第一篇:六年级数学下册 认识成正比例的量(一)教学设计 苏教版
认识成正比例的量
教学内容:教科书第62—63页的例
1、“试一试”和“练一练”,第66页练习十三的第1—3题。教学目标:
1.使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2.使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3.使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。教学重难点: 教学过程:
一、教学例1 1.谈话引出例1的表格,让学生说一说表中列出了哪两种量。
2.引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。
可先让同桌相互说一说,再组织全班交流。通过交流,使学生初步感知两种量的变化情况:行驶的时间扩大,路程也随着扩大;行驶的时间缩小,路程也随着缩小。
小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。
3.引导学生进一步观察表中的数据,找一找这两种量的变化的规律,启发学生从“变化”中去寻找“不变”。
学生可能会从不同的角度去寻找规律。
教师可根据交流的实际情况,及时引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。
如果学生发现不了上述规律,可引导学生写出几组相对应的路程与时间的比,并求出比值。
4.根据上面发现的规律,进一步启发学生思考:这个比值表示什么?上面的规律能不能用一个式子来表示?
根据学生的回答,教师板书关系式:
路程
= 速度(一定)时间5.教师对两种量之间的关系作具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定,也就是速度一定时,行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。
(板书:路程和时间成正比例)
二、教学“试一试”
1.要求学生根据表中的已知条件先把表格填写完整。
2.根据表中的数据,依次讨论表格下面的四个问题,并仿照例1作适当的板书。3.让学生根据板书完整地说一说铅笔的总价和数量成什么关系。
三、抽象表达正比例的意义
爱心
用心
专心
1.引导学生观察上面的两个例子,说说它们有什么共同点。
2.启发学生思考:如果用字母a和b分别表示两种相关联的量,用y表示它们的比值,正比例关系可以用怎样的式子来表示?
根据学生的回答,板书关系式:
四、巩固练习
1.完成第63页的“练一练”。
先让学生独立思考并作出判断,再要求说明判断理由。2.做练习十三第1~3题。
第1题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。第2题先让学生独立进行判断,再指名说判断的理由。
第3题要先让学生说说题目要求我们把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再让学生在图上画一画。
填好表格后,组织学生讨论,明确:只有当两种相关联的量的比值一定时,它们才能成正比例。
五、全课小结
这节课你学会了什么?通过这节课的学习,你还有哪些收获?
爱心
用心
专心 2
第二篇:"成正比例的量"教学设计[定稿]
成正比例的量
一、教学设计说明:
这部分内容是在教学过比和比例的知识的基础上进行教学的,着重使学生理解正比例的意义。
这节课的教学目标是:
1、使学生感受正比例在实际生活中的存在,经历概括两种量成正比例关系的过程。
2、理解正比例的意义,并能根据正比例的意义正确判断两种量是否成正比例关系。
3、培养学生的抽象概括能力和分析判断能力。
4、培养学生初步的函数意识。
教学重点:学生理解正比例的意义。
教学难点:引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念。
二、教学设计:
(一)复习准备:
已知路程和时间,怎样求速度?已知总价和数量,怎样求单价?已知工作总量和工作时间,怎样求工作效率?已知正方形的周长,怎么求边长?已知正方形的面积,怎么求边长?
(二)导学:
1、出示以下两个表格:
表1:甲车行驶的时间和所行的路程如下表: 时间(时)1 2 3 4 „ 路程(千米)50 100 150 200 „
表2:乙车行驶的时间和所行的路程如下表: 时间(时)1 2 3 4 „ 路程(千米)50 88 120 204 „
2、分组讨论:
(1)
表
1、表2中有哪两种量?它们相关联吗?(2)哪个表中的两种量的变化更有规律?有什么规律?
3、学生汇报讨论结果。汇报时教师引导学生比较上面两种情况的相同点和不同点。同时教师根据学生的回答板书:
相同点:一种量变化,另一种量也随着变化
不同点:表1中甲车的路程和时间这两种量中相对应的两个数的比值一定; 表2中乙车的路程和时间这两种量中相对应的两个数的比值不一定。
4、教师说明:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
这节课,我们就来学习和研究“成正比例的量”。板书课题:成正比例的量
5、教师质疑:根据正比例的意义想一想:上面例子中甲车的路程和时间是不是成正比例的量?为什么?乙车的路程和时间是不是成正比例的量?为什么?构成正比例关系的两种量必须具备哪些条件?
6、尝试:判断下面的每张表格中的两种量是不是成正比例的量?(1)在一间布店的柜台上,有一张写着某种花布的米数和总价的表: 数 量(米)1 2 3 4 „
总 价(元)8.2 16.4 24.6 32.8 „(2)正方形的边长和周长如下表。正方形的边长(厘米)1 2 3 4 „ 正方形的周长(厘米)4 8 12 16 „(3)正方形的边长和面积如下表。正方形的边长(厘米)1 2 3 4 „ 正方形的面积(平方厘米)1 4 9 16 „
7、字母关系式
教师提问:如果字母y 和x 表示两种相关联的量,用k表示它们的比值,正比例关系怎样用字母表示出来?
学生回答后,教师板书:y/x=k(一定)
8、教学例3
例3.每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?
(1)根据正比例的意义,由学生讨论解答.
(2)汇报判断结果,并说明判断的根据.
(三)尝试练习:
判断下面每题中的两种量是不是成正比例,并说明理由。①每小时织布米数一定,织布总米数和时间。
②每人树植棵数一定,参加植树人数和植树总棵数。③订阅《中国少年报》的份数和钱数。④小新跳高的高度和他的身高。⑤长方形的宽一定,它的面积和长。
(四)深化练习
1、a和b相关联的两种量,下面哪个式子表示a和b成正比例?
①a+b=12
②a/b=5
③ab=3/4
④a-b=3.8
⑤b=7a
2、x、y、z是三种相关联的量,已知x×y=z。当()一定时,()和()成正比例。
(五)课堂小结
通过这节课的学习和研究,你们都知道了什么?怎样判断两种量是否成正比例?
第三篇:成正比例的量--教学设计
认识成正比例的量
教学目标:
1、结合具体实例,经历认识成正比例的量的过程。
2、知道正比例的意义,能判断两种量是否成正比例关系,能找出生活中成正比例的实例,并进行交流。
3、对显示生活中成正比例关系的事物有好奇心,在判断成正比例量的过程中,能进行有条理的思考。教学重点:
理解正比例的意义,并能正确判断。教学难点:
对“相关联的量”、“相对应的数”等术语含义的理解。教学过程:
一、问题情境
师:同学们,随着社会的发展和道路的建设,汽车是越来越多的走进我们的家庭,给我们的生活带来便利。你们知道怎样计算汽车每小时行驶多少千米吗?
师:谁知道汽车上用什么装置记录跑的距离呢? 生:里程表。
(学生给不出,教师介绍。师:汽车有一个装置,是专门记录汽车行驶的路程的。)
板书:里程表
师:恩,你能给大家介绍一下里程表的知识吗?
生:里程表是用来记录汽车跑的千米数的,既能告诉我们这次走了多少千米,也能记忆自从出厂以来一共走了多少千米。
师:说的真好。请大家看课件。
课件展示汽车8点开始行驶到9点停止时里程表上数字的变化。
师:(这是一辆汽车从8点开始行驶到9点时里程表上数字的变化,)从刚才的资料中,你了解到什么情况?
学生可能会说:
●汽车8点开始行驶,9点停车,行驶了1小时。● 汽车行驶时,里程表上的数字是8724千米,汽车停止时里程表上的数字是8814千米。
师:你们观察的很仔细!它就是汽车的里程表。根据里程表上的数字,能计算出“汽车1小时行了多少千米吗?”怎样算?
生:用8814减去8724就是汽车1小时行驶的路程。师:谁能说一说为什么这样算?
生:因为汽车没跑时里程表上是8724千米,跑了1小时,里程表上是8814千米,多出来的千米数就是汽车1小时跑的路程。
师:说的真好,请同学们算一算,这辆汽车1小时跑了多少千米? 学生口算,教师板书: 8814-8724=90(千米)
师:如果汽车的速度不变那么,汽车2小时行驶多少千米? 用小黑板出示空白表格。学生边答,教师边填数。
师:3小时行驶了多少千米? 师:4小时、5小时、6小时呢? 学生的回答,师生共同完成表格。
师:观察表格中的数据,你发现了什么? 学生可能会说:
●每增加1小时,路程就增加90千米;
●在这个过程中速度是不变的,都是每小时90千米。●时间越长,所行驶的路程就越长。
师:现在请大家写出相对应的路程和时间的比,并求出比值。
师生共同完成,板书结果:
师:观察写出的比和比值,你发现了什么? 学生可能回答:
●比值都是90。●比值都相等。
●比值就是汽车的速度。
师:同学们说得很好,这个90,既是路程和时间的比,也是汽车的速度。
师:我们以前学过路程、时间和速度的数量关系式:速度×时间=路程。根据刚才写出的比和比值,还可以写出一个关于路程、时间和速度的关系式。谁来说说是什么?
学生说,教师板书
师:这个关系式中,什么量是变化的,什么量是不变的?
生:在这个关系式中路程和时间是变化的,速度是永远不变的。师:速度永远不变,就是说速度是一定的。在关系式后面写出一定。
师:谁来说说在速度一定的情况 下,路程和时间有什么关系?
学生可能会说:
●速度一定,时间越长,行驶的路程越长。●路程随着时间按比例扩大。●路程是时间的倍数。
师:在行程问题中,路程随着时间的变化而变化,时间增加,路程也就随着
增长;反之时间减少,路程也就随着缩小。而且,路程与时间的比值一定也就是速度一定。我们说路程和时间这两种量成正比例。这就是我们今天要学习的新知识:正比例。
板书课题:正比例。
师:在行程问题中,当速度一定时,路程与时间成正比例。生活中还有很多类似的问题,比如:购物问题。
请大家看小黑板: 小黑板出示:
师:买一支自动笔1.6元,请同学们算一算买2支、3支、5支、6支、7支、8支各花多少钱?
学生计算完后,指名说计算结果,教师填在表格中。得出下表:
师:观察表中数据,你发现了什么规律? 学生可能会说:
●买自动笔的数量越多,花的钱 就越多。
●单价一定,也就是花的钱数和买自动笔支数比值一定。●买自动笔的数量越少,花的钱就越少。●花的钱数和买的数量是成比例的量。
师:说得很好。那你能像路程问题一样写出一个式子表示总价、数量和单价之间的关系吗?试一试!
学生自主尝试,然后指名交流,教师板书:
师:买自动笔的总价和买自动笔的数量这两种量成正比例吗?为什么? 学生可能会说:
●是正比例。因为自动笔的单价一定,所以购买的数量越多,所花的钱数越多;反之购买的数量越少,所花的钱数越少。
师:谁能用一句话说出总价和数量的关系呢?
●单价一定,买笔的总价和买自动笔的数量成正比例。师:请同学们分析一下上面的两个例子和数量关系式,你们发现它们有什么共同点?
学生可能会说:
(1)在行程问题中,速度一定,路程随着时间的变化而变化,时间越长,路程越长;反之,时间越短,路程也就越短。在购物问题中,单价一定,总价随
着数量的变化而变化,数量越多,总价就越多;反之,数量越少,总价也就越少。
(2)它们都是有两个量变化,一个量不变。(3)都是两个变化量的比值不变。
第(2)、(3)如说法没有,教师可启发或参与交流。
师:“像上面两个问题中,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量。它们的关系叫做正比例关系。这段话在数学书的第9页请大家打开书,看书。
读一读,并想一想判断两种量是否成正比例关系,需要哪些条件?给学生一点时间让其认真阅读教材。
师:我们已经知道什么叫做成正比例关系的量。谁来说一说两个成正比例关系的量需要具备哪几个条件?
学生可能会说:
●这两个量的比值一定。
●一个量扩大,另一个也按比例
扩大,一个量缩小,另一个量也按比例缩小。
●这两种量是关联的。
●一个量扩大,另一个量也成倍 数增加。
师:下面请同学们看试一试,谁能判断一下题中的两种量是不是成正比例,并说明理由。先同桌互相说一说。
给学生一点同桌讨论的时间,然后指名回答。教师进行及时提问。如: 生:飞机飞行的速度不变,飞行的路程和时间成正比例。师:谁能用自己的话说明理由呢?
生1:飞机飞行的速度不变,就是飞行距离与飞行时间的比值一定,那么,飞行时间越长,飞行距离也就越远。所以,飞行路程和飞行时间成正比例。
生2:飞机飞行的速度不变,飞行的时间越长,飞行的路程也越远。而 且按比例扩大。(也可能说成成倍数增加)师:第二个事例,谁来说一说你是怎样判断的?
生:每千克苹果的价钱一定,就是苹果的单价移动,付出的钱越多,买的苹果就越多。所以,付出的钱数和购买苹果的数量成比例。
师:第三个问题,每月支出的钱数和剩下的钱数是否成正比例? 生:每月收入一定,每月支出的钱数和剩下的钱数不成正比例。
师:为什么?每月收入一定,支出的钱数和剩下的钱数也是有关系的,为什么不成比例?谁来解释一下?
学生可能会有不同说法:
●虽然,它们是相关的量,但
‘每月的收入’不是‘支出的钱数’与‘剩下的钱数’的比值。
●支出的钱数和剩下的钱数不是相除的关系。它们的关系是:每月收入-支出钱数=剩余的钱数。
学生说得有道理就给与肯定。
师:同学们说的很好,看来判断两个量是不是成正比例关系,只看有关系还不行,关键要看这两个量相除的商是不是一定。
师:我们生活中像这样的相关联的量还有很多。请大家看练一练的第1题,判断下面每题中的两种量是不是成正比例,要说明判断理由。
指名回答,学生可能有不同说法。如(1)题: ●轮船行驶的速度一定,也就是行驶的路程除以时间的商一定,所以行驶的路程和时间成正比例。
●轮船行驶的速度一定,那么行驶的路程越快,需要的时间就越多,而且是按比例增加,所以行驶的路程和时间成正比例。
第(4)题中小明跳高的高度和他的身高没有关系,所以不成比例。(5)幼儿园的阿姨分给每个小朋友5块糖,就是每人得到的糖块数
一定,那么,小朋友越多,需要的糖块就越多,而且成倍数增加。所以小朋友的人数和需要糖的总块数成正比例。
师:刚才我们判断了两种量是否成正比例,生活中还有许多成正比例关系的例子和同学交流一下。
学生可能会说出许多,只要合理,就给予肯定。
师:同学们请看练一练的第2题,每箱葡萄12千克,请先完成表格,再判断葡萄的质量和箱数是否成正比例的关系。
学生自主填表,独立思考。交流填的结果。
师:葡萄的质量和箱数成正比例吗?谁来说一说为什么?
生:成正比例。因为每箱葡萄12千克就是葡萄的质量除以箱数的商。
四、课堂小结:
师:通过本节课的学习,你学到了什么新本领? 其实啊,在生活中还有很多的数学问题,我们要做生活的有心人,不断去发现和探索其中的奥秘!
第四篇:《认识成正比例的量》的教学反思
【《认识成正比例的量》教学反思】 认识成正比例的量这一部分内容是在教学过比和比例知识的基础上进行教学的,着重理解正比例的意义,关系是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能运用它解决一些实际问题,同时可以进一步渗透函数思想。我在教学中注重以下几点:
一、从观察中思考
小学生学习数学是一个思考的过程,“可以说,没有思考就没有真正的数学学习。本课教学中,我注意把思考贯穿教学的全过程。我出示书本例1的表格后,引导学生进行观察,并思考:表格中的两种量怎样变化的?两种量之间有怎样的关系?你发现了什么?从而得出:两个相关联的量,初步渗透正比例的概念。这样的教学,让全体学生在观察中思考、在思考中探索、在探索中获得新知,大大地提高了学习的效率。
二、在合作交流中感悟
在本课的设计中,我本着“以学生为主体”的思想,在引导学生初步认识了两个相关联的量后,让学生采取同桌两人互相说说的方式自学“试一试”,在小组里进行合作讨论,做到:学生自己能学的自己学,自己能做的自己做,培养合作互动的精神,从而归纳出正比例的意义。两种相关联的量一种量扩大或缩小多少倍,另一种量也随着扩大或缩小多少倍。两种相关联的量的比值是一定的”。尽管学生观察、归纳的程度不一,但确实符合学生的认知
三、在生活中运用
归纳总结出了正比例的意义后,我安排了让学生说说生活中的一些正比例关系,并判断一些量是否成正比例,培养学生综合运用知识的能力,从而体会到数学的内在价值。
【《认识成正比例的量》教学反思】 前几天,以鼓楼杭老师《认识成正比例的量》的设计为蓝本,加上自己的理解与调整,我上了《认识成正比例的量》这课。上完之后,我和我的学生感觉都很棒。在此,感谢杭老师精彩的预案,并希望她能“佳作”频频,多给我们提供借鉴的机会。同时,感谢ME网罗了这么多的教学精英,为大家提供了交流学习的机会。
【她的设计】
《认识成正比例的量》这节课,我很欣赏杭老师设计中的以下特色:
一、趣字当头,乐在其中。
本课的设计非常注重趣味性,多处设置符合学生年龄特点的游戏、儿歌等:为理解“关联”而设置的课前热身“听指令做动作”、为新课即兴提供正比例素材的“剪刀石头布”游戏、伴随着“数青蛙”的儿歌进行的数青蛙活动等,使学生乐在其中,很享受这个学习的过程。
二、从“关联”切入,有效突破认知难点。
两个量要成正比例,必须符合两个条件:①两个量是相关联的量,一个量的变化引起另一个量的变化。②两个量想对应的比值一定。在这两个正比例的本质属性中,认知难点是认识相关联的量。而本课就是从“关联”切入的,先设计一个“听指令做动作”的游戏,让学生体验“关联”,再顺水推舟地把这种生活中的“关联”迁移到数学上。在认识“相关联的量”时,为学生提供了多个表格素材“已读页数与未读页数”、“每天读的页数与需要天数”等,使学生充分理解与认识了“怎样的两个量是相关联的量”。
三、提供多种素材,使“正比例”的本质自然凸显。
在探究发现中,教师为学生提供了多种“成正比例的量”的素材:“剪刀石头布”游戏中即兴产生的表格、教材例题1的表格等,使学生累积与体验了大量的“成正比例关系”的内在规律,使“成正比例的量”的本质属性自然地凸显
学生眼前。待到“观察比较、归纳概念”时,本质属性则是呼之欲出、水到渠成。
四、练习新颖且丰满。
本课的练习很新颖,除了肩负巩固新知的作用外,还承载了很多独到的内涵,就像作家笔下塑造的人物形象般,很丰满。如:
“生活中的正比例关系”,让学生体会到只要留心观察,正比例关系在生活中比比皆是,了解生活中变量的规律,可以帮助我们更好地认识世界。
“学习到现在,你对自己的表现满意吗?如果全班的人数一定,满意与较满意的人数成正比例吗?”既激发了学生的兴趣,又培养了学生自我评价学习过程的意识。
“数学周记”那题,把原来的一个判断题“人的年龄与体重成正比例。()”转变成以学生数学周记的形式呈现。既让学生萌发了寻找生活中正比例关系的欲望,又给我们提供了本课作业的新方向——数学周记。
“正比例的名言欣赏”,既有利于学生更好地理解正比例,又勉励了学生,教育了学生。
【我的调整】
我在执教本课时,对杭老师的设计作了某些小小的调整:
1、“数青蛙活动”置后。
杭老师的“数青蛙活动”是设置在“认识相关联的量”的第三部分并贯穿到“归纳概念”环节的。但我认为“数青蛙活动”中形成的“成正比例的量”有太多组了,有点纷繁复杂,不利于放置在认识本质属性的环节。所以我把数青蛙活动放置在后面的巩固练习中处理。
2、观察表格中,增加一问,使认识更深刻。
在认识“相关联的量”中观察表格一环,除了让学生观察思考“表中有哪两个量?这两个量是怎样变化的?”之外,我认为还应该在这两问之后增加这样一问“从表格中,你能找到一些不变的东西吗?”,这样,既可让学生体会到这些量的变化不是杂乱无章的变化,而是遵循着一定的规则在变化,又可为学生后续发现“成正比例的量”中相对应的比值不变埋下伏笔。
3、课容量较大,适当删减了一些内容。
为了节约时间,“数学书的研究”换成了“购买QQ糖的情况表”,名言欣赏从4句缩减成了1句并放在课尾(毕竟是数学课)。
4、课后作业增加了题为“生活中的正比例”的数学周记一篇。
【总而言之】
当然,本课对教师的调控能力提出了很高的要求,特别是在引导发现、归纳概括环节变数很大,要随时跟着学生的节拍不断调整预案、引领生成。
上这样的课,很有挑战性!
【《认识成正比例的量》教学反思】 数学教学要让学生学习有价值的数学和必需的数学,就应该密切联系学生的生活,使学生感到数学与生活密不可分,数学是生动的、有趣的,而不是单调的、枯燥的。数学教学中应该培养学生学会用数学的眼光观察问题、分析问题,使数学问题生活化,生活问题数学化,从而激起学生学习数学的积极性和学好数学、用好数学的自信心。
正比例意义的教学,研究的是数量关系中两种相关联的量的变化规律,如何使这个抽象的内容变得生动又形象,本课进行了设计。
课始,教师联系生活实际导入,让数学从生活中来。通过教师的举例,说明日常生活和学习活动中的许多事物相互之间有一定的联系,如天气和穿衣、秋风和落叶以及学习方法和学习效益等。进而让学生自己举例,使学生进一步体会到生活和学习中确实有许多事物相互之间有着密切的联系,一个量发生变化,另一个量也随着变化,从而非常自然地引入相关联的量而且它们之间具有更强的规律性,这样即使学生感受到数学和生活的联系,又有效地激起学生探求新知的欲望。
最后,联系生活结束全课,让数学到生
中去。在学习了正比例的意义后,让学生联系生活解决实际问题,使学生深切地体会到数学知识和生活实际的紧密联系。教学中用教师口述,学生随机口答的方式,把学生带入特定的生活情景,有效解决问题。先要求同学们有序的走出教室,每次出去两名同学,从而建立出去的人数和次数成正比例关系的条件。这样即使学生感到数学就在我们身边,又使课堂教学形成最后的高潮。
第五篇:六年级数学下册《正比例》教学设计
六年级数学下册 《正比例》教学设计
教学目标
1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。
2.能根据正比例的意义,判断两个相关联的量是不是成正比例。
3.结合丰富的事例,认识正比例。教学重点
1.结合丰富的事例,认识正比例。
2.能根据正比例的意义,判断两个相关联的量是不是成正比例。教学难点
能根据正比例的意义,判断两个相关联的量是不是成正比例。教学过程
活动一:在情境中感受两种相关联的量之间的变化规律。
(一)情境一
1.观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。
2.填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?
说说从数据中发现了什么?
3.小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。
说说你发现的规律。
(二)情境二
1.一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:
2.请把下表填写完整。
3.从表中你发现了什么规律?
说说你发现的规律:路程与时间的比值(速度)相同。
(三)情境三
1.一些人买一种苹果,购买苹果的质量和应付的钱数如下。
2.把表填写完整。
3.从表中发现了什么规律?
应付的钱数与质量的比值(也就是单价)相同。
4.说说以上两个例子有什么共同的特点。
小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。
5.正比例关系:
(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。
(2)购买苹果应付的钱数与质量有什么关系?
6.观察思考成正比例的量有什么特征?
一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。
(四)想一想
1.正方形的周长与边长成正比例吗?面积与边长呢?为什么?
师小结:
(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。
请你也试着说一说。
(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。
请生用自己的语言说一说。
2.小明和爸爸的年龄变化情况如下:
(1)把表填写完整。
(2)父子的年龄成正比例吗?为什么?
(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。
与同桌交流,再集体汇报。
在老师的小结中感受并总结正比例关系的特征。
活动二:练一练。
1.判断下面各题中的两个量,是否成正比例,并说明理由。
(1)每袋大米的质量一定,大米的总质量和袋数。
(2)一个人的身高和年龄。
(3)宽不变,长方形的周长与长。
2.根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。
平行四边形的面积随高的变化而变化,即平行四边形的面积与高的比值不变,所以平行四边形的面积与高成正比例。(也可以用公式进行说明)
3.买邮票的枚数与应付的钱数成正比例吗?填写表格。先填写表格,再说明理由。
应付的钱数随购买的枚数的变化而变化,而且比值不变。所以应付的钱数与买邮票的枚数成正比例。板书设计:
正比例
成正比例的量:
(1)存在着两个变量,它们的变化存在着关系。(2)这两个变量所对应的数的比值保持不变。