第一篇:离散型随机变量数学期望教学设计
教学设计
熟练理解并掌握离散型随机变量的定义、意义和计算方法; 教学重点:离散型随机变量的定义、意义和计算方法; 教学难点:理解离散型随机变量的定义; 教学方法:启发式教学和案例推理式教学相结合; 教学手段:多媒体教学; 教学内容:
第一:由1653年法国的赌资分配问题引出数学期望概念的由来和产生背景。以动画故事形式讲述赌资分配问题的产生和概率论学科及数学期望概念的诞生背景。
第二:以射手选拔问题为例引出问题——射中环数平均值的稳定值如何确定?由最简单的平均环数计算公式——总环数除以射击次数,逐步分析得出结论——用射中每个环数的可能只与对应概率乘积的和可以表示射中环数平均值。从而抽象出离散型随机变量数学期望的概念。
第三:离散型随机变量数学期望的定义。从三个主要方面分析定义的掌握要点。1.数学期望是一个数,完全由随机变量分布律决定的数。2.定义要求级数绝对收敛。因为XK的取值可正可负,而一般项级数的绝对收敛性则可以保证当级数项的位置发生改变时级数仍然收敛且和不变。而条件收敛就不一定了:比如我们知道调和级数是条件收敛的,但当我把它的项按照这样的次序改变之后,这个级数竟然变成了原级数的1/2,也就是说:它的和变成了原来和的1/2。这个例子就说明:条件收敛的级数它的和不一定是稳定的,所以定义要求这个级数绝对收敛。3.数学期望代表的随机变量的平均取值,确切地说是加权平均值,并举例说明加权平均值与算术平均值的不同。
第四:根据定义解决赌资分配问题中甲乙选手平均水平的高低 分别把甲乙射中环数看作随机变量X,Y,在已知X,Y分布律的条件下,计算X,Y的数学期望,就得到了甲乙的平均射中环数也就比较出了他们平均水平的高低。
第五:分析赌资分配问题与数学期望的关系。分析两种错误的分配方案及其原因,指出帕斯卡和费马提出的分配方案及计算依据,并分析这种分配方案的合理性以及数学期望名字的由来。
第六:通过这堂课的学习我们得到的启示。提出问题的重要性和由具体到一般归纳方法的运用。
第二篇:离散型随机变量的教学设计
“离散型随机变量”的教学设计
一、内容和内容解析
“随机变量及其分布”一章的主要内容就是要通过具体实例,帮助学生理解取有限值的离散型随机变量及其分布列、均值、方差的概念,理解超几何分布和二项分布的概型并能解决简单的实际问题,使学生认识分布列对于刻画随机现象的重要性,认识正态分布曲线的特点及曲线所表示的意义,了解条件概率和两个事件相互独立的概念。
“离散型随机变量”是这一章的开门课。因此,在本节课中,让学生了解本章的主要内容及其研究该内容所用的数学思想方法,对学生明确学习目标和学习任务,提高他们的求知欲望,激发他们的学习兴趣非常重要。于是,本节课的第一个教学任务就是要做好章头图的教学。教材的章头图从实例和图形两个方面展示了本章要学习的内容,一个是离散型随机变量的产生背景和分布列的条形图,另一个是正态分布的背景和正态分布密度曲线。教学时要充分地运用章头图的这两个背景,通过问题的形式,帮助学生明确本章要学习的主要内容和意义。
对于一个随机现象,就是要了解它所有可能出现的结果和每一个结果出现的概率。对于随机试验,只要了解了它可能出现的结果,以及每一个结果发生的概率,也就基本把握了它的统计规律。为了使用数学工具研究随机现象,需要用数字描述随机现象,建立起连接数和随机现象的桥梁——随机变量。随机变量能够反映随机现象的共性,有关随机变量的结论可以应用到具有不同背景的实际问题中。而高中阶段主要研究的是有限的离散型的随机变量,因此,本节课的第二个教学任务就是通过具体实例,帮助学生掌握随机变量和离散型随机变量的概念,理解它们的意义和作用,能对一个随机试验的结果,用一个随机变量表示,并能确定其取值范围。
二、目标和目标解析
1.了解本章学习的内容和意义。具体要求为:
(1)通过章头图中给出的射击运动的情景,帮会学生了解,在射击运动中,每次射击的成绩是一个非常典型的随机事件。在这个离散型的随机事件中,如何刻画每个运用员射击的技术水平与特点?如何比较两个运动员的射击水平?如何选拔运动员参加比赛获胜的概率大?这些问题的解决需要离散型随机变量的概率分布、均值、方差等有关知识;
(2)通过章头图中给出的高尔顿板游戏情景,帮助学生了解在这样一个连续型的随机事件的游戏活动中,小球落在哪个槽中的可能性更大?槽中的小球最后会堆积成什么形状?这些问题与本章将要学习的正态分布有关;
(3)在上述两个情景的基础上,通过问题的形式,帮助学生提出本章要研究的问题和基本思想:随机事件形形色色,随机现象表现各异,但如果舍弃具体背景,它们就会呈现出一些共性;如果把随机试验的结果数量化,用随机变量表示试验结果,就可以用数学工具来研究这些随机现象。这样不仅阐述了本章的主要内容,而且激发了学生的学习兴趣,使他们明确本章的学习目标以及研究本章内容的数学思想方法。
2.理解随机变量和离散型随机变量的描述性定义,以及随机变量与函数的关系,能够把一个随机试验的结果用随机变量表示,能够根据所关心的问题定义一个随机变量。具体要求是:
(1)在对具体问题的分析过程中,帮助学生理解用随机变量表示随机试验结果的意义和作用:为了使用数学工具研究随机现象,需要用数字描述随机现象,建立起连接数和随机现象的桥梁——随机变量,掌握随机变量的描述性概念,了解随机变量与函数的关系,构造随机变量应当注意的问题(如随机变量应该有实际意义、应该尽量简单,以便于研究),以及用随机变量表示随机事件的方法等;
(2)通过具体问题的对比分析,帮助学生理解随机变量有两个类型:
取有限个值的离散型随机变量离散型随机变量
随机变量 随型机变量取无穷多个值的离散连续型随机变量能够根据具体问题,把随机试验的结果用一个随机变量表示,并能写出其取值范围;能够熟练地用随机变量的取值表示一个随机事件;
(3)通过反思随机变量的定义过程,引导学生体会,在实际应用中如何根据实际问题恰当地定义随机变量(如根据所关心的问题,定义随机变量),以达到事半功倍的效果。
三、重点和难点解析
本节内容是为求分布列作铺垫的一节概念课。所以要把随机变量和离散型随机变量的概念讲清楚。于是,可以确定的重点、难点是:
重点:用随机变量表示随机试验结果的意义和方法;
难点:对随机变量意义的理解;构造随机变量的方法;随机变量取值范围的确定。
四、教学问题诊断分析
1.是否讲解“随机试验”的概念?
研究随机现象,就是要研究随机试验可能出现的结果(其中的每一个结果即为一个随机事件)和每一个结果发生的概率(即描述每一个随机事件发生可能性大小的度量),从而把握它的统计规律。这里有三个概念:随机事件、随机现象和随机试验。
在必修三中,学生已经学习了随机事件的概念(即在条件S下可能发生也可能不发生的事件,叫做相对于条件S的随机事件),之前,学生通过在初中数学和必修三的概率学习,又有了随机现象的观念,因此,学生对“随机试验”的概念是能够不加定义而自明的,也就是“随机试验”可以作为不加定义的原始概念引入。事实上,教材在介绍随机变量的概念时,不加定义地引入了“随机试验”的概念(教材第44页第一个思考下方第一行),就是基于这样的考虑,因此,在教学中,对“随机试验”的概念不需要(也根本没有必要)引导学生下定义,以避免严格的定义可能造成学生理解的模糊,影响对主干概念“随机变量”的理解。
事实上,“试验”一词有十分广泛的含义:凡是对对象的观察或为此而进行的实验都称之为试验。如果一个试验满足以下条件,则称之为随机试验:(1)试验可以在相同条件下重复进行;(2)试验的所有结果是明确且可以知道的,并且不止一个;(3)每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果。
2.怎样建构“随机变量”的概念?
本节内容围绕随机试验的结果可以用“数”表示进行展开。掷骰子试验、掷硬币试验是学生比较熟悉的两个随机试验,对掷骰子试验的结果和数字1~6对应起来学生很容易理解,而掷硬币试验的结果则不容易联想到数字。可以引导学生思考:值一枚硬币的结果是否也可以用数字表示呢?通过把“正面向上”与1对应,“反面向上”与0对应,使得掷硬币的试验结果同样也可以用数字表示,这样的问题还可以列举,如新生婴儿性别抽查:可能是男,也可能是女,同样可以分别用1和0表示这两种结果,在此基础上抽象概括出随机变量的描述性定义。
3.怎样深化对“随机变量”概念本质的理解? 对随机变量概念的理解,不是下个定义一步完成的,为了帮助学生深入地体会随机变量的本质,可以对掷硬币的试验结果的表示方法提出下面问题:还可以用其他的数来表示这两个试验结果吗?目的是鼓励学生提出其他表示方法,比如“正面向上”用1表示,“反面向上”用-1表示等,以使学生理解随机变量的本质。事实上,对于同一个随机试验,可以用不同的随机变量来表示其所有可能出现的结果。为了帮助学生体会,究竟选择什么样的随机
变量更为合适?这就涉及到构造随机变量应当注意的一些基本问题:如随机变量应该有实际意义,应该尽量简单,以便于研究。例如,对于掷n次硬币出现正面的次数可以表示为12„n,其中i1,第i次试验出现正面0,第i次试验出现反面,通过这样的例子,帮助学生体会用数字1和0表示,能够直接反应出正面向上的次数,这显然很方便;而用1和-1分别表示试验结果的反面和正面,那么掷n次硬币出现正面的次数的表达式就会变得很复杂。为了进一步深化对概念的理解,可以引导学生将随机变量与函数概念进行类比:随机变量与函数有类似的地方吗?使他们了解随机变量的概念实际上也可以看作是函数概念的推广。
4.如何通过随机变量表示所关心的随机事件?
引入随机变量的目的是为了研究随机现象,那么如何通过随机变量表示所关心的随机事件呢?可以通过一些例子介绍用随机变量表示随机事件的方法,特别是一些较为复杂的随机事件的表示方法。例子的类型列举可以广泛:如有穷可列、无穷可列、不可列等三个类型。特别是对不可列的随机变量问题,可以根据所关心的问题,能够把它构造成可列的随机变量。从而进一步体会用随机变量表示随机事件的方法。
五、教学过程设计
1.情境引入
情境1:在射击运动中,运动员每次射击的成绩具有什么特征?(随机性)运动员每次射击的成绩是一个什么事件?(随机事件)
如何刻画每个运动员射击的技术水平与特点?如何比较两个运动员的射击水平?如何选择优秀运动员代表国家参加奥运会的比赛才能使得获胜的概率大?解决这个问题要涉及到离散型随机变量的概率分布模型。
情境2:高尔顿是英国生物学家和统计学家,他设计了一个著名的游戏——高尔顿板游戏。如图,在一块木板上钉上钉着若干排相互平行并相互错开的圆柱形小模块,小木块之间留有适当的空隙作为通道,前后挡有玻璃,然后让一个个小球从高尔顿板上方的通道口落下,小球落在哪个槽中的可能性更大?槽中的小球最后会堆积成什么形状?
这个问题近似地服从正态分布,它是很多自然现象和生产、生活实际问题中经常遇到的一种连续型随机变量的概率分布模型。
以上两个问题就是我们本章要学习的两个重要的随机变量概率分布模型,本章的课题是——随机变量及其分布。
引言:我们知道,概率是描述随机事件发生可能性大小的度量。无论是运动员的一次射击,还是利用高尔顿板做一次游戏,都是随机试验,只要了解了这些随机试验可能出现的结果(即每一个结果就是一个随机事件),以及每一个结果发生的概率,我们也就基本把握了它的统计规律。随机事件形形色色,随机现象表现各异,但如果舍弃具体背景,他们就会呈现出一些共性;如果把随机试验的结果数量化,应随机变量表示试验结果,就可以用数学工具来研究这些随机现象。
引导学生阅读章头图的内容。然后展示本章的知识结构图:两类随机变量的概率分布模型:离散型随机变量——(在讲概率分布列、均值和方差的基础上)研究二项分布和超几何分布模型;连续型随机变量——正态分布模型。
2.离散型随机变量
问题1:概率是描述在一次随机试验中某个随机事件发生可能性大小的度量。如掷骰子就是一个随机试验,它有六种可能性结果。你还能举出一些随机试验的例子吗?该随机试验的所有可能结果有哪些?
设计意图:能够判定简单的随机试验,并能列举出所有可能的结果,为用“数”表示这些结果做好准备。
问题2:(1)掷一枚骰子,出现向上的点数X是1,2,3,4,5,6中的某一个数;
(2)在一块地上种10棵树苗,成活的棵树Y是0,1,2,3,„,10中的某个数。
下面两个随机试验的结果是否可以用数字表示呢?
(3)掷一枚硬币所有可能的结果;正面向上——1;反面向上——0
(4)新生儿性别,抽查的所有可能的结果;男——1;女——0 设计意图:通过讨论引导学生发现任何一个随机试验的结果都可用数字进行表示,这样随机试验的结果与数字之间就构成了一个对应关系,这为引入随机变量的概念奠定基础。
问题3:上述四个例子说明,随机试验的结果与数字之间构成了一个对应关系,使得每一个试验的结果都用一个确定的数字表示。这样随机试验的结果就可以看成是一个变量,我们称其为随机变量。你能给随机变量下一个定义吗?
设计意图:引导学生通过分析、综合活动,尝试给随机变量下定义。这种定义方式是描述性的,学生可以凭借自己的理解下定义,只要这种描述比较准确就可以,不一定按照课本的描述性定义。如一般地,如果一个随机试验的结果可以用一个变量表示,这个变量就叫做随机变量,等。
问题4:在(3)和(4)的两个随机试验中,其试验的结果是否还可以用其他人数字表示?
设计意图:通过讨论,得出结论:一个随机试验的结果可以用不同的随机变量表示。如上面两个试验的结果还可以用-1和1表示等。
问题5:在掷一枚硬币的随机试验中,其结果可以用1和0表示,也可以用-1和1等其他数字表示,那么,在5次掷硬币的随机试验中,出现“正面向上”的次数可以怎样表示?由此你认为定义一个随机变量需要遵循哪些原则?
设计意图:出现“正面向上”次数125,1,第i次试验出现正面,当一次试验的结果表示为i =0,1,2,3,4,5;
0,第i次试验出现反面。1,第i次试验正面向上,当一次试验的结果表示为i i-5,-4,-3,-2,-1,0.-1,第i次试验反面向上。从使用意义上看,显然把正面向上的次数表示成负数不太合适,而且这样也不方便,因此,构造随机变量时,应当注意一些基本问题:如随机变量应该有实际意义,应当尽量简单,以便于研究。
问题6:随机变量和函数有类似的地方吗?
设计意图:引导学生把随机变量和函数进行类比,使他们了解随机变量的概念实际上也可以看作是函数概念的推广:随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数。在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当与函数的值域。
例1 判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由。(1)每天你接到的电话的个数X;(2)标准大气压下,水沸腾的温度T;(3)某一自动装置无故障运转的时间t;(4)体积64立方米的正方体的棱长a;(5)抛掷两次骰子,两次结果的和s.(6)袋中装有6个红球,4个白球,从中任取5个球,其中所含白球的个数η.设计意图:进行随机变量概念辨析。
例2.写出下列各随机变量可能的取值(或范围):
(1)从10张已编号的卡片(从1号到10号)中任取1张被取出的卡片的号数X.(2)一个袋中装有3个白球和5个黑球,从中任取5个,其中所含白球数Y.(3)抛掷两枚骰子,所得点数之和ξ.
(4)接连不断地射击,首次命中目标需要的射击次数ξ.(5)某网页在24小时内被浏览的次数η.(6)某一自动装置无故障运转的时间T(7)电灯泡的寿命X。
设计意图:训练写出随机变量的取值或范围,并在此基础上通过分类得到“离散型随机变量”的概念。
问题7:在前面所举这些例子中,这些随机变量都有什么特征? 设计意图:引导学生发现这些随机变量的取值都可以一一列出。
问题8:所有取值能够一一列出的随机变量,称为离散型随机变量。离散型随机变量有两类:一类是离散型随机变量的取有限个值的,一类是离散型随机变量取无限个值的(如例2(3)),我们主要研究取有限个值的离散型随机变量。
例3.写出下列离散型随机变量可能的取值:
(1)在考试中需回答三个问题,考试规则规定:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分ξ的可能取值有哪些?
(2)本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算).甲乙两人租车的时间都不超过4小时(两人不一定同时回来),则两人所付的总费用X的可能取值有哪些?
设计意图:练习写出较为复杂的离散型随机变量取值
问题9:利用随机变量可以表示一些事件。在例1中,你能说出{X=0}、{X=4}、{X<3}各表示怎样的事件吗?“抽出3件以上次品”又如何用X表示呢?
设计意图:引导学生学习用随机变量表示随机事件,使学生能够清晰地说出每一个随机变量取值的实际意义。
问题10:在研究随机现象时,需要根据所关心的问题恰当第定义随机变量。例如,对灯泡的使用寿命,如果我们仅关心灯泡的使用寿命是否不少于1000小时,那么就可以定义0,寿命1000小时如下的随机变量:,与灯泡的寿命X相比较,随机变量的构造更1,寿命1000小时简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易。你能根据实际意义,把能对(2)定义一个随机变量吗?
设计意图:引导学生能够根据所关心的问题,定义出离散型随机变量。例4.请根据所关心的问题,定义一个离散型随机变量:(1)掷一枚骰子,关心“掷出的点数是否为偶数”;
(2)任意抽取一瓶标有2500 ml 的某饮料,其实际量与规定量之差在±5ml以内为合格;(3)在某项体能测试中,跑1 km成绩在4 min之内的为优秀;4 min以上5 min以内为合格;某同学体能测试的结果.设计意图:练习能够根据所关心的问题定义一个随机变量。
备用例题:下列随机试验的结果能否用离散型随机变量表示?若能,请写出可能取值,并说出这些值所表示的随机试验的结果。
(1)棱长为1的正方体中,任意两条棱之间的距离(两条棱相交,可认为距离为0);
(2)如图,从A1(1,0,0),A2(2,0,0),B1(0,2,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,该“立体”的体积为V。
设计意图:巩固并强化定义离散型变量的方法,并能准确写出所求可能取值。
小结:以上我们通过一些具体实例研究了随机试验的结果可以用数字表示,引进了随机变量的概念,并对如何根据实际需要定义一个离散型随机变量,并判断它的所有可能取值进行了系统的研究。实际上随机变量的每一个取值,都表示一个随机事件,每一个随机事件发生的可能性大小的度量就是概念,如掷骰子试验中P(X1)116就表示点数为1的概率为6规律了。我们学习随机变量就是为了研究它的概率,这就是我们下节课要学习的内容。,也就是如果我们能够知道每一个随机变量取值的概率,也就把握了这个随机现象的基本 6
第三篇:“离散型随机变量”的教学设计之我见
“离散型随机变量”的教学设计之我见
人民教育出版社中数室 田载今
随机变量是因随机试验结果的变化而变化的量.由于随机试验的结果是事先无法确定的,所以表示随机试验结果的量要因结果的不同而变化,这样的量当然属于随机变量.随机变量的本质是定义在样本空间Ω上的一个映射,它把试验结果映为实数,即其中,且对任意实数x,由满足
R,的基本事件所组成的集合也是一个事件.
引入随机变量的概念,其作用不仅是把随机试验的结果数量化从而带来表示方法的简化,更重要的是把对随机现象统计规律的研究数学化,从而可以利用数学方法研究随机现象的规律性,其中对随机变量的概率分布的研究是实现这种转化的关键.
如果样本空间是可数的,即量的取值
或,则随机变也可以一一列出,这样的随机变量即离散型随机变量.离散型随机变量比连续型随机变量更容易理解,它是高中数学学习的主要随机变量类型.
一般地,关于离散型随机变量的教学目标大多规定为:
通过具体实例,归纳概括离散型随机变量的特征,得出离散型随机变量的概念;
体会引入随机变量的作用;
渗透将实际问题转化为数学问题进行随机分析的思想方法.
目前的高中数学教材中,离散型随机变量和离散型随机变量的分布列大都先后出现在两个小节中的内容.从教师教学用书中所附的教学设计案例和一般的实际教学过程看,将这两个内容分在两节课中学习是一般的教学安排.在这部分内容的第一课时中,通常只安排关于离散型随机变量概念的内容,而不涉及离散型随机变量的分布列.笔者认为,这样安排是有一定道理的:第一,离散型随机变量是基础概念,离散型随机变量的分布列是针对离散型随机变量而定义的,从逻辑关系上说两者有先后之分;第二,两个概念的第一次出现分在不同课时内,学习内容单一,目标明确,可以将其分别解决,避免认识不清而产生混淆,从而使基本概念学得更扎实牢固;第三,这样处理与现行教材的课文、练习、习题的安排顺序保持基本一致,便于学生自学和做作业.
兵法曰:兵无常态,水无常势.这就是说解决问题的方法不是一成不变的,应根据实际情况权衡利弊相机行事.同样地,教学有法,教无定法.一种教学设计难以方方面面都能兼顾,往往在保证了一些方面有利的同时,也存在另一些方面的不足.如前所述,引入离散型随机变量的概念,体会引入随机变量的作用,渗透将实际问题转化为数学问题进行随机分析的思想方法,是本部分的教学目标,三者是相互联系的一个整体(三位一体).如果只是引入离散型随机变量的概念,而不能较明显地体现为什么要引入它,则会影响对其作用和相关思想方法的体会.要体现引入随机变量的作用,渗透将实际问题转化为数学问题进行随机分析的思想方法,显然离不开对离散型随机变量的概率分布的研究,这是把对随机现象统计规律的研究数学化的关键.从这个角度看,如果能在同一课时中引入离散型随机变量后,紧接着出现分布列,使两者更密切地联系起来,可能更有利于教学目标的实现.
笔者考察实际教学发现,在一节课中仅讨论离散型随机变量,内容上显得比较单薄,时间上显得比较宽余,效果上显得比较拖沓,从提高教学效率考虑似还有潜力可挖.更重要的是,如果只引入随机变量而不涉及概率分布,这节课至多只能使人感到随机变量是对试验结果的一种数量化表示,而无法认识这种表示与随机度量(即可能性大小)的密切联系,这使得体会随机变量作用的效果大打折扣.在高中数学教材的向量部分,曾指出“如果没有运算,向量只是一个‘路标’,因为有了运算,向量的力量无限.”与此类似,如果不涉及概率分布,随机变量只是一种“表示”,因为有了概率分布,随机变量才能在研究随机现象时发挥作用.
笔者认为,将离散型随机变量和其分布列更紧密地联系起来,在实际教学中具有可行性.为说明这一点,笔者不揣冒昧地提出如下一种教学过程的设计草案,敬请读者指正.
离散型随机变量及其分布列第一课时的教学过程草案
一、描述随机变量
试验结果经常可以用表示计数或度量的量来表示,例如出现某种现象的次数,某物理量的长度,等等.即使是定性的试验结果,也可以数量化表示.例如掷硬币时,正面向上记为1,反面向上记为0.表示随机试验结果的量,其取值事先不能确定,它随着试验结果随机确定.一般地,随着试验结果的变化而变化的量叫做随机变量(random variable).随机变量通常用
表示.
二、考虑随机试验案例及相关问题
请看下面的随机试验,并考虑相关问题.
随机试验1 掷一枚质地均匀的骰子.
(1)用X表示掷出的点数,要表示试验的全部可能结果,X应取哪些值?
掷骰子时,掷出的点数可能是1,2,3,4,5,6中的一个,但事先不能确定,结果是随机产生的.用X表示掷出的点数,X的值应随机地取1,2,3,4,5,6中的某个.
(2)X取到每一个值的概率各是多少?
由古典概型可知,X取1,2,3,4,5,6中每一个值的概率都是下:
这可以列表表示如
(3)X<5表示什么?它对应的概率是多少?
X<5表示事件“点数小于5”,即事件“点数为1或2或3或4”.它的概率为
(4)如果多次重复掷一枚骰子,那么掷出点数的平均值最可能是多少?
每次掷出的点数无法事先确定,因此多次掷出的点数的平均值也无法事先确定.但是,我们可以依据“大量重复试验时频率稳定于概率”对此进行估计.由于点数1,2,3,4,5,6出现的频率都会稳定于,所以多次重复掷骰子时点数的平均值最可能是
随机试验2 同时掷两枚质地均匀的硬币.
(1)用X表示掷出正面的个数,要表示试验的全部可能结果,X应取哪些值?
掷两枚硬币时,掷出正面的个数可能是0,1,2中的一个,但事先不能确定,结果是随机产生的.用X表示掷出正面的个数,X的值应随机地取0,1,2中的某个.
(2)X取到每一个值的概率各是多少?
由古典概型可知,X取0,1,2中每一个值的概率可以列表表示如下:
(3)X<2和X>0各表示什么?它们对应的概率各是多少?
X<2表示事件“正面个数小于2”,即事件“正面个数为0或1”; X>0表示事件“正面个数大于0”,即事件“正面个数为1或2”.它扪的概率分别为和.
(4)如果多次重复这个试验,那么掷出正面个数的平均值最可能是多少?
每次掷出的结果无法事先确定,因此多次掷出的正面个数的平均值也无法事先确定.但是,我们可以依据“大量重复试验时频率稳定于概率”对此进行估计.由于点数0,1,2出现的频率分别会稳定于,和,所以多次重复试验时正面个数的平均值最可能是
三、引出离散型随机变量及其分布列
思考1 上面两个X是随机变量吗?它们的取值形式有什么特点?这些取值与试验结果有什么关系?
在上述试验及相关问题中,两个X分别表示“点数”和“正面个数”,它们都是表示随机试验的结果的量,都随试验结果的变化而变化,因此都是随机变量.这两个随机变量的所有可能取值都可以一一列出,即分别为1,2,3,4,5,6和0,1,2.每一列数都对应着一个试验的所有可能结果.
一般地,所有可能取值能够一一列出的随机变量,叫做离散型随机变量(discrete random variable).
思考2 上面两个表格的形式有什么特点?它们表示了什么内容?
上面问题中的表格,分两行列出随机变量X的可取值,以及各值对应的概率.它不仅表示出离散型随机变量X的变化范围,而且表示出各种变化的可能性大小,即从变化内容及其可能性这两方面全面地刻画了离散型随机变量X.
一般地,表示离散型随机变量X的所有可能值及取各个值的概率的表格
叫做X的分布列(distribution series).X的分布列也可以表示为
容易发现,由于概率的和
思考3 初步体会离散型随机变量及其分布列的作用.
从上面的问题可以看出,对于研究随机试验问题,例如估计多次重复试验结果的平均值,离散型随机变量及其分布列是非常有用的工具.由此可以觉察,引入随机变量给定量地表示和研究随机性问题带来方便;有了离散型随机变量及其分布列,就可以对许多随机试验的结果从变化范围和变化可能性两方面有更清晰的认识.
四、例题
此处例题为巩固与加深对离散型随机变量及其分布列的一般认识而安排,二项分布、超几何分布等内容安排在后续课时.
例 用随机变量X表示掷两枚骰子的试验结果,并写出X的分布列.
解:设X表示两枚骰子的点数之和,则X的分布列为
与随机试验的全部可能结果一一对应,所以它们所对应的,根据X的分布列,可以求出有关事件的概率.例如,五、小结
1.回顾离散型随机变量及其分布列的概念;
2.初步体会离散型随机变量及其分布列在研究随机试验问题时的作用.
前面已经说过,教学有法,教无定法.教材和教学的设计方案具有多样性,不同方案各有长短.选择方案的关键在于从实际出发,在保证重点,突出要实现的主要教学目标的前提下,力求教学效果的最大化.笔者提出上述意见及教学设计,只是一孔之见,意在抛砖引玉,能为改进教材和教学的讨论提供参考.
2010-07-08 人教网
第四篇:很好的离散型随机变量(本站推荐)
“离散型随机变量”的教学反思与再设计 杨智平发布时间: 2010-8-4 23:33:52
“离散型随机变量”的教学反思与再设计
一、教学内容解析
概率是研究随机现象的数量规律的.认识随机现象就是指:知道这个随机现象中所有可能出现的结果,以及每一个结果出现的概率.而对于给定的随机现象,首先要描述所有可能出现的结果.在数学上处理时,一个常用的、也很自然的做法就是用数来表示结果,即把随机试验的结果数量化,使得每个结果对应一个数,这样就可以通过实数空间(定量的角度)来刻画随机现象,从而就可以利用数学工具,用数学分析的方法来研究所感兴趣的随机现象.简言之,随机变量是连接随机现象和实数空间的一座桥梁,它使得我们可以借助于有关实数的数学工具来研究随机现象的本质,从而可以建立起应用到不同领域的概率模型,这便是为什么要引入随机变量的缘由.随机变量在概率统计研究中起着极其重要的作用,随机变量是用来描述随机现象的结果的一类特殊的变量,随机变量能够反映随机现象的共性,有关随机变量的结论可以应用到具有不同背景的实际问题中.随机变量就是建立了一个从随机试验结果的集合到实数集合的映射,这与函数概念在本质上(一种对应关系)是一致的,随机试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.
离散型随机变量是最简单的随机变量,随机变量和离散型随机变量是上、下位概念的关系.本节课主要通过离散型随机变量展示用实数空间刻画随机现象的方法.本节课的重点是认识离散型随机变量的特征,了解其本质属性,体会引入随机变量的作用.
二、教学目标解析
1.在对具体实例的分析中,认识和体会随机变量对刻画随机现象的重要性和建立随机变量概念的必要性,并会恰当地定义随机变量来描述所感兴趣的随机现象,能叙述随机变量可能取的值及其所表示的随机试验的结果;
2.在列举的随机试验中,通过对随机变量取值类型的分辨,归纳和概括离散型随机变量的特征,形成离散型随机变量的概念,并会利用离散型随机变量刻画随机试验的结果;
3.在举例、观察、思考、发现中经历将随机试验结果数量化的过程,渗透将实际问题转化为数学问题的思想方法,进一步形成用随机观念观察和分析问题的意识.
三、教学问题诊断分析
本节课学生学习的难点是对引入随机变量目的与作用的认识,以及随机变量和普通变量的本质区别.随机变量这个概念其实早已存在于学生的意识之中,而且在不少场合都已不自觉的“实际使用”,只是没有明朗化.学生学习这一概念就是把这些“实际使用的”规则、程序、步骤等进一步加以明确.所以,教师的责任就是为学生建立随机变量这个概念修通渠道.可通过学生熟悉的掷骰子的随机试验让学生体会随机变量概念的发生,在师生举例中来体会随机变量概念的发展,特别是诸如抛掷一枚硬币等试验,其结果不具有数量性质,怎么让学生自然地想到用数来表示其试验结果,并且所用的数又尽量简单,便于研究.教学中需多举试验结果本身已具有数值意义的实例,来发挥正迁移作用.通过多举例让学生理解:一旦给出了随机变量,即把每个结果都用一个数表示后,认识随机现象就变成认识这个随机变量所有可能的取值和取每个值时的概率.
另外,随机变量和离散型随机变量是上、下位概念的关系,从学习的认知方式看,下位学习依靠的主要是同化,上位学习依靠的主要是顺应,上位学习一般采用的思维方法主要是概括和综合,它主要通过改造(归纳和综合)原有认知结构中的有关内容而建立新的认知结构.因此,从这一角度来分析,学生对随机变量概念的学习和真正理解比离散型随机变量的学习要困难一些.故在随机变量的教学中,要特别重视学生举例,让学生在充分的自主活动中体验数学化的过程,体验将随机试验结果数量化的过程,体会随机变量对刻画随机现象的重要性和研究随机现象的工具性作用,从而来把握随机变量的内核.
四、教学支持条件分析
学生在必修3概率一章中学习过的随机试验、随机事件、简单的概率模型和必修1中学习过的变量、函数、映射等知识是学习、领悟和“接纳”随机变量概念的重要知识基础,教学时应充分注意这一教学条件;另外,为更好地形成随机变量和离散型随机变量两个概念,教学中可借助媒体列举和展现丰富的实例和问题,以留给学生更多的时间思考和概括.
五、教学过程设计
(一)教学基本流程
(二)教学过程
1.理解随机变量概念
问题1:抛掷一枚骰子,可能出现的结果有哪些?概率分别是多少? [设计意图] 以学生熟悉的随机试验为例,在复习旧知中孕育新知.
[师生活动] 画表一,指出试验结果分别有“1点的面朝上”、“2点的面朝上”、“3点的面朝上”、“4点的面朝上”、“5点的面朝上”、“6点的面朝上”,它们都是基本事件.为了研究这些事件,常常把它们分别与一个数字对应起来.比如,用数字1与“1点的面朝上”这个试验结果(样本点)对应,用数字2与“2点的面朝上”这个试验结果(样本点)对应,等等.师生共同填写数字,形成表二.
引导学生分析,像这样“用数字表示随机试验的结果”的量用X来表示,它可以取集合{1,2,3,4,5,6}的值,说明X是一个变量.
[设计意图] “用数字来表示随机试验的结果”实际上早已存在于学生的意识之中,而且在不少场合都已不自觉地“实际使用”,如射击比赛中会用“环数”去表示射击成绩,掷骰子时会用“点数”去表示掷出结果,抽奖时会先对奖券“编号”,随机抽取一部分学生时会用“学号”去代替等等,只是没有明朗化.因而,“用数字来表示随机试验的结果”可以通过教师有启发地提问,有意义地讲授进行,让学生觉得问题的提出,概念的发生、发展过程较为自然,能够从教师的讲授中感受数学是怎样一步步研究现实世界的.
问题2:在这里(指着表二),每一个试验结果用唯一确定的数字与它对应,这个对应关系是什么?
[设计意图]建立一个从试验结果的集合到实数集合的映射.让学生感悟:一旦给出了随机变量,即把每个结果都用一个数表示后,认识随机现象就变成认识这个随机变量所有可能的取值和取每一个值时的概率,从而感受把随机试验的结果数字化(成为实数)的必要性,体会引入随机变量的必要性.同时让学生感受概念的从无到有、自然形成的过程.
[师生活动] 启发诱导,引导学生发现在这里建立了一个从试验结果的集合到实数集合的映射.形成下表三:抛掷一枚骰子
让学生观察、思考:刚才,用数字表示试验结果的变量X,它根据什么在变化?让学生发现它的取值随试验结果的变化而变化,它的变化是有规律的,这是个特殊的变量,与随机试验的结果有关,在试验之前不知道会出现哪个值(即它的取值依赖于试验结果,因此取值具有随机性,即在试验之前不能肯定它的取值,一旦完成一次试验,它的取值随之确定).同时,教师指出:在这个试验中,我们确定了一个对应关系(也即建立了一个试验结果到实数的映射)使得每一个试验结果(样本点)都用一个确定的数字表示(即所有可能取值是明确的).在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.随机变量常用字母表示.
问题3:随机变量这个概念与我们曾经学过的函数概念有类似的地方吗?
[设计意图]引导学生与曾经学过的函数概念比较,从而加深对随机变量概念的理解.
[师生活动]“类比”函数概念,领悟随机变量和函数概念在本质上都是一种对应关系,都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数,在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.随机变量的取值范围我们称为随机变量的值域.如抛掷一枚骰子,随机变量的值域为;
引导学生利用随机变量表达一些事件,例如抛掷一枚骰子中,表示“1点的面朝上”; “3点的面朝上”可以用表示;表示“5点的面朝上”或“6点的面朝上”.
同时指出:通过映射把随机试验结果与实数进行对应,也就是,把随机试验的结果数量化,用随机变量表示随机试验的结果,这样“随机试验结果的集合到对应概率集合的映射”就可以用“随机变量的取值集合到对应概率集合的映射”来表示,即可把“对随机现象统计规律的研究具体转化为对随机变量概率分布的研究”.这样我们就可以借用有关实数的数学工具来研究随机现象的本质了.
接着,进一步指出:在学习《数学(必修3)》时我们曾经学习过概率、方差等概念,学过简单的概率模型,在今后的学习中,我们将利用随机变量描述和分析某些随机现象,进一步体会概率模型的作用及运用概率思想思考和解决一些实际问题.(体现章引言)
2.对随机变量的深刻认识(对对应思想——映射的体验)
问题4:你能再举些例子吗?(请学生列举随机试验,并将试验结果数量化,不必写出概率)
[设计意图] 让学生参与举例,体验将实际问题数学化(把实际问题数学化是学习数学极其重要的数学方法)和将随机试验结果数量化的过程.其意义在于两个方面:其一,学生通过寻找(寻找本身就是一个甄别随机与非随机的过程),选择自己感兴趣的随机现象,并学会用随机变量表示随机事件;其二,在将试验结果数量化的过程中体会随机变量在研究随机现象中的重要作用.同时进一步深刻理解随机变量的概念,领悟随机变量学习的重要性,进一步形成用随机观念观察和分析问题的意识.
[师生活动]教师关注学生的举例,关注其关键过程:随机试验中所有可能出现的结果有哪些?如何将试验的结果数量化?要求学生画表,体会映射的过程.教师给学生充分展示和交流所举例子的时间.同时,教师也参与举例(教材中有关于抽取产品、射击、浏览某网页等例子可以纳入进来),深刻体会将实际问题(随机现象)数学化(数字化)的过程,感受建立随机变量概念的重要意义.
对学生列举的试验结果没有数量标志的随机事件,诸如投掷一枚硬币的试验等,要引导学生分析比较,让学生体会对于同一个随机试验,可以用不同的随机变量来表示.但用哪两个数字来表示,主要是要尽量简单,合理,便于研究.如表四:抛掷一枚骰子
在学生举例中学习如何用随机变量去定义试验结果没有数量标志的随机事件(中间表示映射的一栏表格可以省略).
问题5:任何随机试验的所有结果都可以用数字表示吗?同一个随机试验的结果,可以用不同的数字表示吗?
[设计意图]让学生领悟任何随机试验的所有结果都可以用数字来表示(试验结果不具有数量性质的可以通过赋值,将其数量化),同一个随机试验的结果,可以用不同的数字表示,表示的原则主要是有实际意义,简单合理,便于研究.
3.形成离散型随机变量概念
问题6:随机变量的取值都是整数吗?你能否举个(些)例子,而随机变量的取值不是整数呢?
[设计意图] 关注学生的举例,借学生举出的例子,引导分析数学化之后的随机变量取值的集合的特征(一个新概念产生之后,我们应该端详它一番),分辨随机变量的类型,即某些随机变量的取值是离散的,而有些不是,从而给出离散型随机变量的概念.如果学生列举的都是离散型随机变量,则教师可启发点拨,启发后引导学生再举例,或给出以下问题7:
问题7:请仿照刚才的例子,分析下列随机现象,随机变量可以取哪些值?你能够一个一个列出来吗?
(1)某公交车站每隔10分钟有1辆汽车到站,某人到达该车站的时刻是随机的,他等车的时间;
(2)检测一批灯泡(相同型号)的使用寿命.
[设计意图]通过与前面列举例子的比较,引导学生发现这两个试验结果中,表示随机事件的随机变量的取值是一个区间,其值无法一一列出,以此形成离散型随机变量的概念.同时明晰在随机现象中随机变量的取值类型是丰富多样的,这也是对随机变量概念(外延)的进一步认识.
问题8:如果我们仅仅关心“某人等车的时间多于5分钟或不多于5分钟”两种情况,那该怎样定义随机变量呢?
[设计意图] 在研究随机现象时,为研究方便,有时需要根据所关心的问题恰当地定义随机变量.让学生明白恰当定义随机变量给我们研究问题带来方便.问(2)让学生选择自己关心的问题来恰当定义随机变量.
[师生活动]通过分析,让学生明白,在研究随机现象时,有时需要根据所关心的问题恰当地定义随机变量.
4.练习反馈(见教科书第45页)
下列随机试验的结果能否用离散型随机变量表示?若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果.
(1)抛掷两枚骰子,所得点数之和;
(2)某足球队在5次点球中射进的球数;
(3)任意抽取一瓶某种标有2500ml的饮料,其实际量与规定量之差.
[设计意图]在应用中巩固离散型随机变量的概念,并能熟练利用离散型随机变量刻画随机试验的结果.
5.小结回授
问题9:你能用自己的语言描述随机变量和离散型随机变量的定义及它们之间的区别吗?(学生回答后,可以再问:你能简单地说说引入随机变量的好处吗?)
[设计意图] 学生用自己的语言来概括本节课学到的知识,是一种“主动建构”,也真正体现知识学到了手.
[师生活动]引入随机变量后,随机试验中我们感兴趣的事件就可以通过随机变量的取值表达出来.认识随机现象就变成认识这个随机变量所有可能的取值和取每个值时的概率.也即把随机试验的结果数量化,用随机变量表示随机试验的结果,我们就可以借助于有关实数的数学工具来研究所感兴趣的随机现象了.
六、目标检测设计
人教A版教科书第49页习题2.1中A组,第1,2,3题.教学反思 对随机变量概念学习的设计上,分两步走:第一步是认识“用数字表示随机试验的结果”的量是一个变量,第二步是通过建立“一个从试验结果的集合到实数集合的映射” 认识到在这个对应关系下,数字随着试验结果的变化而变化,即这是一个特殊的变量,与随机试验的结果有关,在此基础上学习随机变量概念,并理解随机变量的特征:它的取值依赖于试验结果,具有随机性,即在试验之前不能肯定它的取值,一旦完成一次试验,它的取值随之确定,且所有可能取值是明确的.进一步,如何让学生深刻认识和理解“随机变量”这一概念?原教学设计采用让学生举例的方式,在学生的活动中来完成对“随机变量”概念的理解,这一设计思路得到同行肯定.事实上,要使学生真正理解数学知识,必须要有他们身体力行的实践,从自己亲历亲为的探索思考中获得体验,从自己不断深入的概括活动中,获得对数学概念、原理的本质的领悟.此处安排学生举例正是基于这种考虑,其意义在于:其一,可以观察学生是否领会把随机试验结果数学化的思想,以及怎样把随机试验结果数学化(尤其是试验的结果不具有数量性质的随机现象);其二,体会引入随机变量概念后,随机试验中的事件就可以通过随机变量的取值表达出来,“随机试验结果的集合到对应概率集合的映射”就可以用“随机变量的取值集合到对应概率集合的映射”来表示,(即研究随机现象的统计规律就可以转化为研究随机变量的概率分布).
第五篇:“离散型随机变量”的教学反思与再设计
“离散型随机变量”的教学反思与再设计
浙江省绍兴市高级中学 陈柏良
2009年12月2—6日,人民教育出版社A版普通高中数学课程标准实验教材全国经验交流会暨“中学数学核心概念、思想方法及其教学设计的理论与实践”全国第9次课题研讨会在山西省晋中市召开,会上笔者开设了一节“离散型随机变量”的研讨课,引起与会专家和代表的一阵热议.自然地,也促使笔者教学后的深入反思和对本节课教学设计的重新思考.
第一部分 教学反思
1.教学设计的逻辑把握
一个好的教学设计,除了对教学内容的数学理解要到位外,至少还必须具备两个特点:其一,构思简单;其二,逻辑清晰.所谓构思简单,就是整个教学设计有一条主线贯穿,让人一下子能识别和读懂教学内容的“核心”和“精华”;所谓逻辑清晰,就是整个设计从教学起点,到教学过程,再到教学结果,各个环节清清楚楚,自然流畅.
“离散型随机变量”是人教A版数学选修2-3第二章 随机变量及其分布的起始课,是学生在学习《必修3》概率的基础上对随机现象的进一步研究.其教学内容主要是随机变量的概念、离散型随机变量的概念,以及如何通过离散型随机变量展示用实数空间刻画随机现象的方法,体会和领悟随机变量在研究随机现象中的重要作用,渗透将实际问题转化为数学问题的思想方法.由于它的引入,大大简化了各种事件的表示,且使得我们可以借助于有关实数的数学工具来研究随机现象的本质,从而可以建立起应用到不同领域的概率模型.应该说,原教学设计对教学内容的数学理解是到位的,瑕疵是稍多地强调了“随机变量的每一个取值(X)与它所对应的概率值(P)建立了一个函数关系”,与会有专家认为,这个提法虽然没有错误,但对于理解随机变量的概念和以后的应用没有多大意义,可以不提(该提法在第二部分的再设计中已作删减).就该课整个教学设计而言,逻辑清楚,问题自然:先从学生熟知的抛掷一枚骰子(一个熟悉的简单的背景)入手,理解随机变量的概念;接着让学生举例,在学生活动中完成对“随机变量”概念的深刻理解;再在学生的举例中分辨随机变量的取值类型,形成离散型随机变量概念.
2.随机变量的概念教学
教师对随机变量概念的认识和理解,以及教学采取怎样的方式让学生自然“接纳”和“领悟”随机变量概念,是要下番功夫的,因为这会直接影响教学的成败.为此,探讨以下两个问题:
(1)为什么要学习随机变量
众所周知,概率论是从数量上来研究随机现象内在规律性的数学分支.认识随机现象就是指:知道这个随机现象中所有可能出现的结果,知道每一个结果出现的概率.对于给定的随机现象,首先要描述所有可能出现的结果.在数学上处理时,一个常用的、也很自然的做法是用数来表示结果,即把每个结果对应一个数.这样,就建立起了一个统一的刻画不同概率模型中所提及的事件的方法,就可以用数学分析的方法方便有力地研究随机现象了.也就是说,为了便于数学上的推导和计算,就需将任意的随机试验的结果数量化,即将随机试验结果用唯一确定的数字与它对应,建立起随机变量的概念(概言之,随机变量是随机试验可能结果的数量化表示,它是随试验结果而变化的量,其本质是样本空间到实数集之间的一个映射).建立随机变量概念后,随机试验中我们感兴趣的事件就可以通过随机变量的取值表达出来.认识随机现象就变成认识这个随机变量所有可能的取值和取每个值时的概率,即对随机现象统计规律的研究就可以具体转化为对随机变量概率分布的研究.这样就可以借助于有关实数的数学工具来研究所感兴趣的随机现象的本质,从而可以建立起应用到不同领域的概率模型,这就是新概念产生的必要性,也就是为什么要学习随机变量的缘由.
我们再从另外一个角度来认识为什么要学习随机变量: 我们知道概率论是研究随机现象的统计规律性的一门数学学科,也就是从表面上杂乱无章、形式偶然的现象中探索出现象的规律性的一门数学学科(这里的规律性,无非是指各种试验结果以多大概率出现这一问题).正是因为如此,探求这个规律性的工具应该适用于各种形式的随机现象,而且还应该简便、有力.分布函数
就是这样一个工具,但这个函数是在引入随机变量后定义的,的概率.分布函数可以把各种类型的随机试,即分布函数是事件验的结果的概率分布用一个统一的形式表示出来,它就是一个普通的函数,它有很好的分析性质,便于处理,它的引入使得许多概率论问题得以简化而归结为普通函数的运算,这样就能利用数学分析的结果研究随机现象规律性.
一般地,在学习概率论之前,研究普通变量与函数所采用的思路和方法已为人们所熟悉.自然,人们希望采用熟悉的方法和已有的研究成果研究新的课题,随机变量的引入无疑也有这方面的原因.
(2)用怎样的方式学习和理解“随机变量”
“随机变量”这个概念(或者简单地说随机试验结果与实数的这种对应)实际上早已存在于学生的意识之中,而且在不少场合都已不自觉地“实际使用”(对应思想),如在玩掷骰子时会用“点数”去表示掷出结果,在观看射击比赛时会用“环数”去评价射击成绩,抽奖时会先对奖券“编号”,随机抽取一部分学生时会用“学号”去代替,观看比赛足球比赛时,赢、平、输分别会用“得分”去量化、随意选购商品时会用“价格”去衡量等等,只是没有“明朗化”.因而,对随机变量概念的教学上笔者觉得没有必要创设更多的问题情境,让学生来概括提炼.实际上,把所有试验结果都数字化,要让学生自己想出来也是十分困难的(尽管已经在不自觉地使用).因为,这要求对数学本质有很好的认识才行.故设计中主要考虑如何通过教师有启发地提问,学生有意义地学习来“内化”这个概念.教学中让学生觉得问题的提出,概念的发生、发展过程较为自然,能够从教师的讲授,自己的思考中感受数学是怎样一步步研究现实世界的.故在教学设计中可以从一个简单的学生熟悉的例子(作为新概念引入的背景)入手,循循善诱,使得通过这个例子,就好像通过一道门户,把学生引入一个“建构”新知的领域.原教学设计中对“随机变量”概念的教学是以抛掷一枚骰子为背景的,对“随机变量”的理解,是从函数(随机变量的取值X与随机事件发生的概率P之间的对应)和映射(随机试验的结果与随机变量的取值的对应)的强调中进行的,意在让学生体会随机变量在研究随机现象中的作用.教学实践后有专家认为,让学生明白“随机变量的取值X与随机事件发生的概率P之间的对应(函数关系)”对理解随机变量的概念没有多大好处.反思后,笔者认为,就本节课的教学任务而言,只要学生能认识到:建立随机变量概念后,随机试验中我们感兴趣的事件就可以通过随机变量的取值表达出来,“随机试验结果的集合到对应概率集合的映射”就可以用“随机变量的取值集合到对应概率集合的映射”来表示,即可“把对随机现象统计规律的研究具体转化为对随机变量概率分布的研究”,这样就可以借用有关实数的数学工具来研究随机现象的本质了.这样就可以了.
因此,反思后的教学设计着意彰显这一主旨.对随机变量概念学习的设计上,分两步走:第一步是认识“用数字表示随机试验的结果”的量是一个变量,第二步是通过建立“一个从试验结果的集合到实数集合的映射” 认识到在这个对应关系下,数字随着试验结果的变化而变化,即这是一个特殊的变量,与随机试验的结果有关,在此基础上学习随机变量概念,并理解随机变量的特征:它的取值依赖于试验结果,具有随机性,即在试验之前不能肯定它的取值,一旦完成一次试验,它的取值随之确定,且所有可能取值是明确的.进一步,如何让学生深刻认识和理解“随机变量”这一概念?原教学设计采用让学生举例的方式,在学生的活动中来完成对“随机变量”概念的理解,这一设计思路得到同行肯定.事实上,要使学生真正理解数学知识,必须要有他们身体力行的实践,从自己亲历亲为的探索思考中获得体验,从自己不断深入的概括活动中,获得对数学概念、原理的本质的领悟.此处安排学生举例正是基于这种考虑,其意义在于:其一,可以观察学生是否领会把随机试验结果数学化的思想,以及怎样把随机试验结果数学化(尤其是试验的结果不具有数量性质的随机现象);其二,体会引入随机变量概念后,随机试验中的事件就可以通过随机变量的取值表达出来,“随机试验结果的集合到对应概率集合的映射”就可以用“随机变量的取值集合到对应概率集合的映射”来表示,(即研究随机现象的统计规律就可以转化为研究随机变量的概率分布).
3.离散型随机变量概念的形成离散型随机变量是随机变量的下位概念,而下位学习依靠的主要是同化.原教学设计中是这样考虑的:在学生的举例中通过分析数学化之后的随机变量取值的集合的特征来引发离散型随机变量的概念.即通过学生的举例,分辨随机变量取值的不同情况:随机变量的取值有可数的,有不可数的,有有限个数的,有无限个数的,从中来归纳概括离散型随机变量的特征:所有取值可以一一列出的随机变量.如学生列举的都是随机变量取值为整数的例子,则引导学生去发现问题、提出问题:随机变量的取值都是整数吗?你能否举个(些)例子,而随机变量的取值不是整数呢?再让学生举例,以此来学习离散型随机变量的概念.从这个角度来提出问题比较自然,这是因为,了解随机变量的取值的多种情况本身也是对随机变量概念的认识.所以,提出随机变量的取值都是整数吗?这个问题本身也是理解和进一步认识随机变量概念的需要.教学实践表明,这样的设计建立在“学生的最近发展区”,新概念(离散型随机变量)的形成水到渠成、浑然天成.而在原教学设计之前,还有过这样的设计:安排如下一个练习,然后再提出一个问题
练习:下列随机试验的结果能否用随机变量表示?若能,请写出各随机变量可能的取值.(1)在含有10件次品的100件产品中,任意抽取4件,取到次品的件数;
(2)接连不断地射击,首次命中目标需要的射击次数;
(3)某公园内积雪最厚处达17厘米,则该公园内各处的积雪厚度.问题:以上随机变量可能的取值有什么不同?
这里设计练习,一方面起到巩固随机变量概念的目的,另一方面通过比较让学生明白随机变量的取值可以有不同的情况,即随机变量取值有可数的,有不可数的,有有限个数的,有无限个数的.从中来“同化”离散性随机变量的概念.
两者设计相比,显然是改进后的设计更为自然、流畅,它意在借助学生所举出的例子,分辨随机变量的类型,即某些随机变量的取值是离散的,从而给出离散型随机变量的概念,而不再单独用问题的方式(另起炉灶)提出来(把问题中的例子也纳入进来).何况分辨随机变量的类型也是对“随机变量”概念(外延)的进一步理解与认识.
第二部分 反思后的教学设计
一、教学内容解析
概率是研究随机现象的数量规律的.认识随机现象就是指:知道这个随机现象中所有可能出现的结果,以及每一个结果出现的概率.而对于给定的随机现象,首先要描述所有可能出现的结果.在数学上处理时,一个常用的、也很自然的做法就是用数来表示结果,即把随机试验的结果数量化,使得每个结果对应一个数,这样就可以通过实数空间(定量的角度)来刻画随机现象,从而就可以利用数学工具,用数学分析的方法来研究所感兴趣的随机现象.简言之,随机变量是连接随机现象和实数空间的一座桥梁,它使得我们可以借助于有关实数的数学工具来研究随机现象的本质,从而可以建立起应用到不同领域的概率模型,这便是为什么要引入随机变量的缘由.随机变量在概率统计研究中起着极其重要的作用,随机变量是用来描述随机现象的结果的一类特殊的变量,随机变量能够反映随机现象的共性,有关随机变量的结论可以应用到具有不同背景的实际问题中.随机变量就是建立了一个从随机试验结果的集合到实数集合的映射,这与函数概念在本质上(一种对应关系)是一致的,随机试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.
离散型随机变量是最简单的随机变量,随机变量和离散型随机变量是上、下位概念的关系.本节课主要通过离散型随机变量展示用实数空间刻画随机现象的方法.本节课的重点是认识离散型随机变量的特征,了解其本质属性,体会引入随机变量的作用.
二、教学目标解析
1.在对具体实例的分析中,认识和体会随机变量对刻画随机现象的重要性和建立随机变量概念的必要性,并会恰当地定义随机变量来描述所感兴趣的随机现象,能叙述随机变量可能取的值及其所表示的随机试验的结果;
2.在列举的随机试验中,通过对随机变量取值类型的分辨,归纳和概括离散型随机变量的特征,形成离散型随机变量的概念,并会利用离散型随机变量刻画随机试验的结果;
3.在举例、观察、思考、发现中经历将随机试验结果数量化的过程,渗透将实际问题转化为数学问题的思想方法,进一步形成用随机观念观察和分析问题的意识.
三、教学问题诊断分析
本节课学生学习的难点是对引入随机变量目的与作用的认识,以及随机变量和普通变量的本质区别.随机变量这个概念其实早已存在于学生的意识之中,而且在不少场合都已不自觉的“实际使用”,只是没有明朗化.学生学习这一概念就是把这些“实际使用的”规则、程序、步骤等进一步加以明确.所以,教师的责任就是为学生建立随机变量这个概念修通渠道.可通过学生熟悉的掷骰子的随机试验让学生体会随机变量概念的发生,在师生举例中来体会随机变量概念的发展,特别是诸如抛掷一枚硬币等试验,其结果不具有数量性质,怎么让学生自然地想到用数来表示其试验结果,并且所用的数又尽量简单,便于研究.教学中需多举试验结果本身已具有数值意义的实例,来发挥正迁移作用.通过多举例让学生理解:一旦给出了随机变量,即把每个结果都用一个数表示后,认识随机现象就变成认识这个随机变量所有可能的取值和取每个值时的概率.
另外,随机变量和离散型随机变量是上、下位概念的关系,从学习的认知方式看,下位学习依靠的主要是同化,上位学习依靠的主要是顺应,上位学习一般采用的思维方法主要是概括和综合,它主要通过改造(归纳和综合)原有认知结构中的有关内容而建立新的认知结构.因此,从这一角度来分析,学生对随机变量概念的学习和真正理解比离散型随机变量的学习要困难一些.故在随机变量的教学中,要特别重视学生举例,让学生在充分的自主活动中体验数学化的过程,体验将随机试验结果数量化的过程,体会随机变量对刻画随机现象的重要性和研究随机现象的工具性作用,从而来把握随机变量的内核.
四、教学支持条件分析
学生在必修3概率一章中学习过的随机试验、随机事件、简单的概率模型和必修1中学习过的变量、函数、映射等知识是学习、领悟和“接纳”随机变量概念的重要知识基础,教学时应充分注意这一教学条件;另外,为更好地形成随机变量和离散型随机变量两个概念,教学中可借助媒体列举和展现丰富的实例和问题,以留给学生更多的时间思考和概括.
五、教学过程设计
(一)教学基本流程
(二)教学过程
1.理解随机变量概念
问题1:抛掷一枚骰子,可能出现的结果有哪些?概率分别是多少?
[设计意图] 以学生熟悉的随机试验为例,在复习旧知中孕育新知.
[师生活动] 画表一,指出试验结果分别有“1点的面朝上”、“2点的面朝上”、“3点的面朝上”、“4点的面朝上”、“5点的面朝上”、“6点的面朝上”,它们都是基本事件.为了研究这些事件,常常把它们分别与一个数字对应起来.比如,用数字1与“1点的面朝上”这个试验结果(样本点)对应,用数字2与“2点的面朝上”这个试验结果(样本点)对应,等等.师生共同填写数字,形成表二.
引导学生分析,像这样“用数字表示随机试验的结果”的量用X来表示,它可以取集合{1,2,3,4,5,6}的值,说明X是一个变量.
[设计意图] “用数字来表示随机试验的结果”实际上早已存在于学生的意识之中,而且在不少场合都已不自觉地“实际使用”,如射击比赛中会用“环数”去表示射击成绩,掷骰子时会用“点数”去表示掷出结果,抽奖时会先对奖券“编号”,随机抽取一部分学生时会用“学号”去代替等等,只是没有明朗化.因而,“用数字来表示随机试验的结果”可以通过教师有启发地提问,有意义地讲授进行,让学生觉得问题的提出,概念的发生、发展过程较为自然,能够从教师的讲授中感受数学是怎样一步步研究现实世界的.
问题2:在这里(指着表二),每一个试验结果用唯一确定的数字与它对应,这个对应关系是什么?
[设计意图]建立一个从试验结果的集合到实数集合的映射.让学生感悟:一旦给出了随机变量,即把每个结果都用一个数表示后,认识随机现象就变成认识这个随机变量所有可能的取值和取每一个值时的概率,从而感受把随机试验的结果数字化(成为实数)的必要性,体会引入随机变量的必要性.同时让学生感受概念的从无到有、自然形成的过程.
[师生活动] 启发诱导,引导学生发现在这里建立了一个从试验结果的集合到实数集合的映射.形成下表三:抛掷一枚骰子
让学生观察、思考:刚才,用数字表示试验结果的变量X,它根据什么在变化?让学生发现它的取值随试验结果的变化而变化,它的变化是有规律的,这是个特殊的变量,与随机试验的结果有关,在试验之前不知道会出现哪个值(即它的取值依赖于试验结果,因此取值具有随机性,即在试验之前不能肯定它的取值,一旦完成一次试验,它的取值随之确定).同时,教师指出:在这个试验中,我们确定了一个对应关系(也即建立了一个试验结果到实数的映射)使得每一个试验结果(样本点)都用一个确定的数字表示(即所有可能取值是明确的).在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.随机变量常用字母
问题3:随机变量这个概念与我们曾经学过的函数概念有类似的地方吗?
[设计意图]引导学生与曾经学过的函数概念比较,从而加深对随机变量概念的理解.
[师生活动]“类比”函数概念,领悟随机变量和函数概念在本质上都是一种对应关系,都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数,在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.随机变量的取值范围我们称为随机变量的值域.如抛掷一枚骰子,随机变量的值域为
引导学生利用随机变量表达一些事件,例如抛掷一枚骰子中,点的面朝上”; “3点的面朝上”可以用朝上”或“6点的面朝上”.
表示;
表示“
1;
表示.
表示“5点的面同时指出:通过映射把随机试验结果与实数进行对应,也就是,把随机试验的结果数量化,用随机变量表示随机试验的结果,这样“随机试验结果的集合到对应概率集合的映射”就可以用“随机变量的取值集合到对应概率集合的映射”来表示,即可把“对随机现象统计规律的研究具体转化为对随机变量概率分布的研究”.这样我们就可以借用有关实数的数学工具来研究随机现象的本质了.
接着,进一步指出:在学习《数学(必修3)》时我们曾经学习过概率、方差等概念,学过简单的概率模型,在今后的学习中,我们将利用随机变量描述和分析某些随机现象,进一步体会概率模型的作用及运用概率思想思考和解决一些实际问题.(体现章引言)
2.对随机变量的深刻认识(对对应思想——映射的体验)
问题4:你能再举些例子吗?(请学生列举随机试验,并将试验结果数量化,不必写出概率)
[设计意图] 让学生参与举例,体验将实际问题数学化(把实际问题数学化是学习数学极其重要的数学方法)和将随机试验结果数量化的过程.其意义在于两个方面:其一,学生通过寻找(寻找本身就是一个甄别随机与非随机的过程),选择自己感兴趣的随机现象,并学会用随机变量表示随机事件;其二,在将试验结果数量化的过程中体会随机变量在研究随机现象中的重要作用.同时进一步深刻理解随机变量的概念,领悟随机变量学习的重要性,进一步形成用随机观念观察和分析问题的意识.
[师生活动]教师关注学生的举例,关注其关键过程:随机试验中所有可能出现的结果有哪些?如何将试验的结果数量化?要求学生画表,体会映射的过程.教师给学生充分展示和交流所举例子的时间.同时,教师也参与举例(教材中有关于抽取产品、射击、浏览某网页等例子可以纳入进来),深刻体会将实际问题(随机现象)数学化(数字化)的过程,感受建立随机变量概念的重要意义.
对学生列举的试验结果没有数量标志的随机事件,诸如投掷一枚硬币的试验等,要引导学生分析比较,让学生体会对于同一个随机试验,可以用不同的随机变量来表示.但用哪两个数字来表示,主要是要尽量简单,合理,便于研究.如表四:抛掷一枚骰子
在学生举例中学习如何用随机变量去定义试验结果没有数量标志的随机事件(中间表示映射的一栏表格可以省略).
问题5:任何随机试验的所有结果都可以用数字表示吗?同一个随机试验的结果,可以用不同的数字表示吗?
[设计意图]让学生领悟任何随机试验的所有结果都可以用数字来表示(试验结果不具有数量性质的可以通过赋值,将其数量化),同一个随机试验的结果,可以用不同的数字表示,表示的原则主要是有实际意义,简单合理,便于研究.
3.形成离散型随机变量概念
问题6:随机变量的取值都是整数吗?你能否举个(些)例子,而随机变量的取值不是整数呢?
[设计意图] 关注学生的举例,借学生举出的例子,引导分析数学化之后的随机变量取值的集合的特征(一个新概念产生之后,我们应该端详它一番),分辨随机变量的类型,即某些随机变量的取值是离散的,而有些不是,从而给出离散型随机变量的概念.如果学生列举的都是离散型随机变量,则教师可启发点拨,启发后引导学生再举例,或给出以下问题7:
问题7:请仿照刚才的例子,分析下列随机现象,随机变量可以取哪些值?你能够一个一个列出来吗?
(1)某公交车站每隔10分钟有1辆汽车到站,某人到达该车站的时刻是随机的,他等车的时间;
(2)检测一批灯泡(相同型号)的使用寿命.
[设计意图]通过与前面列举例子的比较,引导学生发现这两个试验结果中,表示随机事件的随机变量的取值是一个区间,其值无法一一列出,以此形成离散型随机变量的概念.同时明晰在随机现象中随机变量的取值类型是丰富多样的,这也是对随机变量概念(外延)的进一步认识.
问题8:如果我们仅仅关心“某人等车的时间多于5分钟或不多于5分钟”两种情况,那该怎样定义随机变量呢?
[设计意图] 在研究随机现象时,为研究方便,有时需要根据所关心的问题恰当地定义随机变量.让学生明白恰当定义随机变量给我们研究问题带来方便.问(2)让学生选择自己关心的问题来恰当定义随机变量.
[师生活动]通过分析,让学生明白,在研究随机现象时,有时需要根据所关心的问题恰当地定义随机变量.
4.练习反馈(见教科书第45页)
下列随机试验的结果能否用离散型随机变量表示?若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果.
(1)抛掷两枚骰子,所得点数之和;
(2)某足球队在5次点球中射进的球数;
(3)任意抽取一瓶某种标有2500ml的饮料,其实际量与规定量之差.
[设计意图]在应用中巩固离散型随机变量的概念,并能熟练利用离散型随机变量刻画随机试验的结果.
5.小结回授
问题9:你能用自己的语言描述随机变量和离散型随机变量的定义及它们之间的区别吗?(学生回答后,可以再问:你能简单地说说引入随机变量的好处吗?)
[设计意图] 学生用自己的语言来概括本节课学到的知识,是一种“主动建构”,也真正体现知识学到了手.
[师生活动]引入随机变量后,随机试验中我们感兴趣的事件就可以通过随机变量的取值表达出来.认识随机现象就变成认识这个随机变量所有可能的取值和取每个值时的概率.也即把随机试验的结果数量化,用随机变量表示随机试验的结果,我们就可以借助于有关实数的数学工具来研究所感兴趣的随机现象了.
六、目标检测设计
人教A版教科书第49页习题2.1中A组,第1,2,3题.2010-07-08 人教网