2.3有理数的乘法,教案

时间:2019-05-15 07:41:04下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2.3有理数的乘法,教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2.3有理数的乘法,教案》。

第一篇:2.3有理数的乘法,教案

宁聋701班

执教:池相会

公开课

2.3有理数的乘法(1)

一、教学目标:

知识与能力:在理解有理数乘法意义的基础上,掌握有理数的乘法法则,并正确地进行乘法运算。

过程与方法:让学生通过相同数的加法体验乘法运算法则,会类比出若干个相同负数的加法运算(即负数的乘法运算)。通过对特例的归纳,鼓励学生自主探索有理数的乘法法则。经历有理数的乘法法则的实验与探索过程,提高学生观察、归纳、猜想、验证的能力,不断增强运算能力。

情感态度与价值观:提供适当的情景,吸引学生的注意力,激发学生的学习兴趣;在合作学习中,学会交流与合作。在经历有理数的乘法法则的自主探究,合作交流,归纳总结,使其充分体会到知识产生、规律发现的过程,感受生活中乘法运算的存在与价值,让学生融入到数学学习中来,融身到数学活动中去。

二、教学重点、难点:

重点:

了解有理数乘法法则的发现以及形成过程,掌握乘法法则的关键,运用乘法法则准确地进行有理数的运算。

难点:

掌握有理数乘法法则中的符号规则,并能准确、熟练地应用于有理数乘法运算中去。

三、教学过程:

(一)创设情景,探索新知

情景一:甲水库的水位每天升高3cm,乙水库的水位每天下降 3cm,规定上升为正,四天后的水位的总变化量: 甲水库水位的总变化量是:3×4 = 12(cm)乙水库水位的总变化量是:(−3)×4=-12(cm)情景二:森林里住着一只蜗牛,每天都要离开家去寻找食物,如果蜗牛一直以每分钟2cm 的速度向右爬行,那么3分钟后蜗牛在什么位置?(规定:向右为正)

可以表示为:2×3 =6

如果蜗牛一直以每分钟2cm的速度向左爬行,那么3分钟后蜗牛在什么位置?(规定:向右为正)可以表示为:(-2)×3=-6 看一看,想一想(1):

3×4 = 12(−3)×4=-12 2×3 =6(-2)×3=-6

两数相乘,把一个因数替换成他的相反数,所得的积是原来的积的相反数 看一看,想一想(2):

(-3)x 4 =6(-2)x(12 负数 x 正数 = 负数

同号得正,异号得负,把绝对值相乘。

想一想:任何数同零相乘,积是多少? 师生讨论得出结果: 有理数的乘法法则:

1、两数相乘,同号得正,异号得负,并把绝对值相乘。

2、任何数同0相乘,都得0。(二)例题精讲,运用新知 例

计算:

(1)9×6 ;

(2)(−9)×6 ;

(3)3 ×(-4)

(4)(-3)×(-4)(三)练习巩固,深化理解

1.你能很快的确定下列各式的符号吗?(-2)×4

3×5

9×(-1)

(-4)×(-6)2.填空(用“>”或“<”号连接):

(1)如果a<0,b<0,那么ab_______0;(2)如果a>0,b<0,那么ab_______0; 3.计算:

(1)5 ×(-3)(2)(-4)×6

(3)(-7)×(-9)

(4)0.5×

0.7 4.填空题:

(1)(-25)×(-4)=(2)(-8)× 2.5

=(3)0×(-2003)=

5.一个有理数和它的相反数的乘积()

A.一定为正数

B.一定为负数

C.一定大于0

D.不确定

(四)归纳小结,反思提高 有理数的乘法法则:

1、两数相乘,同号得正,异号得负,并把绝对值相乘。

2、任何数同0相乘,都得0。(五)布置作业:作业本(1)P6(六)板书设计:

2.3有理数的乘法(1)

有理数的乘法法则:

计算:

1、两数相乘,同号得正,(1)9×6 ;

(2)(−9)×6 ; 异号得负,并把绝对值相乘。

(3)3 ×(-4)

(4)(-3)×(-4)

2、任何数同0相乘,都得0。

第二篇:有理数乘法教案

§2.7 有理数的乘法(1)

课时课题:第二章 第七节 有理数的乘法(1)课型:新授课

授课时间: 2012年 10月 15 日,星期 一,第 一 节课 教学目标:

(1)了解有理数乘法的意义,经历探索有理数乘法法则的过程.(2)掌握有理数的乘法法则,初步发展、归纳、猜测、验证等能力.(3)知道倒数的意义.重点:

有理数乘法法则及熟练运用有理数乘法法则进行运算

难点:

确定多个有理数乘法中的符号

教法及学法指导:

本节应用“启迪诱导-自主探究”教学模式,引导学生对设计的问题进行仔细观察、主动思考、小组讨论、主动探究,最后自己得出结论,学会解决问题的方法.本节是在有理数的加减运算之后,进一步讲解有理数的乘法运算。通过生活中的实例引入关于负数乘法的运算过程,同时通过小组进行讨论,议一议,有理数乘法的同号和异号的乘法的规律,得到有理数的乘法法则,利用例1的计算巩固法则,进而引出有理数的倒数概念,通过了例2的计算,探索规律,得出有理数乘法法则的拓展规律,培养了学生的自学能力和小组探究的能力.课前准备:

制作课件,学生课前进行相关调查及预习工作.教学过程:

一、回顾旧知

师:同学们,我们大家在此以前已经学习了有理数的加法和减法运算,请看下面的题目:

投影展示 5+5+5+5=

(-5)+(-5)+(-5)+(-5)=

学生口答:5+5+5+5=20;(-5)+(-5)+(-5)+(-5)=-20 师:这样的加法能否转换为乘法,如何转化?

生:5+5+5+5可以看作4×5,(-5)+(-5)+(-5)+(-5)也可以看作4×(-5); 师:小学学习的运算是在有理数的什么范围中进行的?

(第七组)这组同学,利用的是我们课本上结论,说明我们的同学回家是预习了,学了就能用,也很好.师:通过大家的讨论,我们现在来归纳一下两个有理数相乘可以分为哪几类,他们存在什么规律?大家研究一下?

生1:有理数的乘法可分为四类:正数乘以正数;正数乘以负数;负数乘以正数;负数乘以负数。

生2:我认为他回答的不正确,应为:有理数的乘法可分为三类:

正数乘以正数;正数乘以负数;负数乘以负数。因为:正数乘以负数、负数乘以正数是一样的; 生3:我认为他们回答得还不够全面,都没考虑0。教师总结:生1:把我们已学的四种情况都概括了;

生2:把异号的两数相乘纳为一种也不错,主要是利用自己的经验;

生3:作了全面的补充,把前两位同学没考虑到的问题都想到了,说明思维很严密。

整理一下,可以分为三大类:

一、同号的两个有理数相乘

二、异号的两个有理数相乘

三、0和有理数相乘

师:下面再请大家根据刚才的内容归纳一下两个有理数相乘的乘法法则: 从一般到特殊,引导学生思考

生1:同号的两个有理数相乘符号为正,并把绝对值相乘;

生2:异号的两个有理数相乘符号为负号,并把绝对值相乘; 生3:0与任何有理数相乘,积为0。教师总结概括并板书:

两数相乘,同号得正,异号得负,并把绝对值相乘; 任何数同0相乘,都得0.

给出有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0.

让学生自主学习发现结论,体验成功的喜悦,培养数学的学习兴趣,通过上述的结论的应用发现规律掌握规律

四、尝试做题,巩固新知

1、算一算:

(-7)×3

(-48)×(-3)(-6.5)×(-7.2)

(-3)×3 强调指出:

(1)法则只适用于两个有理数相乘;

(2)结果强调两部分:一是符号,二是绝对值;(3)比较易混的是:“负负得正”和“异号得负”。

2、典例讲析,规范做题

例1 计算:

(1)(-4)×5

(2)(-5)×(—7)

(3)(-381)×(-)(4)(-3)×(-)833教师引导学生规范解题过程

应用所学知识解决实际问题,规范解题格式,由知识上升为应用能力

第三篇:初中数学 《有理数的乘法》教案3

《有理数的乘法(1)》教案

教学目标:

1.经历探索有理数乘法法则的过程,发展归纳、猜测等能力; 2.能运用法则进行有理先相加数乘法运算; 3.理解有理数倒数的意义; 4.能用乘法解决简单的实际问题.

教学重点

有理数乘法法则及运算.

教学难点

有理数乘法中的积的符号法则.

教学过程

一.创设情景 导入新课 问题1

(1)商店降价销售某种产品,若每件降5元,售出60件,问与降价前比,销售额减少了多少?(2)商店降价销售某种产品,若每件提价-5元,售出60件,与提价前比,销售额增加了多少?(3)商店降价销售某种产品,若每件提价a元,售出60件,问与提价前比,销售额增加了多少? 问题2

(1)登山队攀登一座高峰,每登高1km,气温下降6℃,登高3km后,气温下降多少?(2)登山队攀登一座高峰,每登高1km,气温上升-6℃,登高3km后,气温上升多少?(3)登山队攀登一座高峰,每登高1km,气温上升-6℃,登高-3km后,气温有什么变化? 问题3

(1)2×3=(2)-2×3=(3)2×(-3)=___(4)(-2)×(-3)=____(5)3×0=_____(6)-3×0=_____.思考:比较-2×3=-6,2×3=6,你对一个负数乘一个正数有什么发现? 归纳:把一个因数换成它的相反数,所得积是原来的积的相反数 比较(-2)×(-3)=6,2×3=6,你对两个负数相乘有什么发现? 引导学生思考:5×0,-5×0,0×(-2)的结果是多少? 法则归纳

新知一

有理数乘法法则:

1.两数相乘,同号得______,异号得_______,并把________相乘.(同号得正,异号得负)2.任何数同0相乘,都得______.强调:“同号得正”有两种,一种是两个在有理数相乘,另一种是两个负有理数相乘(负负得正),并与小学学习的乘法比较,关键是乘法的符号法则.

二.应用迁移

巩固提高

问题:由法则,如何计算(-5)×(-3)的结果?(1)师生共同完成: 依据 方法步骤

(-5)×(-3)„„„„同号两数相乘„„„看条件(-5)×(-3)=+()同号得正„„„„„决定符号 5×3=15„„„„„„把绝对值相乘„„„计算绝对值 ∴(-5)×(-3)=+15

(2)分组类似(1)讨论,归纳:(-7)×4(3)师生共同完成:

有理数的乘法:与小学里数的乘法在法则和方法步骤方面分别有什么联系? ①符号决定以后,有理数的乘法就转化成了小学里数的乘法; ②由①可见,小学里数的乘法是有理数乘法的基础. 三.应用迁移

巩固提高

例 计算:(1)(-5)×(-6),(2)(-

3135)×,(3)()×(),(4)8×(-1.25)2653第一,引导学生强化法则、步骤;第二,教给正确的书写格式.板演并相互纠错

练习

1、确定下列两数的符号:

(1)5×(-3)(2)(-4)×6

(3)(-7)×(-9)(4)0.5×0.7

(5)7

32、计算

(1)6×(-9)(2)(-6)×(-9)(3)(-6)×9(4)(-6)×0(5)0×(-9)(6)(新知二

倒数 回顾:

满足什么条件的两个数互为倒数?0.2的倒数是多少?7.29的倒数呢?

2512)()(7)(4)()522923的倒数呢?(2).7

满足什么条件的两个数互为相反数? 0.2的相反数是多少? 探索:

23呢? 7在有理数范围内,我们仍然规定:乘积是1的两个数互为倒数.-0.2的倒数是多少?-7.29的倒数呢? -

23的倒数呢? 7指出:因为任何数同0相乘都不等于1,所以0没有倒数.由学生找出练习2中哪些题里的两个因数互为倒数,为什么?

分组讨论:

1.两个互为倒数的数的符号有什么特征?2.绝对值有什么关系?3.如何找一个有理数的倒数?

练习:

1.-1的倒数是1还是-1?为什么? 2.9的倒数是______;0的倒数________.4a、b互为_____数.3._____________的两个数互为相反数._______的两个数互为倒数.若a+b=0,则a、b互为_____数,若ab=1,则 4.计算:(1)(-6)×4=______=____;(2)-29()=_________=_____.345.在数-5,1,-3,5,-2中任取3个相乘,哪3个数相乘的积最大? 哪3个数相乘的积最小? 新知三

有理数与1或者-1相乘

口答:1×(-5);(-1)×(-5);1×a;(-1)×a.

引导学生归纳:一个数乘以1等于它本身;一个数乘以-1等于它的相反数. 四.总结反思 拓展升华

在进行有理数乘法运算时,与有理数加法运算狠相似,要注意:

一、先确定积的符号

二、积的绝对值是两个因数绝对值的积.

五.作业

1.计算:(-16)×15;(-9)×(-14);0.72×(-1.25). 2.(1)若a = 3,a与2a哪个大?若 a= 0 呢? 又若 a=-3呢?(2)a与2a哪个大?(3)判断:9a一定大于2a;(4)判断:9a一定不小于2a.(5)判断:9a有可能小于2a.3.若a>b,则ac>bc吗?为什么?请举例说明.4.若mn=0,那么一定有()(A)m=n=0.(B)m=0,n≠0.(C)m≠0,n=0.(D)m、n中至少有一个为0.

第四篇:有理数的乘法教案

有理数的乘法(2)教案

知识目标:有理数乘法运算

能力目标:能确定几个不是0的有理数乘积运算的符号,进行有理数运算;运用乘法的分配律进行有理数的乘法计算;情感态度和价值观:体会用计算器给有理数运算带来的方便.[教学重点与难点] 重点: 有理数乘法运算

有理数的乘法运算

你还记得有理数的乘法法则吗?(同号得正,异号得负,并把绝对值相乘)[知识讲解] 计算并观察

下列各式的积是正的还是负的? 思考:几个不是0的数相乘,积的符号与负因数的个数是什么关系?

更多精彩推荐:初中gt;初一gt;数学gt;初一数学教案

第五篇:有理数的乘法教案

有理数的乘法教案

二、教学目标:

(1)解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;

(2)根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;

三、教学重点、难点 重 点:有理数乘法的运算 难 点:有理数乘法中的符号法则

七、教学过程

(一)、创设请机情境,引入新课

师:有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的? 生: 师:有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么? 生: 师:有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么? 生:负数问题,关键符号的确定

师:甲水库的水位每天升高3厘米,乙水库的水位每天下降3厘米,4天后甲、乙水库水位的总变化量各是多少?

学生活动:学生思考、讨论,写出变化量的计算式.

师:若把水位上升记为正,水位下降记为负,几天前记为负,几天后记为正。那么4天后甲水库的水位变化量为? 生:3+3+3+3=3×4=12(厘米); 师:大家能由表示的计算式写出乘法的形式吗?(-3)+(-3)+(-3)+(-3)=

生:(-3)+(-3)+(-3)+(-3)=(-3)×4 教师活动:引出课题:有理数的乘法.

(二)、实践探索,揭示新知

师:同学们请根据小学的知识计算一下:

生:(-3)×4=(-3)+(-3)+(-3)+(-3)=-12. 师:一个因数减少1时,积怎样变化?(由反馈进一步设问:)(-3)×4=_______;(-3)×3=________;(-3)×2=______;(-3)×1=________;(-3)×0=_______.

教师活动:进一步出示两个负数的乘法算式,进行设问,激发学生的创新能力,猜测其算式积的符号、值.

倒数能用运算来叙述吗?找几对试一试

师:议一议,几个有理数相乘,因数都不为0时,积的符号怎样确定?有一个因数为0时,积是多少? 例:3计算

35(1)(−4)×5×(−0.25);(2)()()(2).56解(1)(−4)×5 ×(−0.25)35()()(2).56=[−(4×5)]×(−0.25)=(−20)×(−0.25)=+(20×0.25)=5

35[()](2)561(2)2 = −1 师:事实上,小学里学过的乘法交换律乘法结合律,乘法分配律。在有理数范围内仍然适用 自然推出运算律公式。

学生活动:学生在做一做中总结感受验证的过程 师:你能得到有理数的乘法运算律吗? 师:能说出运算律的公式吗? 生: 交 换 律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b+c)=a×b+a×c 例4计算

(1/2+5/6-7/12)×(-36)

解:原式=[1/2+5/6+(-7/12)] ×(-36)=1/2×(-36)+5/6×(-36)+(-7/12)×(-36)=-18+(-30)+21 =-48+21 =-27 另解:原式=1/2×(-36)+5/6×(-36)-7/12×(-36)=-18+(-30)+24 =-48+21 =-27 说明:在师的引导下,先由学生自己思考,然后教师总结并给出解答参考 【巩固习题】

1.确定下列两数积的符号.

①2×(-2.5); ②2×(+3);③(-5)×(-7); ④(-4)×6; ⑤(-

121113)×(-)⑥6×();⑦(-5)×; ⑧×.

5382222.计算.

(1)9×6;(2)(-9)×6;(3)3×(-4);(4)(-3)×(-4).

下载2.3有理数的乘法,教案word格式文档
下载2.3有理数的乘法,教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    有理数的乘法教案

    第十八课时 有理数的乘法(2) 【学习目标】 1.掌握多个有理数相乘的积的符号法则; 2.掌握有理数乘法的运算律,并利用运算律简化乘法运算; 【学习方法】自主探究与合作交流相结合。......

    有理数的乘法教案

    学科:数学 教学内容:有理数的乘法 【学习目标】 1.经历探索有理数乘法法则及运算律的过程,发展观察、归纳、猜测、验证等能力. 2.会进行有理数的乘法运算,能运用乘法运算律简化计算......

    有理数的乘法教案

    www.xiexiebang.com 中考资源网 有理数的乘法(1)教案 教学目标: 1、让学生了解有理数乘法的意义,掌握有理数乘法法则,并能熟练、准确地有理数乘法法则进行有理数乘法运算。 2、通......

    《有理数的乘法》教案

    有理数的乘法 一、教学目的: 1. 知识与技能: 体会有理数乘法的实际意义,掌握有理数乘法的运算法则和乘法法则,灵活的运用运算律简化运算。 2. 过程与方法; 经历有理数乘法的推......

    有理数的乘法教案

    1.4.1有理数的乘法 教学目标: 1.知识目标:使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性。 2.能力训练目标:能运用法则进行简单的有......

    有理数的乘法1教案

    1.4.1有理数的乘法 一、 教学内容 人教版七年级数学(上)第一章第四节《有理数的乘除法》,见课本P28. 二、学情分析 在此之前,本班学生已有探索有理数加法法则的经验,多数学生能......

    有理数的乘法1教案

    【课题】 §2.7有理数的乘法(1) 导入语:今天我们来学习有理数的乘法运算,请同学们齐读学习目标. 【教学目标】(1分钟) 1、理解有理数乘法法则,会熟练运用乘法法则计算. 2、积极交......

    有理数的乘法教案(最终版)

    有理数的乘法法则教案 授课教师:付安奎 学习重点:有理数乘法的运算 学习过程及指导: 一. 板书课题,揭示目标 同学们,我们现在一起来学习有理数的乘法法则(板书或投影) 学习目......