概率统计小组任务(发布)(优秀范文5篇)

时间:2019-05-14 03:07:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《概率统计小组任务(发布)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《概率统计小组任务(发布)》。

第一篇:概率统计小组任务(发布)

小组任务书

一、规定项目,五次,每次5分。

(1)chapter 2-3(2)chapter 4(3)chapter 6-7(4)chapter 8-9(5)实验 每次内容:

1、知识结构解析(框架或大纲样式)

2、疑难问题集萃(列举出问题、知识点或者典型题目)

3、小组讨论解惑(已经解决了多少问题,解决过程简单记录)

4、悬而未决(拿到课堂,集体攻关)

5、指定问题

注:

1、数学实验包括以下内容:

(1)通过实例演示Excel软件实现二项分布、泊松分布、正态分布的过程;绘制正态分

布的面积图(x=1,2,3,…100);

(2)通过实例演示Excel实现均值和方差的区间估计;

(3)通过实例展示Excel进行假设检验过程;

(4)通过实例展示Excel进行回归分析过程;

2、各章指定问题分配如下

Chapter

2:

水房拥挤问题

假设西南财经大学天府学院绵阳校区有学生9000人,只有一个开水房,由于每天傍晚打开水的人较多,为避免出现同学排长队的现象,校学生会特向后勤集团提议增设水龙头。学校后勤管理很重视学生意见,为此召开专门研究会,希望您给学校后勤提供参考意见。请自行调查每个学生在傍晚一般有?%的时间要占用一个水龙头,现有水龙头?个(请同学自行调查统计相关数据),解决以下问题:

(1)未新装水龙头前,拥挤的概率是多少?

(2)至少要装多少个水龙头,才能以95%以上的概率保证不拥挤?

Chapter4:

设想某大学生甲在求职过程中得到了三个公司的面试通知,按面试时间的顺序,这三家公司分别记为A、B、C,假定每家公司有三种不同的职位:极好、好和一般,估计能得到这些职位的概率为0.2、0.3、0.4,被拒绝的可能性为0.1,按规定,双方在面试后要立即作出决定提供、接受或拒绝某种职位,那么应遵循什么策略应答呢?三家公司的工资承诺如下表

公司 极好

A

B

C

我们的方案是采取期望受益最大的原则。答:选b的2950吧,期望最大

Chapter7 好 一般3500(e=700)3000(e=900)2200(e=880)xp=0.2E(A)=700+900+880=248033900(e=780)2950(e=885)2500(e=1000)p=0.3 E(B)=780+850+1000=25503=8504000(e=800)3000(e=900)2500(e=1000_)p=0.4E©= 27003=900

商学院有关情况的统计分析

要求对该表数据做出分析并写出分析报告,分析报告应包括:

(1)要求用描述统计的方法概括表中的数据,并讨论你的结论;

(2)对变量数据的最大值,最小值,平均值进行评价和解释,通过这些统计量,你对亚

太地区的商学院有何看法或发现;

(3)对本国学生学费和外国学生学费进行比较;

(4)对要求或不要求英语测试的学校的起薪进行比较;

(5)分析报告中尽量可以用图表说明你要分析的问题。

二、攻关项目,每次5分(分数可用以弥补一般项目或者测试成绩)

1、悬而未决问题

2、几种重要随机变量的产生的背景,以及在实际生活中的应用

3、浅谈一下期望与方差在实际生活中的应用,以及对大家的启示

4、研究后续课程对于概率统计的使用,并作说明

5、假设你接受了一份暑期工作,在当地的游乐园给游客猜体重。如果你猜测的结果误差不超过5公斤,那么你获得2元钱;否则,你需要给游客1份价值3元钱的小礼物。幸运的是,游客背后的墙壁上有高度标记,你能目测游客的身高;不幸的是,在你和游客之间有一面墙,你只能看到游客的头部。试设计一个方案,能使在此份工作中能够赚到钱?

注:规定项目在相关章节讲授结束一周内完成,每次项目结束,完成项目报告书涵盖指定的1—4项内容。第一页附上小组讨论记录表(讨论不限于一次)。

附:小组讨论记录表

小组讨论记录表

讨论时间和地点:组长:

第二篇:概率统计复习资料

广东海洋大学寸金学院 2012—2013 学年第 二 学期

概率统计复习资料:

第一章:事件的关系与运算,概率的性质,古典概型,条件概率的概念与性质,乘法公式,事件的独立性。

例题:1.1、1.3、1.4;习题一:4、6、13、23、30、33等。

第二章:离散型随机变量的分布律,两点分布,二项分布,泊松分布,分布函数的定义与性质,密度函数,均匀分布,指数分布,正态分布。

例题:2.10、2.13;习题二:4、15、21、22等。

第三章:离散型随机变量的联合分布律、边缘分布律、条件分布与独立性,连续

型随机变量的联合分布函数。

例题:3.1、3.6、3.9;习题三:13等。

第四章:期望、方差的性质与计算,协方差与相关系数的性质。

例题:4.12、2.13;习题四:1、5、7等。

相互独立的随机变量X与Y具有的性质,例如:DXYDXDY

EXYEXEY,EXYEXEY

第五章:切比雪夫不等式。

设随机变量X的均值EX、方差DX2,由切比雪夫不等式知P(X3)

第六章:总体、样本、简单随机抽样的概念,常用的统计量,单正态总体的抽样分布。

第七章:矩估计、极大使然估计的计算,无偏性、区间估计的定义。例题:7.1、7.2;习题七:

2、3等。

第八章:单正态总体期望的假设检验

例题:8.2、8.3;习题八:2等。

试题类型:

一、单项选择题: 每小题2分,共20分;

二、填空题:每小题3分,共15分;

三、计算题:5个小题,共57分 ;

四、证明题共8分。

第三篇:概率统计第五章教案

第五章:大数定律和中心极限定理

1、引言:在刚开始我们提到事件发生的频率具有稳定性,随着试验次数的增加,事件发生的频率逐渐稳定于某个常数,在实践中,人们还认识到测量值的算术平均值也具有稳定性,这种稳定性就是本章所要讨论的大数定律的客观背景;中心极限定理则从理论上证明了在客观世界上所遇到的许多随机变量的和是服从正态分布或近似服从正态分布的.§5.1大 数 定 律

5.1.1切比雪夫不等式

2、切比雪夫不等式:对于任何具有有限方差的随机变量X,都有PXEXDX2,其中为任一正数.不等式

DX也可写成:PXEX12.证明:设随机变量X为离散型随机变量,其概率分布律为PXxp,k1,2,,则

kkPXEXxkEX122按概率的定义XEXPXxk

第一次放大XEXxkEXpk22 求和范围放大按概率的定义xkEXpk XEX21212xk1kEXpk2

按方差的定义DX2.若随机变量X为连续型随机变量,且概率密度函数为fx,则:

PXEXxEX122按概率的定义xEX2fxdx

第一次放大积分范围放大xEXxEXfxdx2

xEXfxdx 按方差的定义DX2122

3、结论:切比雪夫不等式具体地用随机变量X的数学期望EX和方差DX来估算随机变量X的概率分布,具体地用方差估算了随机变量X取值时以

的数学期望EX为中心的分散程度.4、例如:若X~N,,则 XPXEX1

DX22,即PX12.28PX310.8889; 当3时有239215当4时有PX4142160.9375; 224PX510.9600.当5时有2525而实际计算得:PX30.9974,这与用切比雪夫不等式估算的结果不矛盾.5、例1:已知正常男性成人的血液中,每一毫升的白细胞数平均是7300,均方差是700,利用切比雪夫不等式估计每毫升含白细胞数在5200~9400之间的概率.解:设随机变量X表示正常男性成人的血液中每一毫升 的白细胞数,则EX7300,DX700

2P5200X9400PX73002100

PXEX2100

1DX27002810.8889.221009

6、例

12:在每次试验中事件A以概率2发生,是否可以用大于等于0.975的概率确信,在1000 次试验中,事件A出现的次数在400与600范围内? 解:设在1000 次试验中,事件A出现的次数为X,则

7、例

X~B1000,12,EXnp100012500,DXnpq100011212250;

P400X600PX500100PXEX100

1250100212501000010.0250.975.所以可以用大于等于0.975的概率确信,在1000 次试验中,事件A出现的次数在400与600范围内

3:设电站供电网有10000盏电灯,夜晚每盏灯开灯的概率均为0.7,假设灯的开、关是相互独立的,估计夜晚同时开着的灯数在6800到7200盏之间的概率(见课本P124的例1).7 解:设随机变量X表示夜晚同时开着的灯的数量,由于每盏灯只有两个可能结果,而且灯的开、关是相互独立的,X~B10000,0.7,若用贝努里公式计算应为

P6800X72007199k6801kC100000.7k10.710000k,计算量很大,不易计算.下面用切比雪夫不等式来估算:

EXnp100000.77000,DXnpq100000.710.72100;

P6800X7200PX7000200

PXEX2002100210011220040000

10.05250.9475.此题说明:虽然10000盏灯,但是只要供应7200盏灯的电力就能以不低于94.75%的概率保证够用.5.1.2伯努利大数定律:

8、定理1(伯努利大数定律):设是n重伯努利试验中事件A出现的次数,而p是事件A在每次试验中出现的nnlimPp1 概率,则对于任意0,都有证明:设随机变量

nnX1,第i次试验中事件A出现i0,第i次试验中事件A不出现,i1,2,,n

Xi服从参数为p的两点01分布,EXip,DXipq,其中q1p,i1,2,,n,nX1,X2,,Xn相互独立,且nXii1,n从而EnXiEi11nnnEX1niEXini1ni1 1nnp1i1nnpp,nXiDnDi11nnnX1n2Di2DXnii1ni1 1npqnpq122npqi1nn,PDnnnEnnn12 pqPnnp1n21pqn2 则 由切比雪夫不等式得:即: 9

npqlimPplim11 n两边取极限得:nn2n

9、注意:

1伯努利大数定律的实际意义:

nn表示n次试验中事件A

出现的频率,当次数n很大时,事件A出现的频率与事件A出现的概率p的偏差小于任意正数的可能性很大,概率几乎达到1100%.2从伯努利大数定律可知:若事件A的概率很小,事件A出现的频率也很小,或者说事件A很少发生.从而得出小概率事件的实际不可能性原理“概率很小的随机事件在个别(或一次)试验中是不可能发生的”.3确定事件概率的方法:频率

nn与概率p的偏差任意小的概率接近1100%,那么我们就可以通过做试验来确定事件的频率,并把它作为随机事件发生的概率的估计,这种方法称为参数估计,它是数理统计主要的研究课题之一.10、序列Y,Y,,Y,依概率收敛于a(定义):设Y,Y,,Y,是一个相互独立的随机变量序列,a是一个常数,若对12n12n于任意正数,有limPYnna1,则称随机变量序列Y1,Y2,,Yn,依概率收敛于a.11、重新叙述伯努利大数定律:设是n次伯努利试验中事件A出现的次数,而p是事件A在每次试验中出现

n的概率,则频率

nn依概率收敛于概率p.5.1.3切比雪夫大数定律:

11、引言:人们在实践中还发现,除了频率具有稳定性以外,大量观察值的平均值也具有稳定性,这就是切比雪夫大数定律.12、定理2(切比雪夫大数定律): 设随机变量X,X,,X,相互独立,每一随机变量分别有数学期望EX,EX,,EX,和有限方差DX,DX,,DX,,且有公共上界c,即DXc,DXc,,DXc,则对于任意0,有12n12n12n12n1n1nlimPXiEXi1 nni1ni1 1n1n1nXiEXiEXi; 证明:Eni1ni1ni11n1nX1,X2,,Xn1DXi2DXi2ni1ni1相互独立n12nnccc2; nni1nDX

ii1n由切比雪夫不等式得:

1nDXninn111PXiEXi1i 2nni1i1 11

1n1nXiEXi即:Pnni1i11ncDXini1cn112122n

作为事件的概率都应有0p1,1nc1n12PXiEXi1 nnni1i1取极限得:

1nc1nlim12limPXiEXilim1nni1nnni1n

1n1n1limPXEX1ii即:n nni1i11n1nPXiEXi1.所以:limnni1ni1

13、切比雪夫大数定律的实际意义:相互独立的随机变量的算术平均值

1nXXini1与数学期望的算术平均值1nEXi的差在n充分大时是一个无穷小量,这也意ni1味着在n充分大时,经算术平均后得到的随机变量1nXXi的值将比较紧密地聚集在EXni1的附近.14、推论(由切比雪夫大数定律可得):设随机变量X,X,,X,服从同一分布,并且有(相同的)数学期望a及方差,则对于任意正数0,有12n21nliPmXinni1a.112

15、推论(切比雪夫大数定律的)的实际意义:假如我们要测量某一物理量a,在不变的条件下重复进行n次,得n个测量值X,X,,X,显然它们可以看成是n个相互独立的随机变量,具有相同的分布,并且有数学期望a,由推论可知,当n充分大时,n次测量结果

12nX1X2Xn的平均值可作为a的近似值:an,由此发生的误差可以任意小;这就是关于算术平均值的法则的理论依据.13 §5.2中 心 极 限 定 理

1、引言:正态分布在随机变量的一切可能的分布中占有特别重要的地位,实践中我们遇到的大量的随机变量都是服从正态分布的;在某些条件下,即使原来并不服从正态分布的一些独立的随机变量,它们的和的分布,当随机变量的个数无限增加时,也是趋于正态分布的.假如所研究的随机变量是由大量的相互独立的随机因素的综合影响所形成的,而其中每一个别因素在总的影响中所起的作用都是微小的,这种随机变量往往近似服从正态分布,在概率论中有关论证随机变量的和的极限的分布是正态分布的一类定理称为中心极限定理.5.2.1独立同分布的中心极限定理

2、定理1(独立同分布中心极限定理):设随机变量X,X,,X,相互独立,服从同一分布,且具有有限的数学期望和方差EX,DX0i1,2,,则随机变量12ni2inXEXiii1Yni1nDXii1nXi1ninn(这是随机变量X经标

ii1n准化后得到的随机变量)的分布函数Fx对任意的x,,都有

n

nXini1limFnxlimPxnnn

nXix1t2i1limPxe2dtn.n2证明略

3、说明:

1假设被研究的随机变量可以表示为大量独立的随机变量的和,其中每一个随机变量对于总和的作用都很微小,则可以认为这个随机变量总和实际上是服从正态分布的;实际上只要n足够大,便可认为随机变量总和是服从正态分布的.nXiEXii1i1Ynn2DXii1nXi1ninnn,当n很大时,近似服从标准正态分布N0,1,从而有

2X~Nn,nii1

5.2.2棣音同弟莫弗-拉普拉斯DeMoiverLaplace中心极限定理:

4、定理2:设随机变量n1,2,服从参数为n,p0p1的二项分布,则对于任意区间a,b,恒有

nlimPant2bnnp12bedt.a2np1p证明:由于服从二项分布的随机变量可视为n个相互独立、服从同一参数p0p1的01分布的随机变量X,X,,X之和,n12n即nXi,其中EXip,Di1nXipq,i1,2,,n,q1p,故由独立同分布中心极限定理可得:

nXint2x12i1nnplimPxlimPxedtnn,n2npq即n~Nn,npq,于是对于任意a,b有

limPant2bnnp12bedta.2np1p

5、说明:棣莫弗-拉普拉斯中心极限定理表明:正态分布是二项分布的极限分布,当n充分大时,服从二项分布的随机变量的概率计算可以转化为正态随机变量的概率计算.nanpnnpbnpbnpanpPanbP

npqnpqnpqnpqnpq

6、例1:设电站供电网有10000盏电灯,夜晚每盏灯开灯的概率均为0.7,假设灯的开、关是相互独立的,估计夜晚同时开着的灯数在6800到7200盏之间的概率(此题在本章讲稿的第三页已用切比雪夫不等式估算过).解:n~Bn,pB10000,0.7,Ennp100000.77000,Dnnpq100000.70.32100,Dn210045.8258,P6800n7200Pn7000200

7000nPDn Dn200n7000200P4.364445.825845.8258

4.36444.3644

4.364414.3644

24.3644120.99999510.99999.即亮灯数介于6800~7200之间的概率为0.99999.7、例2:某计算器进行加法计算时,把每个加数取为最接近于它的整数来计算,设所有取整误差是相互独立的随机变量,并且都在0.5,0.5上服从均匀分布.求:(1)1200个数相加时,误差总和的绝对值小于10的概率.(2)多少个数相加可使误差总和的绝对值小于10的概率大于0.9? ii解:设X表示第i个数相加时的误差,则X服从区间0.5,0.5上的均匀分布,即X~U0.5,0.5,i其密度函数为:

10.50.5,0.5x0.51,0.5x0.5fx其它0,0,其它2,0.50.50.50.51EX0DX从而有i,i; 21212120012001200EXiEXi00

i1i1i112001112001200DXiDXi1200100;

12i112i1i1(1)由于大量随机变量的和的分布是近似服从正态

分布的,1200Xi01200标准化10i1PXi10P1100100i1 查标准正态分布表11111211

20.841310.6826.(2)设需n个数相加可使误差总和的绝对值小于10的概

率大于0.9.则

nXin0n标准化10203i1PXi10Pnn i1nDXi12203203203210.9nn n20310.90.95n,2

查标准正态分布表得:1.6450.9

5203203从而有n1.645n1.645443.4289.n443

2(即不要多于443个数相加可使误差总和的绝对值小于10的概率大于0.9).8、例3:每发炮弹命中目标的概率为0.01,求500发炮弹至少命中5发的概率.解:用随机变量X表示500发炮弹命中目标的炮弹数,则X~B500,0.01,EXnp5000.015,DXnpq5000.010.994.95

DX4.952.223;

方法一:用二项分布来计算

kPX5C5000.01k10.01k54500500k

k1C5000.01k0.99500kk0012C5000.99500C5000.010.99499C5000.0120.9949813C0.0130.99497C40.0140.994965005000.56039.方法二:当n很大,p很小时的二项分布,可近似用泊松分布来计算X~Pnp.4kePX51PX41 k!k01k045000.01k!ke5000.01

5ke510.5595.k!k04方法三:用中心极限定理计算.23 1,第i发炮弹击中目标设Xi0,第i发炮弹未击中目标

Xi近似服从正态分布 则Xi1500XEX5EXPX5P

DXDX标准化55000.01XEXP

5000.010.99DXXEXXEX1P0P0 DXDX1010.50.5.

第四篇:统计与概率总结

“统计与概率”课题实施总结

一年多来,我校课题组全体成员解放思想,勇于创新,以推进素质教育为出发点,认真学习相关理论,围绕《统计与概率》课堂教学改革和课题的实验工作,认真分析课堂案例,调查研究,收集材料,努力探究《统计与概率》课堂教学的有效模式,对照课题实验方案,顺利地完成了各项教育教学任务和课题研究的阶段工作。下面就这近一年来的课题研究工作总结如下。

一、做好课题研究的准备工作。

1、在课题实施之前,我们积极主动的收集和学习相关知识和理论,我们深入课堂,了解、分析我校《统计与概率的教学现状,找出教学中存在的各种问题,确定本课题的研究内容。

(1)关于小学数学统计与概率部分教学现状、存在问题的调查研究;

(2)对于人教版小学数学教材关于统计与概率部分内容的分布、与原有教材对比变化、教学难点及其编写特点的分析研究;

(3)在统计知识教学中,强化学生数据的收集、记录和整理能力的培养,促进学生关于数据的分析、处理并由此作出解释、推断与决策的能力,对数据和统计信息有良好的判断能力的教学策略改进,加强目标设定与目标达成的实验研究;

(4)培养小学生用数据表示可能性的大小并对事件作出合理推断和预测的能力的教法研究;(5)在统计和概率部分教学中,创设教学情境,促进教学有效性的研究;

(6)进行统计与概率部分的课堂教学有效模式的研究。

2、落实好课题组人员,成员如下:

组 长:陈 丽

副 组 长:陈万江 吴学峰

核 心 成 员:马玉凤 王立波 李天凤 陈维 李玉静 孙晓慧 薛丽华

二、加强对课题组的管理,进一步发挥课题的作用。

1、严格按计划实施研究,积极开展课题研究活动。

课题立项之后,我们集中大家认真学习了《统计与概率》课题研究方案,制定了课题的研究计划,对组内教师合理分工,在管理上做到定计划、定时间、定地点、定内容,让实验老师们深刻理解了《人教版小学数学教材“统计与概率”课堂教学有效性研究》课题中研究项目的主要内容和意义,进一步增强科研能力,树立科研信心每次的校本教研既有骨干教师的教学论坛,也有年青教师的课堂展示,有理论学习,也有实际的课堂点评。

2、优化听课制度,促进课题实验

学校教导处规定,每周的周三各备课组进行集体备课,下一周的周一课题组成员走进课堂听课,一方面是为课题组成员搭建相互交流的平台,另一方面也是验证前一周集体备课设计方案的可行性,这样有利于及时、灵活地掌握课题实施情况和课堂教学情况,有效地促进教师上课改课、上优质课,从而真正地把课题理念落实到每一节课堂教学之中;同时,课题组还要求听课者带着一定的目的从多个角度进行听课,并对收集到的事实材料进行多角度诠释、解读和分析,有针对性地提出讨论的问题和改进的建议。听课制度的优化,有效地避免形式主义的听课、评课活动,对促进课题研究和实验起到了很大的作用。

三、课题研究的实施过程

课题申报后,课题组成员就着手调查我校《统计与概率》的教学现状以及存在的问题。

1、人教版小学数学各册教材使用中,关于统计与可能性部分教学问题及其改进策略的调查研究。

教学现状:课堂教学多数“照本宣科”,教学目标定位不准,教师和学生都不很重视这一领域的教和学。原因有如下几点:一是教师专业知识不能适应新课程的教学需要;二是《统计与概率》这一领域里的可学习和参考的案例较少,教师看得不多,所以课堂改革的水平提高不快;三是在小学阶段,关于《统计与概率》的考试内容相对较少,且难度不大,所以教师和学生重视不够。

存在问题:统计教学中,教师只按教材帮助学生收集、整理数据,而忽视了对数据的分析和运用;概率教学中比较突出的问题是重结果、轻过程,没有把学生随机意识的培养放在重要的位置。比如,有一个老师在执教二年级《可能性》一课时,没有充分地让学生感受确定现象和不确定现象,而是把训练的重点放在让学生用“一定”“可能”和“不可能”的说话训练上,把数学课当作了语文课来上。再如,有一个老师在执教《用分数表示可能性的大小》时,始终把重点放在学生的计算训练上,而忽视了学生对事件发生的可能性从感性描述到定量刻画的过程训练上。

改进策略:(1)加强教师的专业知识的学习和培训。要求课题组的成员认真学习新课标并深刻领会其主要精神,同时督促教师学习《统计与概率》的相关理论,聘请教学骨干做专题讲座,提高教师的理论素养;(2)定期召开研讨会,选择有典型的课例进行会课或教学比赛,有的是采取同课异构的形式进行多层次的研究;(3)围绕某一难点进行针对性讨论,反复研究,取得了较为显著的成效。如,在教学《等可能性》时,多数教师都遇到了一个较为棘手的问题:当袋子里放有相同数量的黄球和白球,启发学生猜想:从中任意摸40次,摸到黄球和白球的可能性怎样?学生很容易猜想并认可结果:摸到黄球和白球的可能性相等。可是,学生实验后,立刻质疑并迅速推翻自己的猜想。此时教师无所适从,只好自圆其说:同学们,当实验的次数越多,摸到黄球的次数和摸到白球的次数就越接近。针对上述存在的问题,我们开展了一次又一次的研究,最终按照“现实情境—猜想—实验—验证猜想—分析原因”的步骤,紧紧抓住“任意”关键词,培养学生的随机意识,让学生真切地感到:袋子里放有相同数量的黄球和白球,任意去摸若干次,摸到黄球的可能性和白球的可能性相等,但结果是随机的,即摸到黄球的次数和白球的次数不一定相等。

2、创设教学情境对于小学统计与概率教学效果的作用与影响的研究。

良好的教学情境,能使学生积极主动地、充满自信的参与到学习之中,使学生的认知活动与情感活动有机地结合,从而促进学生非智力因素的发展和健康人格的形成。比如我们在研究一年级下册第98页的《统计》这一内容时,就历经了“没有教学情境—一创设有教学情境——创设有效的教学情境”的过程,研究中我们发现教学效果差异较大。

„„反复的实践和研究使我们深深地体会到:教学情境对教学效果的影响较大。只有创设有效的教学情境,创设贴近学生生活实际的教学情境,才能把学生真正地带入到具体的情境中去,使学生对数学产生一种亲近感,使学生感到数学是活生生的,感受到数学源于生活,生活中处处有数学。

3、“统计与概率”有效教学模式研究

课题研究之前,多数教师反映《统计与概率》的教学有着一定的困难,教学时也只是“照本宣科”,根本谈不上有效和优化。为此,我们通过典型引路,反复研究,不断实践,在数次的实践中摸索了“统计与概率”的教学模式:创设情境――猜想探究――验证概括――实践运用。

“创设情境”旨在把学生带入到具体的生活情境中,一方面是为了帮助学生借助已有的生活经验自主探究新知,另一方面也可以让学生初步感悟统计与概率在生活中的作用,从而调动学生学习数学的兴趣;“猜想探究” 就是先鼓励学生大胆猜想结果,然后引领学生探究新知,这样可以充分发挥学生的主体作用,把学习的主动权交个学生,让学生真正成为学习的主人,在具体的学习过程中锻炼学生的学习能力,同时也能让学生体验自主探究新知的快乐;“验证概括”就是运用多种手段帮助学生验证自己的猜想,从而使学生获得成就感,增强学生学习的自信心,同时把刚刚获得的新知高度、凝练地概括出一般的规律,培养学生分析问题的能力和严谨的思维品质“实践运用”就是将所学的知识运用于实际,体现了数学源于生活、服务生活的思想。

通过改革实验,我们高兴地发现课堂成效发生了较为显著的变化。课堂的教学结构完整了,教学板块清晰了教学目标定位准确而又全面,教师经过了迷茫无奈-有条有理-精心设计教学环节的过程。学生从被动学习-主动探究,学习方式的转变,使课堂气氛活跃了许多,也大大提高了课堂教学效率。

四、课题研究的成效

1、对课题研究的意义的理解和认识。

21世纪的数学课程改革,把《统计与概率》作为一个单独的领域,进入小学数学课程,这是一个重大的举措具有里程碑的意义。因为在信息社会,收集、整理、描述、展示和解释数据,根据情报作出决定和预测,已成为公民日益重要的技能。加强《统计与概率》课题的研究,可以强化学生数据的收集、记录和整理能力的培养,提高学生分析、处理数据并由此作出解释、推断与决策的能力。

2、重视学生学习过程的研究,把学习的主动权还给了学生

新课标明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。所以我们在数学课题的研究中,非常关注学生学习过程的研究,注重在具体的情境中对随机现象的体验,而不是单纯地只获取结论结合学生生活的实际,精心创设教学情境,使学生主动地投入到学习的状态,提出关键的问题;搜集、整理数据分析数据,作出推测,并用一种别人信服的方式交流信息。不仅让学生亲身经历统计与实验的过程,而且还让学生在实践中自我感悟信息的价值。根据获取的信息作出合理的推断,培养学生分析问题和解决问题的能力。

3、营造教研氛围,提高研究实效

我们以课题研究为契机,开展形式多样的教研活动,旨在增强教师的教科研意识,营造良好的教研氛围,丰富教师的科研素养,提高课堂教学效率。一年来,我们召开了《统计与概率》的专题研讨会,举行了课题研讨会课比赛,开展了教师百花奖比赛、课堂教学擂台赛等全校性教学教研活动,收到了较好的效果,得到了老师们的认可,兄弟学校的积极参与,社会的肯定。每次活动,我们坚持“实践、思考、再实践、再思考”的基本方法,确立一个研究主题,本着“学有所获,研有所果”的原则,发动每个教师全程参与,45周岁以下的教师必须参与课堂展示或设计,年老的教师参与课堂点评,实实在在的教研活动,不仅调动了校内教师的教研热情,也吸引了区内兄弟学校老师的加盟,他们积极参与了我们的课题研究。

五、今后的思考

虽然在课题的前期研究过程中,我们取得了初步的成效,但我们深知我们的课题研究工作还有许多不尽如人意的地方。为了进一步做好下一阶段课题的研究工作,我们想从以下几个方面力求突破:

1、细化分工,明确职责。根据课题的研究内容和前期的研究进展,我们决定对后期的研究工作作一些适当的调整,更加细化分工,各负其责,确保课题的研究工作顺利进行。通过课堂教学研究,提高学生收集、整理数据的能力,重点培养学生推断与决策的能力,体会数学的价值。以课堂教学为主阵地,重点研究概率教学,培养学生的随机意识,提高学生分析问题和预测未来的能力。

2、加强理论学习,提高研究水平。前期的研究工作我们主要把精力放在课堂教学研究上,了解《统计与概率》的教学现状、教学困惑,寻找课堂教学的有效模式,应该说在实际层面探讨的比较多。接下来的课题研究工作我们 将在关注课堂教学的同时,重视理论学习,把目光聚焦在理论层面的研究上,遵循理论结合实际的原则,用理论丰富研究成果。

3、全面总结经验,推广研究成果。2010年下半年我们打算召开一次“课题经验总结暨成果展示会”,旨在进一步加强和深入课题的研究工作,提升我们课题的研究水平,同时通过总结、展示,来推广我们的研究成果,改进和优化今后的课堂教学。

第五篇:概率统计教学评估汇报

凝聚实干,齐创辉煌

——2008-2009学概率统计教学评估汇报材料

这一年,是奋斗的一年,也是收获颇丰的一年。因为我们始终相信:付出与收获是成正比的。在庄老师的悉心指导下,我们耕耘了,所以我们收获了。静下心,细梳理。我们本学期的概率论与数理统计课程确实收获颇丰。

一、课程注重理论学习,灌输概率思维。

观念是行动的指南。老师讲课思路清晰,引领到位,不流于形式,注重实效。深入了解学生思想,与学生们一同交流、研讨,了解学生需要,教学工作目标明确,针对性强,效果好。特别是突出“实”、“新”、“活”的特点。“实”是说讲课实实在在,不走过场;“新”是说努力为学生们提供先进的课程信息,引领教学;“活”是说不拘泥形式,学生们缺什么,关心什么,讲什么。老师授课无论从内容的选择上,还是方法的运用上,都具体实用。

二、学习注重过程,讲求实效。

教学,主要是过程性管理。任何一次讲课,都要考虑它的实效性,对不同层次的学生采取不同的授课方式及要求。不管是哪种类型的学生,老师都能坚持听完学生想法,接纳改进意见和建议,给学生自行改正的时间,随后再次上课时重点检查、指导。这样的教学方式特别有利于学生成长。庄老师上完课后,都会进行课程延伸和答疑。答疑问题包括针对学生作业暴露出的问题,以及学生自己的想法见解。这种集讲课、互动、答疑为一体的讲课方式,使得概率课程的学习不是浮于表面,而是深度的教学研究。因此,特别有利于学生的专业发展,也特别有利于学生个人成长。

课程进度,从章节难点要点的确定,到具体问题解决,一步一个脚印,踏踏实实;时间分配恰到好处,让学生即积极学习知识,又不至于压力力过大,在轻松和快乐中学习知识。课程顺利完结,而且获得的评价也特别高。因此,我们是在过程中耕耘,在过程中问鼎收获。

三、老师搭建平台,尽展学生风采。

可以说,每个人都具有强烈的自我发展与提高的欲望和自我超越的能力。每一位学生都希望自己在学习过程中成为一个优秀者、成功者。庄老师紧紧抓住这一心理,为满足学生自我超越的需要,为他们展示才华搭建平台,争取给每一个学生展示的机会。从课堂到课外,从讲课到作业,庄老师都很认真的对待同学们的成果,鼓励大家各抒己见,一旦有好的想法构思,都会予以鼓励、正确引导,所以课堂气氛很是活跃。

总之,在教学活动中,庄老师抓住教学本质,突出一个“研”字;抓住计划措施落实,突出一个“实”字;抓培养全班同学,不落一个,突出一个“优”字,在三“字”上下功夫,实现了我班概率统计课程教学的成功。

在概率统计课程的学习过程中我们也有深刻的认识。“人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”,这是新世纪数学课程的基本理念。贯彻课改的新理念,结合庄老师带来的学习实践,我深深感到:善于培养大家的内在动机,使学生喜爱学习,师生互动,才是教学成功的法宝。尤其是概率统计的学习,学生对跟教学相关的生活实例表现出浓厚的兴趣,真正体验到了学习数学的乐趣和价值。概率统计教学中,应着重注意以下三点:

一、教师应通过日常生活中的大量实例,使学生更好地理解随机事件发生的不确定性及频率的相对稳定性,帮助学生澄清在日常生活中对身边所发生的一些问题存在的错误认识。比如我们经常会遇到以下问题:

天气预报这样表达:“明日有雨的概率为60%”,这个60%意味什么?应鼓励学生发表自己的看法。对这句话有很多错误的理解,比如“明天有 的时间下雨”“明天有 的地区下雨”等等。最后教师归纳概括:考察历史上的天气记录,如果和明天在气压、云层、温度等天气条件方面大致相同的天数是100天,其中有60天降雨了;不能从概率的统计定义解释即用频率近似作为概率,因这一事件不能进行大量重复实验。

如何理解“虽然预报今天济南的降水概率是70%,北京的降水概率是90%,但是济南今天降雨了,北京没降雨”这一现象?从概率的角度解释,“今天降雨”是一个随机事件,今天济南的降水概率是70%,北京的降水概率是90%,只是说明今天北京降雨的可能性比济南大,并不表示今天北京一定下雨。如果济南今天降雨了而北京没降雨,即可能性较小的事件发生了而可能性较大的事件却没有发生,正是随机事件发生的不确定性的体现。

二、教师应让学生通过实例理解古典概型的特征:每一个实验结果出现的等可能性,让学生初步学会把一些实际问题转化古典概型,从而通过正确合理的推断来认识日常生活中遇到的事情。譬如抽签的公平性问题。

人们常用抽签的方法决定一件事情,先抽还是后抽(后抽人不知道先抽人抽出的结果),对各人来说是公平的吗?例如在10张彩票中,有2张奖票,先有甲后有乙各抽一张,看谁能中奖。教师事先准备好口袋和球,让学生分组进行摸球来模拟试验,汇总全班的数据后,得出直观上的认识。

三、教师在统计教学中应通过对一些典型案例的处理,使学生经历较系统的数据处理全过程,在此过程中学习一些数据处理的方法幷运用所学知识和方法去解决实际问题。本章中有几处学生感到疑惑的地方,可通过鼓励学生查阅相关内容的现实例子,课上交流讨论,寓解疑于趣味之中。

在学习概率统计课程中,庄老师是这样教我们的,我们确实从中受益匪浅。在感激庄老师的精心教导之余更愿意更多的人找到学习概率统计的方法,并享受到其中的乐趣。所以谨以此文献给我们敬爱的庄老师,及襄院的广大师生。

下载概率统计小组任务(发布)(优秀范文5篇)word格式文档
下载概率统计小组任务(发布)(优秀范文5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    概率统计教案2

    第三章 多维随机变量及其分布 一、教材说明 本章内容包括:多维随机变量的联合分布和边际分布、多维随机变量函数的分布、多维随机变量的特征数,随机变量的独立性概念,条件分布......

    概率与统计教学大纲

    《概率论和数理统计》教学大纲 学时: 48 学分:3 一、 课程的目的和任务 概率论与数理统计是研究随机现象的客观规律的一门数学学科。随着现代科学技术的发展,它已经被广泛应......

    概率和统计知识点总结(大全)

    统计与概率知识总结 考点一、平均数(3分)1、平均数的概念 (1)平均数:一般地,如果有n个数那么,叫做这n个数的平均数,读作“x拔”。 (2)加权平均数:如果n个数中,出现次,出现次,„,出现次(这里......

    概率统计教案1

    第一章概率论的基本概念 1.确定性现象: 在一定条件下必然发生的现象. 2.统计规律性: 在个别试验或观察中可以出现这样的结果,也可以出现那样的结果,但在大量重复试验或观察中......

    概率统计教案5

    第五章 大数定律及中心极限定理 §5.1 大数定律 1.设Y1 , Y2 ,  , Yn , 是一个a是一个常数. 随机变量序列,若对于任意正数,有 limP{Ya}1, nn则称序列Y1 , Y2 ,  , Yn , 依概 P......

    统计与概率教案

    第1课时 统计与概率(1) 【教学内容】 统计表。 【教学目标】 使学生进一步认识统计的意义,进一步认识统计表,掌握整理数据、编制统计表的方法,学会进行简单统计。 【重点难点】......

    概率统计考试题及答案[定稿]

    午饭的时间到了?西结:火爆龙;嘉莉王;稍带点深的感觉?胀痛看脑看了眼?习熟悉器,白兔掏出,到一块了,靖放弃你,点交朋友要。在张嘴的况下。 理狗狗了抽搐打?还喜欢这,学际育学,个偶然;的坏处......

    教概率统计有感

    教“概率统计”有感 “概率与统计初步”被纳入到初中数学教学内容年限不长。并因为这些内容本身的一些特点以及学生学习这些知识时的特殊性导致我教这两章内容费了不少功夫......