初一数学有理数的乘法教案

时间:2019-05-12 20:33:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初一数学有理数的乘法教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初一数学有理数的乘法教案》。

第一篇:初一数学有理数的乘法教案

有理数的乘法

一、教学目标

1、知识与技能:掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

2、过程与方法:经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

3、情感态度与价值观:通过学生自己探索出法则,让学生获得成功的喜悦。

二、教学重点、难点

重点:运用有理数乘法法则正确进行计算。

难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

三、教学过程

一、导课:

计算:5×3 解:5×3=15 27277  解:

34346 0 11 解:00 44我们已经熟悉正数及0的乘法运算,引入负数以后,怎样进行有理数的乘法运算呢? 怎样计算(1)48

(2)56

二、问题探究:

一只蜗牛沿直线L爬行,它现在的位置恰好在L上的点O。

(1)如果蜗牛一直以每分钟2cm的速度向右爬行,3分钟后它在什么位置?

(2)(3)6

(2)如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟后它在什么位置?

(-2)(+3)=6(4)如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟前它在什么位置?

(-2)(-3)= +6 观察(1)-(4)式,根据你对有理数乘法的思考,填空: 正数乘正数积为___数; 负数乘正数积为___数; 正数乘负数积为___数; 负数乘负数积为___数;

乘积的绝对值等于各乘数绝对值的___. 综合如下:(1)2×3=6(2)(-2)×3=-6(3)2×(-3)=-6(4)(-2)×(-3)=6(5)被乘数或乘数为0时,结果是0

三、得出结论 有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

练习1:确定下列积的符号:(1)5×(-3)积的符号为负(2)(-4)×6 积的符号为负(3)(-7)×(-9)积的符号为正(4)

0.5×0.7 积的符号为负正 例如:(— 5)×(— 3)(同号两数相乘)

解:(— 5)×(— 3)= +()(得正)

5×3 = 15(把绝对值相乘)∴(— 5)×(— 3)=15 又如:(— 7)×4(异号两数相乘)

解:(— 7)×4= —()(得负)7×4=28(把绝对值相乘)∴(— 7)×4=-28 注意:有理数相乘,先确定积的符号,在确定积的值

四、例题讲解 例

一、计算:

1(1)39(2)2

2(3)71(4)0.81

解:

(1)39271(2)212 (3)717(4)0.810.8注意:乘积是1的两个数互为倒数.一个数同+1相乘,得原数,一个数同-1相乘,得原数的相反数。

五、练习1. 计算(口答):

(1)6954(2)4624

(3)616(4)600

293(5)342111 (6)3412

六、小结

1.有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0。2.如何进行两个有理数的运算:

先确定积的符号,再把绝对值相乘,当有一个因数为零时,积为零。

七、布置作业

教科书习题1.5第1题,第2题,第3题.八、板书设计

九、教学反思

第二篇:初一上册数学:有理数的乘法教案

悦考网www.xiexiebang.com

初一上册数学:有理数的乘法教案

教师在备课时,应充分估计学生在学习时可能提出的问题,确定好重点,难点,疑点,和关键。根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。

一、学情分析:

在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。

二、课前准备

把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。

三、教学目标

1、知识与技能目标

掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

2、能力与过程目标

经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

3、情感与态度目标

通过学生自己探索出法则,让学生获得成功的喜悦。

四、教学重点、难点

重点:运用有理数乘法法则正确进行计算。

难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

五、教学过程

悦考网www.xiexiebang.com

悦考网www.xiexiebang.com

1、创设问题情景,激发学生的求知欲望,导入新课。

教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米? 学生:26米。教师:能写出算式吗? 学生:……

教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)

2、小组探索、归纳法则

教师出示以下问题,学生以组为单位探索。

以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

3、运用法则计算,巩固法则。

(1)教师按课本P75 例1板书,要求学生述说每一步理由。

(2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的积为。

(3)学生做 P76 练习1(1)(3),教师评析。

(4)教师引导学生做P75 例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的符号由

决定,当负因数个数有,积为

;当负因数个数有,积为

;只要有一个因数为零,积就为。

4、讨论对比,使学生知识系统化。有理数乘法 有理数加法

悦考网www.xiexiebang.com

悦考网www.xiexiebang.com

同号 得正

取相同的符号 把绝对值相乘(-2)×(-3)=6 把绝对值相加(-2)+(-3)=-5 异号 得负

取绝对值大的加数的符号 把绝对值相乘(-2)×3=-6(-2)+3=1 用较大的绝对值减小的绝对值 任何数与零 得零 得任何数

5、分层作业,巩固提高。

六、教学反思:

本节课由情景引入,使学生迅速进入角色,很快投入到探究有理数乘法法则上来,提高了本节课的教学效率。在本节课的教学实施中自始至终引导学生探索、归纳,真正体现了悦考网www.xiexiebang.com

悦考网www.xiexiebang.com

以学生为主体的教学理念。本节课特别注重过程教学,有利于培养学生的分析归纳能力。教学效果令人比较满意。如果是在法则运用时,编制一些训练符号法则的口算题,把例2放在下一课时处理,效果可能更好。

【点评】:本节课张老师首先创设了一个密切社会生活的问题情景—抗旱,由此引入新课,并利用学生熟悉的数轴去探究有理数的乘法法则,充分体现了课程源于生活,服务于生活,学生的学习是在原有知识上的自我建构的过程等理念,教学要面向学生的生活世界和社会实践,教学活动必须尊重学生已有的知识与经验,学生原有的知识和经验是学习的基础,学生的学习是在原有知识和经验基础上的自我生成的过程。

探索有理数乘法法则是本节课的重点,同时它又是一个具有探索性又有挑战性的问题,因此张老师在这一教学环节花了大量的时间,精心设计了问题训练单,将学生按组间同质、组内异质的原则分学习小组开展学习合作学习,使学生经历了法则的探索过程,获得了深层次的情感体验,建构知识,获得了解决问题的方法,培养了学生的探索精神和创新能力。

为了让学生将获得的新知识纳入到原有的认知结构中去,便于记忆和提取,在教学的最后环节,张老师组织学生对有理数的乘法和有理数的加法进行对比,通过讨论、比较使知识系统化、条理化,从而使自己的认知结构不断地得以优化。学生自己建构知识,是建构主义学习观的基本观点,当新知识获得之后,必须按一定方式加以组织,为新知识找到“家”,并为新知识“安家落户”。

学生是一个活生生的人,是一个发展中的人,学生间的发展是极不平衡的,为了尊重学生的差异,以学生个体发展为本,张老师在教学中利用学生的个人性格不同,采用异质分组,使不同性格的学生组对交流、互换角色,达到了性格互补的目的。采取分层作业的方式,让不同的人在数学学习中得到了不同的发展,使每个人的认识都得到完善,这正是新课程发展的核心理念──为了每一位学生的发展的具体体现。

本节课我们也同时看到在新课引入和法则探究两个教学环节中,张老师的设计与教材完全不同,充分体现了教师是用教材,而不是教教材,这也是新课程所倡导的教学理念。教师“教教科书”是传统的“教书匠”的表现,“用教科书教”才是现代教师应有的姿态。我们教师应从学生实际出发,因材施教,创造性地使用教材,大胆对教材内容进行取舍、深加工、再创造,设计出活生生的、丰富多彩的课来,充分有效地将教材的知识激活,形成有教师个性的教材知识。既要有能力把问题简明地阐述清楚,同时也要有能力引导学生去探索、去自主学习。资料来自:悦考网www.xiexiebang.com

悦考网www.xiexiebang.com

第三篇:北师大版初一数学《有理数的乘法》教案

第三十一课时

一、课题 §2.8有理数的乘法(2)

二、教学目标

1.使学生掌握多个有理数相乘的积的符号法则;

2.掌握有理数乘法的运算律,并利用运算律简化乘法运算; 3.培养学生观察、归纳、概括及运算能力.

三、教学重点和难点

重点:乘法的符号法则和乘法的运算律. 难点:积的符号的确定.

四、教学手段

现代课堂教学手段

五、教学方法

启发式教学

六、教学过程

(一)、从学生原有认知结构提出问题 1.叙述有理数乘法法则. 2.计算(五分钟训练):

(1)(-2)×3;

(2)(-2)×(-3);

(3)4×(-1.5);

(4)(-5)×(-2.4);(5)29×(-21);

(6)(-2.5)×16;

(7)97×0×(-6);(17)1×2×3×4×(-5);

(18)1×2×3×(-4)×(-5);(19)1×2×(-3)×(-4)×(-5);

(20)1×(-2)×(-3)×(-4)×(-5);(21)(-1)×(-2)×(-3)×(-4)×(-5).

(二)、讲授新课

1.几个有理数相乘的积的符号法则

引导学生观察上面各题的计算结果,找一找积的符号与什么有关?

(17),(19),(21)等题积为负数,负因数的个数是奇数个;(18),(20)等题积为正数,负因数个数是偶数个.

是不是规律?再做几题试试:

(1)3×(-5);

(2)3×(-5)×(-2);

(3)3×(-5)×(-2)×(-4);(4)3×(-5)×(-2)×(-4)×(-3);(5)3×(-5)×(-2)×(-4)×(-3)×(-6).

同样的结论:当负因数个数是奇数时,积为负;当负因数个数是偶数时,积为正. 再看两题:

(1)(-2)×(-3)×0×(-4);

(2)2×0×(-3)×(-4). 结果都是0. 引导学生由以上计算归纳出几个有理数相乘时积的符号法则:

几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.

几个有理数相乘,有一个因数为0,积就为0.

继而教师强调指出,这样以后进行有理数乘法运算时必须先根据负因数个数确定积的符号后,再把绝对值相乘,即先定符号后定值.

注意:第一个因数是负数时,可省略括号. 例2 计算:

(1)8+5×(-4);

(2)(-3)×(-7)-9×(-6). 解:(1)

8+5×(-4)=8+(-20)=-12;

(先乘后加)(2)

(-3)×(-7)-9×(-6)=21-(-54)=75.

(先乘后减)通过例

1、例2教师小结:在有理数乘法中,首先要掌握积的符号法则,当符号确定后又归结到小学数学的乘法运算上,四则运算顺序也同小学一样,先进行第二级运算,再进行第一级运算,若有括号先算括号里的式子.

课堂练习

(1)判断下列积的符号(口答):

①(-2)×3×4×(-1);

②(-5)×(-6)×3×(-2); ③(-2)×(-2)×(-2);

④(-3)×(-3)×(-3)×(-3). ③1+0×(-1)-(-1)×(-1)-(-1)×0×(-1). 2.乘法运算律

在做练习时我们看到如果像小学一样能利用乘法的交换律和结合 计算:

(1)5×(-6);(4)(-6)×5;

(2)[3×(-4)]×(-5);

(3)3×[(-4)×(-5)];(4)5×[3+(-7)];

(5)5×3+5×(-7).

教师指出,由上面计算结果,可以说明有理数乘法也同样有交换律,结合律和分配律,并让学生分别用文字叙述和含字母的代数式表达三种运算律.

(1)乘法交换律

文字叙述:两个数相乘,交换因数的位置,积不变. 代数式表达:ab=ba.

第四篇:有理数乘法教案

§2.7 有理数的乘法(1)

课时课题:第二章 第七节 有理数的乘法(1)课型:新授课

授课时间: 2012年 10月 15 日,星期 一,第 一 节课 教学目标:

(1)了解有理数乘法的意义,经历探索有理数乘法法则的过程.(2)掌握有理数的乘法法则,初步发展、归纳、猜测、验证等能力.(3)知道倒数的意义.重点:

有理数乘法法则及熟练运用有理数乘法法则进行运算

难点:

确定多个有理数乘法中的符号

教法及学法指导:

本节应用“启迪诱导-自主探究”教学模式,引导学生对设计的问题进行仔细观察、主动思考、小组讨论、主动探究,最后自己得出结论,学会解决问题的方法.本节是在有理数的加减运算之后,进一步讲解有理数的乘法运算。通过生活中的实例引入关于负数乘法的运算过程,同时通过小组进行讨论,议一议,有理数乘法的同号和异号的乘法的规律,得到有理数的乘法法则,利用例1的计算巩固法则,进而引出有理数的倒数概念,通过了例2的计算,探索规律,得出有理数乘法法则的拓展规律,培养了学生的自学能力和小组探究的能力.课前准备:

制作课件,学生课前进行相关调查及预习工作.教学过程:

一、回顾旧知

师:同学们,我们大家在此以前已经学习了有理数的加法和减法运算,请看下面的题目:

投影展示 5+5+5+5=

(-5)+(-5)+(-5)+(-5)=

学生口答:5+5+5+5=20;(-5)+(-5)+(-5)+(-5)=-20 师:这样的加法能否转换为乘法,如何转化?

生:5+5+5+5可以看作4×5,(-5)+(-5)+(-5)+(-5)也可以看作4×(-5); 师:小学学习的运算是在有理数的什么范围中进行的?

(第七组)这组同学,利用的是我们课本上结论,说明我们的同学回家是预习了,学了就能用,也很好.师:通过大家的讨论,我们现在来归纳一下两个有理数相乘可以分为哪几类,他们存在什么规律?大家研究一下?

生1:有理数的乘法可分为四类:正数乘以正数;正数乘以负数;负数乘以正数;负数乘以负数。

生2:我认为他回答的不正确,应为:有理数的乘法可分为三类:

正数乘以正数;正数乘以负数;负数乘以负数。因为:正数乘以负数、负数乘以正数是一样的; 生3:我认为他们回答得还不够全面,都没考虑0。教师总结:生1:把我们已学的四种情况都概括了;

生2:把异号的两数相乘纳为一种也不错,主要是利用自己的经验;

生3:作了全面的补充,把前两位同学没考虑到的问题都想到了,说明思维很严密。

整理一下,可以分为三大类:

一、同号的两个有理数相乘

二、异号的两个有理数相乘

三、0和有理数相乘

师:下面再请大家根据刚才的内容归纳一下两个有理数相乘的乘法法则: 从一般到特殊,引导学生思考

生1:同号的两个有理数相乘符号为正,并把绝对值相乘;

生2:异号的两个有理数相乘符号为负号,并把绝对值相乘; 生3:0与任何有理数相乘,积为0。教师总结概括并板书:

两数相乘,同号得正,异号得负,并把绝对值相乘; 任何数同0相乘,都得0.

给出有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0.

让学生自主学习发现结论,体验成功的喜悦,培养数学的学习兴趣,通过上述的结论的应用发现规律掌握规律

四、尝试做题,巩固新知

1、算一算:

(-7)×3

(-48)×(-3)(-6.5)×(-7.2)

(-3)×3 强调指出:

(1)法则只适用于两个有理数相乘;

(2)结果强调两部分:一是符号,二是绝对值;(3)比较易混的是:“负负得正”和“异号得负”。

2、典例讲析,规范做题

例1 计算:

(1)(-4)×5

(2)(-5)×(—7)

(3)(-381)×(-)(4)(-3)×(-)833教师引导学生规范解题过程

应用所学知识解决实际问题,规范解题格式,由知识上升为应用能力

第五篇:初一数学辅导有理数

初一数学辅导有理数

聪明出于勤奋,天才在于积累。我们要振作精神,下苦功学习。查字典数学网编辑了初一数学辅导有理数,以备借鉴。

1.1正数和负数

以前学过的0以外的数前面加上负号-的书叫做负数。

以前学过的0以外的数叫做正数。

数0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,分别用正数和负数表示的量具有相反的意义

1.2有理数

1.2.1有理数

正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

1.2.2数轴

规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

1.2.3相反数

只有符号不同的两个数叫做互为相反数。数轴上表示相反数的两个点关于原点对称。

在任意一个数前面添上-号,新的数就表示原数的相反数。

1.2.4绝对值

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

⑵两个负数,绝对值大的反而小。

1.3有理数的加减法 1.3.1有理数的加法

有理数的加法法则:

⑴同号两数相加,取相同的符号,并把绝对值相加。

⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

⑶一个数同0相加,仍得这个数。

两个数相加,交换加数的位置,和不变。

加法交换律:a+b=b+a

三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

加法结合律:(a+b)+c=a+(b+c)

1.3.2有理数的减法

有理数的减法可以转化为加法来进行。

有理数减法法则:

减去一个数,等于加这个数的相反数。

a-b=a+(-b)

1.4有理数的乘除法

1.4.1有理数的乘法

有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。

两个数相乘,交换因数的位置,积相等。

ab=ba

三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

(ab)c=a(bc)

一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

a(b+c)=ab+ac

数字与字母相乘的书写规范:

⑴数字与字母相乘,乘号要省略,或用

⑵数字与字母相乘,当系数是1或-1时,1要省略不写。⑶带分数与字母相乘,带分数应当化成假分数。

用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。

一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即

ax+bx=(a+b)x

上式中x是字母因数,a与b分别是ax与bx这两项的系数。

去括号法则:

括号前是+,把括号和括号前的+去掉,括号里各项都不改变符号。

括号前是-,把括号和括号前的-去掉,括号里各项都改变符号。

括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。

1.4.2有理数的除法

有理数除法法则:

除以一个不等于0的数,等于乘这个数的倒数。

ab=a(b0)

两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

由查字典数学网为您提供的初一数学辅导有理数,希望给您带来启发!

下载初一数学有理数的乘法教案word格式文档
下载初一数学有理数的乘法教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    有理数的乘法教案

    有理数的乘法教案 二、教学目标: (1) 解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性; (2) 根据有理数乘法法则熟练地......

    有理数的乘法教案

    第十八课时 有理数的乘法(2) 【学习目标】 1.掌握多个有理数相乘的积的符号法则; 2.掌握有理数乘法的运算律,并利用运算律简化乘法运算; 【学习方法】自主探究与合作交流相结合。......

    有理数的乘法教案

    学科:数学 教学内容:有理数的乘法 【学习目标】 1.经历探索有理数乘法法则及运算律的过程,发展观察、归纳、猜测、验证等能力. 2.会进行有理数的乘法运算,能运用乘法运算律简化计算......

    有理数的乘法教案

    有理数的乘法教案 知识目标:有理数乘法运算 能力目标:能确定几个不是0的有理数乘积运算的符号,进行有理数运算;运用乘法的分配律进行有理数的乘法计算; 情感态度和价值观:......

    有理数乘法法则教案[范文大全]

    有理数乘法法则教学探讨 由于引进了负数,七年级对数系的认识范围扩大到了有理数。有理数乘法法则的教学难点所在,就是运算的因式含有了负数,如何自然 由原来正数的乘法过渡到带......

    有理数的乘法教案

    www.xiexiebang.com 中考资源网 有理数的乘法(1)教案 教学目标: 1、让学生了解有理数乘法的意义,掌握有理数乘法法则,并能熟练、准确地有理数乘法法则进行有理数乘法运算。 2、通......

    有理数乘法的教案(范文大全)

    (一)学习与导学目标1、知识积累与疏导:通过蜗牛爬行模型的演示,循序渐进,导出有理数乘法法则。认知率100%。毛2、技能掌握与指导:能运用有理数乘法法则进行计算,掌握两个有理数相......

    有理数的乘法教案大全

    教学目的:1、要求学生会进行有理数的加法运算;2、使学生更多经历有关知识发生、规律发现过程。教学分析:重点:对乘法运算法则的运用,对积的确定。难点:如何在该知识中注重知识体......