浙江省慈溪市横河初级中学九年级数学上册 1.2反比例函数的图像和性质教案 浙教版(推荐)

时间:2019-05-12 20:11:45下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《浙江省慈溪市横河初级中学九年级数学上册 1.2反比例函数的图像和性质教案 浙教版(推荐)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《浙江省慈溪市横河初级中学九年级数学上册 1.2反比例函数的图像和性质教案 浙教版(推荐)》。

第一篇:浙江省慈溪市横河初级中学九年级数学上册 1.2反比例函数的图像和性质教案 浙教版(推荐)

1.2反比例函数的图像和性质(1)

[教学目标]

1、体会并了解反比例函数的图象的意义

2、能描点画出反比例函数的图象

3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质 [教学重点和难点] 本节教学的重点是反比例函数的图象及图象的性质

由于反比例函数的图象分两支,给画图带来了复杂性是本节教学的难点 教学方法: 启发 演示法 教学辅助: 投影片 [教学过程]

1、情境创设

可以从复习一次函数的图象开始:你还记得一次函数的图象吗?在回忆与交流中,进一步认识函数图象的直观有助于理解函数的性质。转而导人关注新的函数——反比例函数的图象研究:反比例函数的图象又会是什么样子呢?

2、探索活动

探索活动1 反比例函数y 由于反比例函数y6x6x的图象. 的图象是曲线型的,且分成两支.对此,学生第一次接触有一定的难度,因此需要分几个层次来探求:

(1)可以先估计——例如:位置(图象所在象限、图象与坐标轴的交点等)、趋势(上升、下降等);

(2)方法与步骤——利用描点作图;

列表:取自变量x的哪些值? ——x是不为零的任何实数,所以不能取x的值的为零,但仍可以以零为基准,左右均匀,对称地取值。

描点:依据什么(数据、方法)找点? 连线:怎样连线? ——可在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来。

探索活动2 反比例函数y6x的图象.

可以引导学生采用多种方式进行自主探索活动:(1)可以用画反比例函数y(2)可以通过探索函数y6x6x的图象的方式与步骤进行自主探索其图象;

6x与y之间的关系,画出y6x的图象.

探索活动3 反比例函数y6x与y6x的图象有什么共同特征? 引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.

反比例函数ykxkx(k≠0)的图象是由两个分支组成的曲线。当k0时,图象在一、三象限:当k0时,图象在二、四象限。

反比例函数y(k≠0)的图象关于直角坐标系的原点成中心对称。

3、例题教学 第11页课本安排例1,(1)巩固反比例函数的图象的性质。(2)是为了引导学生认识到:由于在反比例函数ykx(k≠0)中,只要常数k的值确定,反比例函数就确定了.因此要确定一个反比例函数,只需要一对对应值或图象上一个点的坐标即可.(3)可以先设问:能否利用图象的性质来画图?

4、应用知识,体验成功

练习:课本“课内练习” 1.2.3

5、归纳小结,反思提高 用描点法作图象的步骤 反比例函数的图象的性质

6、布置作业

作业本(1)课本“作业题”

板书设计:

y6x 例1 解: 解:

练习练习

教学反思:

本节课学生对性质都能很好的理解,亮点在于学生跟着操作,学生掌握很好。学生对画图细节掌握不是很好,有待于今后教学多给予渗透。

第二篇:浙江省慈溪市横河初级中学七年级数学上册 3.3立方根教案 浙教版

第二章 实数3.3立方根

一、学情分析

在学习了平方根概念的基础上学习立方根的概念,学生比较容易接受,因此教学重点放在立方根具有唯一性(实数范围内)的讨论上.在学生对数的立方根概念及个数的唯一性有了一定理解的基础上,再提出数的立方根与数的平方根有什么区别,学生就容易解决问题.

二、目标分析 教学目标  知识与技能目标

1.了解立方根的概念,会用根号表示一个数的立方根.

2.会用立方运算求一个数的立方根,了解开立方与立方互为逆运算. 3.了解立方根的性质.

4.区分立方根与平方根的不同. 过程与方法目标

1.经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略. 2.在学习了平方根的基础上,学生经历用类比的方法学习立方根的有关知识,领会类比思想.  3.通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识. 情感与态度目标: 

1.在立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神.

2. 学生通过对实际问题的解决,体会数学的实用价值.  教学重点

立方根的概念及计算.  教学难点

立方根的求法,立方根与平方根的联系及区别.

三、教法学法

1.教学方法:类比法.

2.课前准备:

教具:教材,软件Microsoft PowerPoint 2002,电脑.

学具:教材,练习本.

四、教学过程

本节课设计了七个教学环节:第一环节:创设问题情境;第二环节:复习引入、类比学习;第三环节:初步探究;第四环节:尝试反馈,巩固练习;第五环节:深入探究;第六环节:课时小结;探究与思考;第七环节:作业布置及课外探究.

第一环节:创设问题情境:

内容:

某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐的多少倍?如果储气罐的体积是原来的4倍呢?(球的体积公式为v=43R,R为球的半径)提问:怎样求出半径R ?学完本节知识后,相信你会有一个满意的答案.有关体积的运算和面积的运算有类似之处,让我们用上节课解决问题的方法来学习新知识 .

意图:通过实际情境引入,让学生感受新知学习的必要性,激发学生的求知欲望. 效果:在思考问题的同时,学生既感受了数学的应用价值,激发了学生的学习热情,有很快将问题归结为如何确定一个数,它的立方等于4,从而顺利引入新课. 第二环节:复习引入、类比学习

内容:

提问:(1)什么叫一个数a的平方根?如何用符号表示数a(a≥0)的平方根?(2)正数的平方根有几个?它们之间的关系是什么?负数有没有平方根?0的平方根 是什么?

(3)平方和开平方运算有何关系?

(4)算术平方根和平方根有何区别和联系?

强调:一个正数的平方根有两个,且互为相反数;一个负数没有平方根;0的平方根是0.(5)为了前面场景的问题中,需要引出一个新的运算,你将如何定义这个新运算?

1.一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(也叫做二次 方根).2.一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(cube root, 也 叫做三次方根).如:2是8的立方根,-3是-27的立方根,0是0的立方根.

意图:学生通过回顾上节课的学习内容,为进一步研究立方根的概念及性质做好铺垫,同时 突出平方根与立方根的对比,以利于弄清两者的区别和联系.

效果:复习引入既复习了平方根的知识,又利于学生类比学习法学习立方根知识.第三环节:初步探究

内容:

1做一做:怎样求下列括号内的数?各题中已知什么数?求什么数?

()=-(1)()=0.001 ;(2)332764 ;(3)()=0.意图:通过计算练习,使学生进一步了解求一个数的立方,与求一个数的立方根是互为逆运算,感受一个数的立方根的唯一性,计算中对a的取值分别选为正数、负数、0,这样设计,在此过程中渗透分类讨论的思想方法. 2议一议:

(1)正数有几个立方根?(2)0有几个立方根

(3)负数呢?

意图:提问,是为了指出平方根与立方根的对比,以利于弄清两者的区别和联系.

3在上面的基础上明晰下列内容,对知识进行梳理

3(1)每个数a都只有一个立方根,记为“a”,读作“三次根号a”.例如x3=7时,x3是7的立方根,即7=x;与数的平方根的表示比较,数的立方根中根号前没有“±”符号,但根指数3不能省略.

(2)正数的立方根是正数;0的立方根是0;负数的立方根是负数.

(3)求一个数a的立方根的运算叫做开立方(extrction of cubic root), 其中a叫做被开方数.开立方与立方互为逆运算.

效果:通过亲自运算、探究学习立方运算的逆运算,培养了学生的探究能力,初步掌握立方根的概念.

第四环节:尝试反馈,巩固练习

内容:

例1求下列各数的立方根:(1)-27;(2)

812538 ;(3)3 ;(4)0.216 ;(5)-5.33解:(1)因为(-3)=-27,所以-27的立方根是-3,即-27=-3;

828282=;

(2)因为,所以的立方根是,即31255125512553233()=(3)因为

278=338,所以338的立方根是

33,即33=;

8223

33(4)因为(0.6)=0.216,所以0.216的立方根是0.6,即0.216=0.6;

(5)-5的立方根是3-5.例2 求下列各式的值:

(1)38;(2)30.064;(3)338125;(4)

9.

333解:(1)38=322;(2)30.064=30.40.4;

8125253(3)3=325;(4)

9=9.

随堂练习

1.求下列各数的立方根: 30.125;364; -364;5; 33316.32.通过上面的计算结果,你发现了什么规律?

意图:例1着眼于弄清立方根的概念,因此这里不仅用立方的方法求立方根,而且书写上采用了语言叙述和符号表示互相补充的做法,学生在熟练以后可以简化写法.例2则巩固立方根的计算,引导学生思考立方根的性质.

效果:学生通过练习掌握立方根的概念和计算,通过对计算结果的分析得出立方根的性质,若学生不能发现规律,教师可以再给出几个例子,如:38=-2=-2; 3=327=3; 38=(2)=8.引导学生观察被开方数、根指数及333333

运算结果之间的关系,从而得出立方根的性质;也可以安排学生分小组讨论,通过交流,展示学生发现的规律;若学生的讨论不够深入,可由教师补充得出结论. 第五环节:深入探究

想一想:

(1)3a表示a的立方根,那么

a等于什么?

333a3呢?

(2)3-a与-3a有何关系?

意图:明晰a =a,333a3=a。说明:若学生通过上面的计算得出了立方根的性质,可以直接展示学生的成果;若没有得出结果,可以引导学生分析,如果x3=a,那么x就是a的立方根,即x=3a,所以x=33a=a, 同样,根据定义,a333是的a三次方,所以a3的立方根就是a, 即aa,33-a=-3a.

第六环节 课时小结:

内容1:提问通过本节课的学习你学到了哪些知识?归纳、总结学生的回答,得出下列内容:

1.了解立方根的概念,会用三次根号表示一个数的立方根,能用立方运算求一个数的立方根.

2.在学习中应注意以下5点:

(1)符号3a中根指数“3”不能省略;

(2)对于立方根,被开方数没有限制,正数、零、负数都有一个立方根;

(3)平方根和立方根的区别:正数有两个平方根,但只有一个立方根;

负数没有平方根,但却有一个立方根;

33(4)灵活运用公式:(3a)3=a, aa,3-a=-3a;

(5)立方与开立方也互为逆运算.我们也可以用立方运算求一个数的立方根,或检验一个数是不是另一个数的立方根.

意图:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.

效果:通过小结,学生进一步加深了对类比学习方法的感受,对所学的知识进行了梳理,学习更有条理性.

内容2:回顾引例

某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?如果储气罐的体积是原来的4倍呢?

如有时间,学生学力许可,还可以安排学生探究下列问题:

1.回顾上节课的内容:已知2x18=0,求x的值.

2.求下列各式中的x.

(1)8x3+27=0;(2)(x-1)3-0.343=0;(3)81(x+1)4=16;(4)32x5-1=0.

意图:回顾引例,使得教学环节更完整,同时体现了数学的实用价值.安排有层次的探究问题,可更好地调动不同学生的学习热情,让学生通过练习解决有关问题,培养学生综合解决问题的能力.

第七环节 教学反思

主要注意学生的计算,以及对立方根的理解

第三篇:浙江省慈溪市横河初级中学七年级数学上册 4.2代数式教案 浙教版

4.2代数式

教学目标:

知识目标:

1、在具体情境中让学生观察、分析归纳得出代数式的概念。理解代数式的意义。

2、能根据代数式和具体问题说出一个代数式表示的数量关系。

能力目标:进一步让学生理解字母表示数的意义,并能解释代数式的实际背景或几何意义,发展符号感。

情感目标:使学生初步认识数学与人类的密切关系,体验数学活动充满着探索与创造。教学重点:理解代数式的意义,会正确书写代数式。教学难点:用代数式表示数量关系。教学预设:

一、从学生原有的认知结构提出问题

1.在小学我们曾学过几种运算律?都是什么?如何用字母表示它们?

(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)(1)加法交换律a+b=b+a;(2)乘法交换律a·b=b·a;(3)加法结合律(a+b)+c=a+(b+c);(4)乘法结合律(ab)c=a(bc);(5)乘法分配律a(b+c)=ab+ac.

指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数.

2.(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?

3.若用s表示路程,t表示时间,v表示速度,你能用s与t表示v吗?

4.一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?(用l厘米表示周长,则l=4a厘米;用S平方厘米表示面积,则S=a2平方厘米).

此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与方程中,用字母表示数也会给运算带来方便;

那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.

二、讲授新课 1.代数式

单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.

学习代数,首先要学习用代数式表示数量关系,明确代数式的意义. 2.举例说明 例1 填空:

(1)每包书有12册,n包书有____________册;(2)温度由t℃下降到2℃后是______℃;

(3)棱长是a厘米的正方体的体积是______立方厘米;(4)产量由m千克增长10%,就达到______千克. 解:(1)12n;(2)(t-2);(3)a3;(4)(1+10%)m. 例2 说出下列代数式的意义:

(1)2a+3(2)2(a+3)(3)a+b

(4)(a+b)

2解:(1)2a+3的意义是2a与3的和;

(2)2(a+3)的意义是2与(a+3)的积;(3)a2+b2的意义是a,b的平方的和;(4)(a+b)2的意义是a与b的和的平方.

说明:(1)本题应由教师示范来完成;

(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点.如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”.

例3 用代数式表示:

(1)m与n的和除以10的商;(2)m与5n的差的平方;(3)x的2倍与y的和;(4)v的立方与t的3倍的积.

分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面.

三、课堂练习1.填空:

(1)n箱苹果重p千克,每箱重______千克;

(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为______厘米;(3)底为a,高为h的三角形面积是______;

(4)全校学生总人数是x,其中女生占48%,则女生人数是______,男生人数是______. 2.用代数式表示:

(1)x与y的和;(2)x的平方与y的立方的差;(3)a的60%与b的2倍的和;(4)a除以2的商与b除3的商的和.

四、师生共同小结

1.本节课学习了哪些内容?2.用字母表示数的意义是什么?

3.什么叫代数式?

教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号. 五.布置作业

第四篇:浙江省慈溪市横河初级中学七年级数学上册 4.2代数式教案 浙教版

4.2代数式

教学目标:

1、让学生经历代数式概念的产生过程

2、了解代数式的概念

3、会用代数式表示简单的数量关系 重点:代数式的概念和列代数式

难点:

1、引入处的问题(3)和(4),借助动画解决,其中(4)还要利用图形的割补思想;

2、例一(3)(4)(5),例二(数量分析要透)教学过程设计:

一、从学生原有的认知结构提出问题

1.在小学我们曾学过几种运算律?都是什么?如何用字母表示它们?

(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)(1)加法交换律a+b=b+a;(2)乘法交换律a·b=b·a;(3)加法结合律(a+b)+c=a+(b+c);(4)乘法结合律(ab)c=a(bc);(5)乘法分配律a(b+c)=ab+ac.

指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数.

2.(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?

3.若用s表示路程,t表示时间,v表示速度,你能用s与t表示v吗?

4.一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?(用l厘米表示周长,则l=4a厘米;用S平方厘米表示面积,则S=a平方厘米).

此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与方程中,用字母表示数也会给运算带来方便;

那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.

二、讲授新课 1.代数式

单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.

学习代数,首先要学习用代数式表示数量关系,明确代数式的意义.

2.举例说明 例1 填空:

(1)每包书有12册,n包书有____________册;(2)温度由t℃下降到2℃后是______℃;

(3)棱长是a厘米的正方体的体积是______立方厘米;(4)产量由m千克增长10%,就达到______千克. 解:(1)12n;(2)(t-2);(3)a;(4)(1+10%)m. 例2 说出下列代数式的意义:

(1)

32a+3(2)2(a+3)(3)a+b

(4)(a+b)

2解:(1)2a+3的意义是2a与3的和;

(2)2(a+3)的意义是2与(a+3)的积;(3)a+b的意义是a,b的平方的和;(4)(a+b)的意义是a与b的和的平方.

说明:(1)本题应由教师示范来完成;

(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点.如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”.

例3 用代数式表示:(1)m与n的和除以10的商;(2)m与5n的差的平方;(3)x的2倍与y的和;(4)v的立方与t的3倍的积.

分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面.

三、课堂练习1.填空:

(1)n箱苹果重p千克,每箱重______千克;

(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为______厘米;(3)底为a,高为h的三角形面积是______;

(4)全校学生总人数是x,其中女生占48%,则女生人数是______,男生人数是______. 2.用代数式表示:

(1)x与y的和;(2)x的平方与y的立方的差;(3)a的60%与b的2倍的和;(4)a除以2的商与b除3的商的和.

四、师生共同小结

1.本节课学习了哪些内容?2.用字母表示数的意义是什么? 3.什么叫代数式? 222

教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号. 五.布置作业

第五篇:【湘教版】九年级数学上册 1.2《反比例函数的图象与性质 三》精品教学案

百度文库

教学资料

湘教版九年级上册数学教案

1.2 反比例函数的图像与性质(3)

教学目标

1.能用待定系数法求反比例函数的解析式. 2.能用反比例函数的定义和性质解决实际问题 重点难点

重点:能用待定系数法求反比例函数的解析式.

难点:根据反比例函数的图象或表达式来理解反比例函数的性质.教学设计 一.预习导学

自主学习教材P10-11,并思考下列问题:

1.认真完成P10的动脑筋,思考怎样用待定系数法求反比例函数的解析式? 2.认真阅读例题2,书上是运用反比例函数的什么知识解决问题的? 3.例题3中,用待定系数法时为什么要标明k1、k2? 二.探究展示

(一)合作探究

如何解答教材P10的动脑筋?

由组长带领组员讨论交流,教师适当引导,然后总结得出:由于反比例函数y=

k中只有x一个待定系数K,因此只需要图像上一点的坐标,把其值代入得到一个关于K的一元一次方程,求出K值即可确定函数关系式.知道反比例函数的表达式就可以知道某一点是否在这个函数图象上.由K值得正负就可以知道函数图象分布的象限及函数值随自变量值的变化情况.(二)展示提升 1.反比例函数y=k的图象如图所示,根据图象,回答下列问题: x(1)K的取值范围是K>0还是K<0?说明理由

(2)如果点A(-3,y1),B(-2,y2)是该函数图象上的两点,试比较y1,y2的大小.教学资料

学案设计

百度文库

教学资料

设计意图:读图能力训练,加深学生对反比例函数图象性质的理解.2.已知一个正比例函数与一个反比例函数的图象交于点P(-3,4),试求出它们让你的表达式,并在同一坐标系内画出这两个函数的图象.提示:先设两个函数的表达式,且两个函数表示式中的比例系数应用k1、k2区分.学生分组讨论交流,交流后小组代表展示,教师进行补充.设计意图:揭示知识间的内在联系,有助于构建较完整的知识网络.三.知识梳理

启发学生谈谈本节课的收获.1.用待定系数法求反比例函数的解析式. 2.用待定系数法求反比例函数的解析式步骤:(1)设出反比例函数的解析式y=

k(k≠0)x(2)把已知条件(一组自变量与函数的对应值)代入解析式,得到关于k的一元一次方程(3)解这个方程,求出待定系数k(4)将k的值代入得出反比例函数的解析式.四.当堂检测

1.已知反比例函数的图像经过点(a,b),则它的图像一定也经过()A、(-a,-b)B、(a,-b)C、(-a,b)D、(0,0)

k2.已知反比例函数y=的图象经过点M(-2,2)

x(1)求这个函数的表达式(2)判断点A(-4,1),B(1,4)是否在这个函数图象上

(3)这个函数的图象位于哪些象限?函数值y随自变量x的增大而如何变化?

教学资料

学案设计

百度文库

教学资料

3.如图,一次函数y=kx+b的图象与反比例函数ym的图象交于A(-2,1)、B(1,xn)两点(1)求反比例函数和一次函数的解析式

(2)根据图象写出一次函数的值大于反比例函数的值的x的取值范围

五.教学反思

本节课通过用待定系数法求反比例函数的解析式让学生理解根据反比例函数的图象或表达式来理解反比例函数的性质,采取小组合作交流、竞争的方式,更能激起学生的求知的欲望.学生通过展示锻炼了口头表达能力,同时培养了学生分析问题和解决问题的能力,增强了小组的凝聚力.教学资料

学案设计

下载浙江省慈溪市横河初级中学九年级数学上册 1.2反比例函数的图像和性质教案 浙教版(推荐)word格式文档
下载浙江省慈溪市横河初级中学九年级数学上册 1.2反比例函数的图像和性质教案 浙教版(推荐).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐