数定律,即对任意的0,式(4.2.5)成立。n2i1证明 利用切比雪夫不等式就可证得。

例4.2.3 设{Xn}为一同分布、方差存在的随机变量序列,且Xn仅与Xn1和Xn1相关,而与其他的Xi不相关,试问该随机变量序列{Xn}是否服从大数定律?

解 可证对{Xn},马尔可夫条件成立,故由马尔可夫大数定律可得{Xn}服从大数定律。

四、辛钦大数定律

定理4.2.4(辛钦大数定律)设{Xn}为一独立同分布的随机变量序列,若Xn的数学期望存在,则{Xn}服从大数定律,即对任意的0,式(4.2.5)成立。

4.3随机变量序列的两种收敛性

一、依概率收敛

1.定义4.3.1(依概率收敛)设{Xn}为一随机变量序列,Y为一随机变量。如果对于任意的0,有

nlimPYnY1.P则称{Xn}依概率收敛于Y,记做YnY。

1n1nP注 随机变量序列{Xn}服从大数定律XiE(Xi)0。

ni1ni12.依概率收敛的四则运算

定理4.3.1 设{Xn},{Yn}是两个随机变量序列,a,b是两个常数。如果

PP{Xn}a,{Yn}b,则有(1)XnYnab;(3)XnYnab(b0).ab;(2)XnYn

二、按分布收敛、弱收敛 PPP

1.定义4.3.2 设{Fn(x)}是随机变量序列{Xn}的分布函数列,F(x)为X的分布函数。若对F(x)的任一连续点x,都有limFn(X)=F(x),则称{Fn(x)}弱收敛于F(x),记做

nFn(X)F(x)。也称{Xn}按分布收敛于X,记做XnlX。

2.依概率收敛与按分布收敛间的关系

P(1)定理4.3.2 XnXXnlX。

P(2)定理4.3.3 若c为常数,则XncXnlc

两个定理的证明均略。

三、判断弱收敛的方法

定理4.3.4 分布函数序列{Fn(x)}弱收敛于分布函数F(X)的充要条件是{Fn(x)}的特征函数序列{φn(t)}收敛于F(x)的特征函数φ(t)。

这个定理的证明只涉及数学分析的一些结果,参阅教材后文献[1]。例4.3.3 若X~P(),证明

1XlimPx2解 用定理4.3.4。此处略。

xedt.t224.4中心极限定理

一、中心极限定理概述

研究独立随机变量和的极限分布为正态分布的命题。

二、独立同分布下的中心极限定理

定理4.4.1(林德贝格-勒维中心极限定理)设{Xn}是独立同分布的随机变量序列,且E(Xi),Var(Xi)0.记

2Yn*则对任意实数y,有

X1X2Xnnn.1* limPYy(y)nn2

yedt.t22-2021-

第三篇:概率统计教案1

第一章

概率论的基本概念

1.确定性现象: 在一定条件下必然发生的现象.2.统计规律性: 在个别试验或观察中可以出现这样的结果,也可以出现那样的结果,但在大量重复试验或观察中所呈现出的固有规律性.3.随机现象: 在个别试验中其结果呈现

-----概率论与数理统计教案 第一章 概率论的基本概念 第1页

共51页-----出不确定性,在大量重复试验中其结果又具有统计规律性的现象.§1.1 随机试验 1.随机试验: ①可以在相同条件下重复进行;

②每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;

③进行一次试验之前不能确定哪一个结

-----概率论与数理统计教案 第一章 概率论的基本概念 第2页

共51页-----果会出现.§1.2 样本空间、随机事件

1.随机试验E的所有可能结果组成的集合称为E的样本空间,记为S.2.随机试验E的每个结果称为样本点.例1.写出下列随机试验的样本空间.①考察某一储蓄所一天内的储款户数.S0 , 1 , 2 , .-----概率论与数理统计教案 第一章 概率论的基本概念 第3页

共51页-----②10件产品中有3件是次品,每次从中任取一件(取后不放回),直到将3件次品都取出,记录抽取的次数.S3 , 4 , 5 , 6 , 7 , 8 , 9 , 10.③在②中取后放回,记录抽取的次数.S3 , 4 , 5 , .④一口袋中有5个红球、4个白球、3个蓝球,从中任取4个,观察它们具有哪

-----概率论与数理统计教案 第一章 概率论的基本概念 第4页

共51页-----几种颜色.S={(红),(白),(红、白),(红、蓝),(白、蓝),(红、白、蓝)}.3.样本空间S的子集称为随机事件,简称事件.4.对于事件A,每次试验中,当且仅当这一子集中的一个样本点出现时称事件A发生.-----概率论与数理统计教案 第一章 概率论的基本概念 第5页

共51页-----5.由一个样本点组成集合称为基本事件.6.在每次试验中总是发生的事件称为必然事件,即样本空间S.7.在每次试验中都不发生的事件称为不可能事件,即空集.例2.抛掷两枚骰子,考察它们所出的点数.写出这一随机试验的样本空间及下列

-----概率论与数理统计教案 第一章 概率论的基本概念 第6页

共51页-----随机事件.①“两枚骰子点数之和为5”.②“两枚骰子点数之和为2”.③“两枚骰子点数之和为1”.④“两枚骰子点数之和不超过12”.解: 对两枚骰子编号为1、2.用(I , J)表示第1枚骰子出I点,第2枚骰子出J点.S={(1, 1),(1, 2),(1, 3),(1, 4),(1, 5),-----概率论与数理统计教案 第一章 概率论的基本概念 第7页

共51页-----(1, 6),(2, 1),(2, 2),(2, 3),(2, 4),(2, 5),(2, 6),(3, 1),(3, 2),(3, 3),(3, 4),(3, 5),(3, 6),(4, 1),(4, 2),(4, 3),(4, 4),(4, 5),(4, 6),(5, 1),(5, 2)(5, 4),(5, 5),(5, 6),(6, 1),3),(6, 4),(6, 5),(6, 6)}.① {(1, 4),(2, 3),(3, 2),②{(1, 1)}.-----概率论与数理统计教案 第一章 概率论的基本概念 第8页

共51页-----,(6, 2)(5, 3),(6,(4, 1)}.③Ø.④S.8.事件间的关系与运算: ①事件A发生必导致事件B发生,称事件B包含事件A,记为AB.②事件AB{xxA或xB}称为事件A与事件B的和事件.当且仅当A与B至少有一个发生时,事件AB发生.-----概率论与数理统计教案 第一章 概率论的基本概念 第9页

共51页-----k1Ak为n个事件A 1,A2,…,An的和事件.Ak为可列个事件A 1,A2,…的和事件.nk1③事件AB{xxA且xB}称为事件A与事件B的积事件.当且仅当A与B同时发生时,事件AB发生.AB也记作AB.k1Ak为n个事件A 1,A2,…,An的积事件.n

-----概率论与数理统计教案 第一章 概率论的基本概念 第10页

共51页-----k1Ak为可列个事件A 1,A2,… 的积事件.AB{xxA且xB} ④事件

称为事件A与事件B的差事件.当且仅当A发生、B不发生时,事件AB发生.⑤若AB,则称事件A与事件B是互不相容的,或互斥的.即事件A与事件B不

-----概率论与数理统计教案 第一章 概率论的基本概念 第11页

共51页-----能同时发生.⑥若ABS且AB,则称事件A与事件B互为逆事件,或互为对立事件.即对每次试验,事件A与事件B中必有一个发生,且仅有一个发生.A的对立事件记为A,即ASA.9.事件的运算定律: ①交换律:

-----概率论与数理统计教案 第一章 概率论的基本概念 第12页

共51页-----ABBA,ABBA.②结合律: A(BC)(AB)C,A(BC)(AB)C.③分配律: A(BC)(AB)(AC),A(BC)(AB)(AC).④德∙摩根律:

-----概率论与数理统计教案 第一章 概率论的基本概念 第13页

共51页-----ABB A,ABBA.§1.3 频率与概率 1.在相同条件下,进行了n次试验,事件A发生的次数nA称为事件A发生的频数.nA比值称为事件A发生的频率,记为fn(A).n2.频率的基本性质: ①0fn(A)1.-----概率论与数理统计教案 第一章 概率论的基本概念 第14页

共51页-----②fn(S)1.③若A 1,A2,…,Ak是两两互不相容的事件,则

.fn(AA)f(A)f(A)1kn1nk3.当重复试验的次数n逐渐增大时,频率fn(A)呈现出稳定性,逐渐稳定于某个常数,这种统计规律性称为频率稳定性.4.设E是随机试验,S是它的样本空间.-----概率论与数理统计教案 第一章 概率论的基本概念 第15页

共51页-----对于E的每一事件A赋于一个实数,记为p(A),称为事件A的概率,且关系p满足下列条件:

①非负性: p(A)0.②规范性: p(S)1.③可列可加性: 设A 1,A2,…是两两互不相容的事件,则

P(A1A2)P(A1)P(A2).-----概率论与数理统计教案 第一章 概率论的基本概念 第16页

共51页-----5.概率的性质: ①p()0.②(有限可加性)设A 1,A2,…An是两两互不相容的事件,则 P(AAn)P(A)P(An).1

1③若AB,则

P(BA)P(B)P(A),P(B)P(A).④p(A)1p(A).-----概率论与数理统计教案 第一章 概率论的基本概念 第17页

共51页-----

⑤p(A)1.⑥(加法公式)P(AB)P(A)P(B)P(AB),P(ABC)P(A)P(B)P(C)P(AB)P(AC)P(BC)P(ABC).§1.4 等可能概型(古典概型)1.具有以下两个特点的试验称为古典概型.-----概率论与数理统计教案 第一章 概率论的基本概念 第18页

共51页-----①试验的样本空间只包含有限个元素.②试验中每个基本事件发生的可能性相同.2.古典概型中事件概率的计算公式: 样本空间S{e1 , e2 ,  , en},事件A{ei , ei ,  , ei},12kk

P(A).n

-----概率论与数理统计教案 第一章 概率论的基本概念 第19页

共51页-----例1.抛掷两枚均匀的硬币,求一个出正面,一个出反面的概率.解: S={(正,正),(正,反),(反,正),(反,反)}.A={(正,反),(反,正)}.例2.抛掷两枚均匀的骰子,求点数之和不超过4的概率.-----概率论与数理统计教案 第一章 概率论的基本概念 第20页

共51页-----

21p(A).42解:

S={(1,1),(1,2),(1,3),(1,4),(1,5),…,(6,6)}.A={(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)}.61p(A).366例3.从一批由45件正品,5件次品组成的产品中任取3件产品.求恰有一件次品的概率.-----概率论与数理统计教案 第一章 概率论的基本概念 第21页

共51页-----

CC解: p(A)30.253.C50例4.袋中有5个白球3个黑球.从中按

15245下列方式取出3个球,分别求3个球都是白球的概率.①同时取.②不放回,每次取一个.③放回,每次取一个.-----概率论与数理统计教案 第一章 概率论的基本概念 第22页

共51页-----解: ①p(A)C3053CC30.179.8②p(B)A35A30.179.8③p(A)53830.244.例5.某班有23名同学,求至少有同学生日相同的概率(假定1年为天).-----概率论与数理统计教案 第一章 概率论的基本概念 第23页

共51页-----

2365(23)!C493.解: p(A)230.(365)p(A)1p(A)0.507.23365例6.从一副扑克牌(52张)中任取4张牌,求这4张牌花色各不相同的概率.14(C13)解: p(A)40.105.C52例7.甲项目和乙项目将按时完成的概率为0.75和0.90,甲、乙项目至少有一

-----概率论与数理统计教案 第一章 概率论的基本概念 第24页

共51页-----个项目将按时完成的概率为0.99.求下列事件的概率.①两项目都按时完成.②只有一个项目按时完成.③两项目都没有按时完成.B表解: 设用A表示“甲项目按时完成”、示“乙项目按时完成”,则p(A)0.75,p(B)0.90,p(AB)0.99.-----概率论与数理统计教案 第一章 概率论的基本概念 第25页

共51页-----①p(AB)P(A)p(B)p(AB)

0.750.90.99 0.66.②

p[(AB)(AB)]p(AB)p(AB)

0.990.66 0.33.③p(AB)p(AB)

1p(AB)

-----概率论与数理统计教案 第一章 概率论的基本概念 第26页

共51页-----

10.99 0.01.例8.将一枚骰子连续掷5次,求下列各事件的概率.①“5次出现的点数都是3”.②“5次出现的点数全不相同”.③“5次出现的点数2次1点,2次3点,1次5点”.-----概率论与数理统计教案 第一章 概率论的基本概念 第27页

共51页-----④“5次出现的点数最大是3点”.⑤“5次出现的点数既有奇数点,又有偶数点”.§1.5 条件概率

例1.抛掷一枚均匀的骰子.设A表示“出现的点数不大于3”,B表示“出现偶数点”,求: ①“出现偶数点”的概率.-----概率论与数理统计教案 第一章 概率论的基本概念 第28页

共51页-----②已知“出现的点数不大于3”的条件下,“出现偶数点”的概率.解: S={1,2,3,4,5,6},A={1,2,3},B={2,4,6}.31①p(B).62②用“BA”表示已知事件A发生的条件下,事件B发生.-----概率论与数理统计教案 第一章 概率论的基本概念 第29页

共51页-----AB{2},1P(AB)16p(BA).33P(A)6

1.设A、B是两个事件,且p(A)0,称

P(AB)p(BA)P(A)为在事件A发生的条件下事件B发生的条件概率.-----概率论与数理统计教案 第一章 概率论的基本概念 第30页

共51页-----

例2.一批零件100个,其中次品10个,正品90个.从中连续抽取两次,做非回臵式抽样.求: ①第一次取到正品的概率.②第一次取到正品的条件下第二次取到正品的概率.解: 设A表示“第一次取到正品”,B表示“第二次取到正品”.-----概率论与数理统计教案 第一章 概率论的基本概念 第31页

共51页-----

909①p(A).10010289C90②p(AB)2,C100110P(AB)89.p(BA)P(A)992.乘法定理: 设p(A)0,则

p(AB)p(BA)p(A).设p(AB)0,则

p(ABC)p(CAB)p(BA)p(A).-----概率论与数理统计教案 第一章 概率论的基本概念 第32页

共51页-----例3.一批零件100个,次品率为10%.从中接连取零件,每次任取一个,取后不放回.求第三次才取到正品的概率.解: 设用A i表示“第i次取到正品”(i1 , 2 , 3).由于次品率为10%,所以次品10个,正品90个.P(A 1 A 2A 3)P(A 1)P(A 2 A 1)P(A 3A 1 A 2)

10990 1009998

-----概率论与数理统计教案 第一章 概率论的基本概念 第33页

共51页-----

0.0083.3.样本空间的一个划分: ①

BiBj , ij , i , j1 , 2 ,  , n.②B1B2BnS.称B1 , B2 ,  , Bn为样本空间的一个划分(或完备事件组).4.全概率公式: 若B1,B2,…,Bn为样本

-----概率论与数理统计教案 第一章 概率论的基本概念 第34页

共51页-----空间的一个划分,且P(Bi)0(i1 , 2 ,  , n),A为某一事件,则 P(A)P(A B1)P(B1)P(A B2)P(B2)

P(A Bn)P(Bn).5.贝叶斯公式: 若B1,B2,…,Bn为样本空间的一个划分,A为某一事件,且P(A)0,P(Bi)0(i1 , 2 ,  , n),则

-----概率论与数理统计教案 第一章 概率论的基本概念 第35页

共51页-----,P(BiA)nP(ABj)P(Bj)j1P(ABi)P(Bi)(i1 , 2 ,  , n).例4.两台机床加工同样的零件.第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件堆放在一起.已知第一台加工的零件比第二台加工的零件多一倍,从中任取一个零件,求:

-----概率论与数理统计教案 第一章 概率论的基本概念 第36页

共51页-----①这个零件不是废品的概率.②如果已知取出的这个零件不是废品,那么,它是第一台机床生产的概率.解: 设用A表示“此零件不是废品”,用Bi表示“此零件由第i台机床加工”(i1 , 则

P(B21 1)3,P(B 2)3,P(A B 1)0.97,P(A B 2)0.98.-----概率论与数理统计教案 第一章 概率论的基本概念 第37页

共51页-----

2),①

P(A)P(A B1)P(B1)P(A B2)P(B2)

210.970.98 330.973.②

P(AB1)P(B1)P(B1A)P(AB1)P(B1)P(AB2)P(B2)

-----概率论与数理统计教案 第一章 概率论的基本概念 第38页

共51页-----

20.973 210.970.98330.664.例5.有5个盒子,分别编号1、2、3、4、5.第1及第2号盒子各有5个球,其中3个白球,2个红球.第3及第4号盒子也各有5个球,其中1个白球,4个红

-----概率论与数理统计教案 第一章 概率论的基本概念 第39页

共51页-----球.第5号盒子有4个白球,1个红球.现随机地选一个盒子并从中任取一球,求: ①它是白球的概率.②如果已知取出的是红球,那么,它是来自第5号盒子的概率.解: 设用A表示“任取一球是白球”,用,用Bi表示“第A表示“任取一球是红球”i个盒子被选中”(i1 , 2 , 3 , 4 , 5),则

-----概率论与数理统计教案 第一章 概率论的基本概念 第40页

共51页-----

1P(B 1)P(B2)P(B3)P(B4)P(B5),53P(A B 1)P(A B 2),51P(A B 3)P(A B 4),54P(A B 5),52P(A B 1)P(AB 2),54P(A B 3)P(A B 4),5-----概率论与数理统计教案 第一章 概率论的基本概念 第41页

共51页-----

1P(A B 5).5①P(A)P(A B1)P(B1)P(A B2)P(B2)P(A B3)P(B3)P(A B4)P(B4)P(A B5)P(B5)3131111141 555555555512.25

-----概率论与数理统计教案 第一章 概率论的基本概念 第42页

共51页-----②P(B5A)P(ABi)P(Bi)i15P(AB5)P(B5)

1155 1(22441)5555551.136.先验概率: P(Bi).7.后验概率: P(BiA).-----概率论与数理统计教案 第一章 概率论的基本概念 第43页

共51页-----例6.有一个袋内装有3个白球,2个黑球.有甲、乙、丙三人依次在袋内各摸一球.求: ①在有放回情况下,甲、乙、丙各摸到黑球的概率.②在不放回情况下,甲、乙、丙各摸到黑球的概率.解: 设用A、B、C分别表示“甲、乙、-----概率论与数理统计教案 第一章 概率论的基本概念 第44页

共51页-----丙摸到黑球”,用A、B、C分别表示“甲、乙、丙摸到白球”.2①P(A)P(B)P(C).52②P(A).5P(B)P(BA)P(A)P(BA)P(A)

1223 45452.5-----概率论与数理统计教案 第一章 概率论的基本概念 第45页

共51页-----P(C)P(CAB)P(AB)P(CAB)P(AB)

P(CAB)P(AB)P(CAB)P(AB)P(CAB)P(BA)P(A)

P(CAB)P(BA)P(A)P(CAB)P(BA)P(A)P(CAB)P(BA)P(A)

121321232230 453453453452.5

-----概率论与数理统计教案 第一章 概率论的基本概念 第46页

共51页-----§1.6 独立性

1.设A与B是两事件,如果 p(AB)p(A)p(B),则称A与B相互独立,简称A与B独立.2.设A与B是两事件,且p(A)0,如果A与B相互独立,则

p(BA)p(B).3.设A与B相互独立,则下列各对事件也

-----概率论与数理统计教案 第一章 概率论的基本概念 第47页

共51页-----相互独立.A与B,A与B,A与B.证: P(A)P(B)P(A)[1P(B)]

P(A)P(A)P(B)

P(A)P(AB)

(AAB)P(AAB)P(AB),所以A与B相互独立.同理可证A与B,A与B相互独立.-----概率论与数理统计教案 第一章 概率论的基本概念 第48页

共51页-----4.设A、B、C是三个事件,如果

p(AB)p(A)p(B),p(AC)p(A)p(C),p(BC)p(B)p(C),p(ABC)p(A)p(B)p(C),则称A、B、C相互独立.例1.用一支步枪射击一只小鸟,击中的概率为0.2.问3支步枪同时彼此独立地

-----概率论与数理统计教案 第一章 概率论的基本概念 第49页

共51页-----射击,击中小鸟的概率.解: 设用A i表示“第i支步枪击中小鸟”,则(i1 , 2 , 3),用B表示“小鸟被击中”

P(B)P(A 1A 2A 3)

1P(A 1A 2A 3)1P(A 1 A 2 A 3)

1P(A 1)P(A 2)P(A 3)10.80.80.8

-----概率论与数理统计教案 第一章 概率论的基本概念 第50页

共51页-----

第四篇:概率统计教案5

第五章 大数定律及中心极限定理

§5.1 大数定律

1.设Y1 , Y2 ,  , Yn , 是一个

a是一个常数.随机变量序列,若对于任意正数,有

limP{Ya}1,nn则称序列Y1 , Y2 ,  , Yn , 依概

P 率收敛于a,记为Yna.2.契比雪夫大数定理: 设随机变量X1 , X2 ,  , Xn , 相互独立,且

-----概率论与数理统计教案 第五章 大数定律及中心极限定理

第1页

共6页-----E(Xk),D(Xk)

2(k1 , 2 , ),n1则序列XXk依概率收敛nk1 P 于,即Xn.3.伯努利大数定理: 设nA是n次独立重复试验中事件A发生的次数.p是A在每次试验中发生的概率,则对于任意正数,有

nAlimP{p}1.nn4.辛钦大数定理: 设随机

-----概率论与数理统计教案 第五章 大数定律及中心极限定理

第2页

共6页-----变量X1 , X2 ,  , Xn , 相互独立,服从同一分布,且

E(Xk)(k1 , 2 , ),n1则序列XXk依概率收敛nk1 P 于,即Xn.§5.2 中心极限定理 1.独立同分布的中心极限定理: 设随机变量

X1 , X2 ,  , Xn , 

相互独立,服从同一分布,且

2E(Xk) , D(Xk)0

-----概率论与数理统计教案 第五章 大数定律及中心极限定理

第3页

共6页-----

(k1 , 2 , ).令XkE(Xk)Xknk1k1k1Yn,YnnnD(Xk)k1nnn的分布函数为Fn(x),则对于任意x,有

Xnk1klimF(x)limPx nnnnt x12edt

22

-----概率论与数理统计教案 第五章 大数定律及中心极限定理

第4页

共6页-----

n(x),nXkn近似地k1或者说

~ N(0 , 1),nXk~ N(n , n)k1近似地X N(0 , 1),~n2n近似地X~ N( , n).

2近似地2.棣莫弗—拉普拉斯定理: 设随机变量n(n1 , 2 , )服从参数为n,p(0p1)的二项分布,则对于任意x,有

-----概率论与数理统计教案 第五章 大数定律及中心极限定理

第5页

共6页-----nnpx1edt limPxn2np(1p)(x),近似地nnp或者说 ~ N(0 , 1)

np(1p)2t 2

-----概率论与数理统计教案 第五章 大数定律及中心极限定理

第6页

共6页-----

第五篇:统计与概率教案

第1课时 统计与概率(1)

【教学内容】 统计表。

【教学目标】

使学生进一步认识统计的意义,进一步认识统计表,掌握整理数据、编制统计表的方法,学会进行简单统计。【重点难点】

让学生系统掌握统计的基础知识和基本技能。【教学准备】 多媒体课件。

【情景导入】 1.揭示课题

提问:在小学阶段,我们学过哪些统计知识?为什么要做统计工作? 2.引入课题

在日常生活和生产实践中,经常需要对一些数据进行分析、比较,这样就需要进行统计。在进行统计时,又经常要用统

计表、统计图,并且常常进行平均数的计算。今天我们开始复习简单的统计,这节课先复习如何设计调查表,并进行调

查统计。

【整理归纳】

收集数据,制作统计表。

教师:我们班要和希望小学六(2)班建立“手拉手”班级,你想向“手拉手”的同学介绍哪些情况? 学生可能回答:(1)身高、体重(2)姓名、性别(3)兴趣爱好

为了清楚记录你的情况,同学们设计了一个个人情况调查表。课件展示:

为了帮助和分析全班的数据,同学们又设计了一种统计表。六(2)班学生最喜欢的学科统计表

组织学生完善调查表,怎样调查?怎样记录数据?调查中要注意什么问题? 组织学生议一议,相互交流。指名学生汇报,再集体评议。

组织学生在全班范围内以小组形式展开调查,先由每个小组整理数据,再由每个小组向全班汇报。填好统计表。【课堂作业】

教材第96页例3。【课堂小结】

通过本节课的学习,你有什么收获? 【课后作业】

完成练习册中本课时的练习。

第1课时 统计与概率(1)(1)统计表

(2)统计图:折线统计图 条形统计图 扇形统计图

第2课时 统计与概率(2)

【教学内容】

统计与概率(2)。【教学目标】

1.使学生初步掌握把原始数据分类整理的统计方法 2.渗透统计意识。【重点难点】

能根据统计图提供的信息,做出正确的判断或简单预测。【教学准备】 多媒体课件。

【情景导入】

上节课我们复习了如何设计调查表,今天我们来一起整理一下制作统计图的相关知识。

【归纳整理】 统计图

1.你学过几种统计图?分别叫什么统计图?各有什么特征? 条形统计图(清楚表示各种数量多少)折线统计图(清楚表示数量的变化情况)扇形统计图(清楚表示各种数量的占有率)教师:结合刚才的数据例子,议一议什么类型的数据用什么样的统计图表示更合适?

组织学生议一议,相互交流。2.教学例4 课件出示教材第97页例4。

(1)从统计图中你能得到哪些信息? 小组交流。重点汇报。

如:从扇形统计图可以看出,男、女生占全班人数的百分率; 从条形统计图可以看出,男、女生分别喜欢的运动项目的人数;

从折线统计图可以看出,同学们对自己的综合表现满意人数的情况变化趋势。(2)还可以通过什么手段收集数据? 组织学生议一议,并相互交流。

如:问卷调查,查阅资料,实验活动等。

(3)做一项调查统计工作的主要步骤是什么? 组织学生议一议,并相互交流。

指名学生汇报,并集体订正,使学生明确并板书: a.确定调查的主题及需要调查的数据; b.设计调查表或统计表; c.确定调查的方法; d.进行调查,予以记录; e.整理和描述数据;

f.根据统计图表分析数据,作出判断和决策。【课堂作业】

教材第98页练习二十一第2、3题。【课堂小结】

通过本节课的学习,你有什么收获? 【课后作业】

完成练习册中本课时的练习。

第2课时 统计与概率(2)

做一项调查统计工作的主要步骤: ①确定调查的主题及需要调查的数据; ②设计调查表或统计表; ③确定调查的方法; ④进行调查,予以记录; ⑤整理和描述数据;

⑥根据统计图表分析数据,作出判断和决策。

第3课时 统计与概率(3)

【教学内容】

平均数、中位数和众数的整理和复习。【教学目标】

1.使学生加深对平均数、中位数和众数的认识。体会三个统计量的不同特征和使用范围。

2.使学生经历解决问题的过程,发展初步的推理能力和综合应用意识。3.灵活运用数学知识解决实际问题,激发学生的学习兴趣。【重点难点】

进一步认识平均数、中位数和众数,体会三个统计量的不同特征和使用范围。【教学准备】 多媒体课件。

【情境导入】

教师:CCTV-3举行青年歌手大奖赛,一歌手演唱完毕,评委亮出的分数是: 9.87,9.65,9.84,9.78,9.75,9.72,9.90,9.83,要求去掉一个最高分,一个最低分,那么该选手的最后得分是多少?

学生独立思考,然后组织学生议一议,然后互相交流。指名学生汇报解题思路。由此引出课题:

平均数、中位数、众数 【复习回顾】 1.复习近平均数

教师:什么是平均数?它有什么用处? 组织学生议一议,并相互交流。

指名学生汇报,并组织学生集体评议。使学生明确:平均数能直观、简明地反映一组数据的一般情况,用它可以进行不

同数据的比较,看出组与组之间的差别。课件展示教材第97页例5两个统计表。

①提问:从上面的统计表中你能获取哪些信息? 学生思考后回答

②小组合作学习。(课件出示思考的问题)a.在上面两组数据中,平均数是多少?

b.不用计算,你能发现上面两组数据的平均数大小吗? c.用什么统计量表示上面两组数据的一般水平比较合适? ③小组汇报。

第一组数据:平均数是(1.40+1.43×3+1.46×5+1.49×10+1.52×12+1.55×6+1.58×3)÷(1+3+5+10+12+6+3)≈1.50(m)

第二组数据:平均数是(30×2+33×4+36×5+39×12+42×10+45×4+48×3)÷40=39.6(kg)

④用什么统计量表示上面两组数据的一般水平比较合适?为什么? 组织学生议一议,相互交流。

学生汇报:上面数据的一般水平用平均数比较合适。因为它与这组数据中的每个数据都有关系。2.复习中位数、众数

(1)教师:什么是中位数?什么是众数?它们各有什么特征? 组织学生议一议,并相互交流。指名学生汇报。

使学生明白:在一组数据中出现次数最多的数叫做这组数据的众数。将一组数据按大小依次排列,把处在最中间位置上 的一个数(或最中间两个数据的平均数)叫做这组数据的中位数。

(2)课件展示教材第97页例5的两个统计表,提问:你能说说这两组数据的中位数和众数吗?

学生认真观察统计表,思考并回答。指名学生汇报,并进行集体评议。【归纳小结】

1.教师:不用计算,你能发现上面每组数据的平均数、中位数、众数之间的大小关系吗?

组织学生议一议,并相互交流。指名学生汇报并进行集体评议。

2.教师:用什么统计量表示两组数据的一般水平比较合适? 组织学生议一议,并相互交流。指名学生汇报。师生共同评议。师根据学生的回答进行板书。【课堂作业】

教材第98页练习二十一第4、5题,学生独立完成,集体订正。答案:

第4题:(1)不合理,因为从进货量和销售量的差来看,尺码是35、39、40三种型号的鞋剩货有些多。

(2)建议下次进货时适当降低35、39、40三种型号鞋的进货量,根据销货量的排名来看,每种型号的鞋的进货量的比

例总体上不会有大的变化。第5题:(1)平均数:(9.8+9.7×2+9.6×4+9.5+9.4×2+9.1)÷11≈9.55(分)(2)有道理,因为平均数与一组

数据中的每个数据都有关系,但它易受极端数据的影响,所以为了减小这种影响,在评分时就采取“去掉一个最高分和

一个最低分”,再计算平均数的方法,这样做是合理的。平均分:(9.7×2+9.6×4+9.5+9.4×2)÷9≈9.57(分)【课堂小结】

通过这节课的学习活动,你有什么收获?学生谈谈学到的知识及掌握的方法。

【课后作业】

完成练习册中本课时的练习。

第3课时 统计与概率(3)

平均数:能较充分的反映一组数据的“平均水平”,但它容易受极端值的影响。

中位数:部分数据的变动对中位数没有影响

众数:一组数据的众数可能不止一个,也可能没有。

第4课时 统计与概率(4)

【教学内容】

可能性的整理与复习。【教学目标】 1.使学生加深认识事件发生的可能性和游戏规则的公平性,会求简单事件发生的可能性,并会对事件发生的可能性作出

预测。

2.培养学生依据数据和事件分析并解决问题,作出判断、预测和决策的能力。3.使学生体验到用数学知识可以解决生活中的实际问题,激发学生的学习兴趣。【重点难点】

认识事件发生的可能性和游戏规则的公平性,会求简单事件发生的可能性,并会对事件发生的可能性作出预测,掌握用

分数表示可能性大小的方法。【教学准备】 多媒体课件。

【情景导入】

1.教师出示情境图。表哥:我想看足球比赛。表弟:我想看动画片。表妹:我想看电视剧。

教师:3个人只有一台电视,他们都想看自己喜欢的节目,那么如何决定看什么节目呢?必须想出一个每个人都能接受 的公平的办法来决定看什么节目。

提问:你能想出什么公平的办法确定谁有权决定看什么节目吗? 学生:抽签、掷骰子。2.揭示课题。

教师:同学们想出的方法都不错。这节课我们来复习可能性的有关知识。(板书课题)

【复习讲授】

1.教师:说一说学过哪些有关可能性的知识。(板书:一定、可能、不可能)

2.教师:在我们的生活中,同样有些事情是一定会发生的,有些事情是可能发生的,还有些事情是不可能发生的。下面

举出了几个生活中的例子,请用“一定”“可能”或“不可能”来判断这些事例的可能性。课件展示:

(1)我从出生到现在没吃一点东西。(2)吃饭时,有人用左手拿筷子。(3)世界上每天都有人出生。组织学生独立思考,并相互交流。指名学生汇报,并进行集体评议。3.解决问题,延伸拓展

(1)教师:用“一定”“不可能”“可能”各说一句话,在小组内讨论交流。指名学生汇报并进行集体评议。(2)课件展示买彩票的片段。

组织学生看完这些片段,提问:你有什么想法吗?

你想对买彩票的爸爸、妈妈、叔叔、阿姨说点什么呢? 【课堂作业】 1.填空。(1)袋子里放了10个白球、5个黄球和2个红球,这些球除颜色外其它均一样,若从袋子里摸出一个球来,则摸到()色球的可能性最大,摸到()色球的可能性最小。

(2)一个盒子里装有数量相同的红、白两种颜色的球,每个球除了颜色外都相同,摸到红球甲胜,摸到白球乙胜,若

摸球前先将盒子里的球摇匀,则甲、乙获胜的机会()。2.选择。

(1)用1、2、3三个数字组成一个三位数,组成偶数的可能性为()。A.B.C.D.(2)一名运动员连续射靶10次,其中两次命中十环,两次命中九环,六次命中八环,针对某次射击,下列说法正确的

是()。

A.命中十环的可能性最大 B.命中九环的可能性最大 C.命中八环的可能性最大 D.以上可能性均等

3.有一个均匀的正十二面体的骰子,其中1个面标有“1”,2个面标有“2”,3个面标有“3”,2个面标有“4”,1个

面标有“5”,其余面标有“6”,将这个骰子掷出。(1)“6”朝上的可能性占百分之几?(2)哪些数字朝上的可能性一样? 答案:

1.(1)白 红(2)相等 2.(1)A(2)D 3.(1)25%(2)标有“1”和“5”,标有“2”与“4”,标有“3”和“6”的可能性一样。【课堂小结】

通过这节课的学习,你有哪些收获?学生畅谈学到的知识和掌握的方法。【课后作业】

完成练习册中本课时的练习。

第4课时统计与概率(4)

一定 可能 不可能 必然发生 可能发生 不会发生

下载概率统计第五章教案(优秀范文五篇)word格式文档
下载概率统计第五章教案(优秀范文五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    统计与概率教案

    小学六年级数学总复习〖统计与概率〗 复习建议 一、统计 统计知识在生产和生活中,特别是进行科学研究时,应用非常广泛。小学阶段,学习内容是统计学中最初步的知识,它包括单式、......

    复习教案统计与概率(范文大全)

    统计与概率 第1课时 教材内容 1.本节课复习的是教材114页6题及相关习题。 2.6题以我国城市空气质量为素材,让学生根据扇形统计图所提供的信息解决实际问题,在这里,“273个城市空......

    第四章统计与概率教案

    第四章 统计与概率 §4.1 50年的变化(二课时) 学习目标: 经历数据的收集、整理,描述与分析的过程,进一步发展统计意识和数据处理能力.通过具体情境,认识一些人为的数据及其表示方......

    概率统计复习资料

    广东海洋大学寸金学院 2012—2013 学年第 二 学期 概率统计复习资料: 第一章:事件的关系与运算,概率的性质,古典概型,条件概率的概念与性质, 乘法公式,事件的独立性。 例题:1.1、1.3......

    统计与概率 教学设计 教案

    教学准备 1. 教学目标 知识与技能:掌握整理数据、编制统计表、绘制统计图。 过程与方法:比较不同统计图的特点及不同统计图的画法。 情感态度与价值观:通过对统计知识的整理......

    专题二 统计与概率教案4

    专题二 统计与概率(2) 【教学目标】:1、计算和分析材料中的数据 2、用树状图、列表法计算简单事件的概率 【教学重点】:用树状图、列表法计算简单事件的概率 【教学难点】:用树状......

    统计与概率总结

    “统计与概率”课题实施总结 一年多来,我校课题组全体成员解放思想,勇于创新,以推进素质教育为出发点,认真学习相关理论,围绕《统计与概率》课堂教学改革和课题的实验工作,认真分......

    概率统计教学评估汇报

    凝聚实干,齐创辉煌 ——2008-2009学年度概率统计教学评估汇报材料 这一年,是奋斗的一年,也是收获颇丰的一年。因为我们始终相信:付出与收获是成正比的。在庄老师的悉心指导下,我......