第一篇:《成正比例的量》教学反思
《成正比例的量》教学反思
福和希望小学:匡俊
这节课是第一课时,它的设计和教学很关键。我的教学主要体现以下三点:
1.使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2.让学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3.让学生进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
本节课的教学重点是结合实际情境认识成正比例量的特点,加深对正比例量的理解。教学难点是能根据正比例的意义判断两种相关联的量是否成正比例。教学关键是重视不同数学知识的综合应用,让学生感受数学知识的内在联系,不断提高解决实际问题的能力。
第二篇:《成正比例的量》教学反思
本节课对学生是新的知识点,在实施授课时,我先用“时间和路程”的表格,出示三个问题逐一引导学生(①表格里有几种量?分别是什么?②当一种量变化(增大)时,另一种量怎样?③两种量中相对应的两个数的比是什么?比值分别是什么?)。
学生很清晰地回答了①和②两个问题,当回答第②个问题时,告诉他们像这样,两种相关联的量一种量变化,另一种量也随它变化。对第③个问题,学生能说出比是速度,比值都是一样的,即90千米/小时,进而引导学生如果两种相关联的量中相对应的两个数的比值一定时,小学数学教学反思,这两种量叫做成正比例的量,表中的路程和时间是成正比例的量。学生感到很好理解,也很明白。可当我问单价一定,数量和总价是不是相关联的量?为什么?点到的学生都说是,但说到原因时,都认为是比值一定,所以是相关联的量。看来学生对“相关联的量”和“成正比例的量”理解不清,又举了一些例子,结合定义,学生才理解。
下课后,我在想原因,是不是把“相关联的量”和“成正比例的量”一下给学生,对学生来说都是新名词,出现了听起来明白,用起来不会的现象。结合我的思考。在第二个班上课时,我先把“相关联的量”引入后,给学生举一些相关联的量的例子,又让学生举例,接着让学生总结如何判断两种量是否是相关联的量,随后举出一本书看的页数和剩下的页数、路程和时间、圆的周长和半径,让学生分别求两种量的比值,学生发现,有的比值是同一个数,有的是不同的数,进而告诉学生成正比例的量的概念。
第二个班的学生对练习的回答情况,可以看出学生掌握的较好。我感到分两次把概念给他们,并把每一个都讲透,学生会学的很快,我们讲的也很轻松。
两节课后,同组交流时,刘老师还告诉我一种设计方法,由圆引入,半径和周长、半径和面积,它们都是两关联的量,一个是成正比例的量,一个不是。我感觉这种设计方案也很好,有机会的一定试试。
第三篇:《成正比例的量》教学反思500字
成正比例的量是人教版六年级下册中的一个内容,是在学生学习了比例的意义和基本性质之后的一个内容,通过学习,使学生理解正比例的意义,会正确判断成正比例的量,并初步了解表示成正比例的量的图象特征,并能根据图象解决有关的简单问题。
根据教材和内容的特点,我选择了师生互动,以教师的“引”为主导,学生为主体,让学生在互动交流中去理解成正比例的量这一概念。首先,让学生弄清什么叫“两种相关联”的量,我引导学生从表格中去发现时间和路程两种量的变化情况,在变化中发现:路程随着时间的变化而变化的,同时引导学生初步感知成正比例的两种量的变化方向性。其次,我进一步引导学生考虑:路程随着时间的变化而变化,在这一变化过程中,有什么规律呢?学生看了表之后,发现路程和时间比的比值是一样的,都是90。这时,教师也举了一个例子,就是450÷9=50,从反面的例子,让学生理解相对应的路程和时间的比的比值都是90,从而突破了正比例关系的第二个难点。两种量中相对应的两个数的比会一定。把学生对成正比例量的意义的理解成一系统。由于学生还是第一次接触这一概念,之后,例2的学习还是让学生对比着例1来自己理解数量和总价的正比例关系。最后,在两个例题学习的基础上总结出成正比例量的意义,把这意义从局部的路程和时间、数量和总价推广到其他数量之间的关系。
不足之处是在练习方面,学生找不到哪些数量成正比例时应让学生讨论,每个正比例关系都应让学生互相说一说,这样或许会懂得更多。
第四篇:《认识成正比例的量》的教学反思
【《认识成正比例的量》教学反思】 认识成正比例的量这一部分内容是在教学过比和比例知识的基础上进行教学的,着重理解正比例的意义,关系是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能运用它解决一些实际问题,同时可以进一步渗透函数思想。我在教学中注重以下几点:
一、从观察中思考
小学生学习数学是一个思考的过程,“可以说,没有思考就没有真正的数学学习。本课教学中,我注意把思考贯穿教学的全过程。我出示书本例1的表格后,引导学生进行观察,并思考:表格中的两种量怎样变化的?两种量之间有怎样的关系?你发现了什么?从而得出:两个相关联的量,初步渗透正比例的概念。这样的教学,让全体学生在观察中思考、在思考中探索、在探索中获得新知,大大地提高了学习的效率。
二、在合作交流中感悟
在本课的设计中,我本着“以学生为主体”的思想,在引导学生初步认识了两个相关联的量后,让学生采取同桌两人互相说说的方式自学“试一试”,在小组里进行合作讨论,做到:学生自己能学的自己学,自己能做的自己做,培养合作互动的精神,从而归纳出正比例的意义。两种相关联的量一种量扩大或缩小多少倍,另一种量也随着扩大或缩小多少倍。两种相关联的量的比值是一定的”。尽管学生观察、归纳的程度不一,但确实符合学生的认知
三、在生活中运用
归纳总结出了正比例的意义后,我安排了让学生说说生活中的一些正比例关系,并判断一些量是否成正比例,培养学生综合运用知识的能力,从而体会到数学的内在价值。
【《认识成正比例的量》教学反思】 前几天,以鼓楼杭老师《认识成正比例的量》的设计为蓝本,加上自己的理解与调整,我上了《认识成正比例的量》这课。上完之后,我和我的学生感觉都很棒。在此,感谢杭老师精彩的预案,并希望她能“佳作”频频,多给我们提供借鉴的机会。同时,感谢ME网罗了这么多的教学精英,为大家提供了交流学习的机会。
【她的设计】
《认识成正比例的量》这节课,我很欣赏杭老师设计中的以下特色:
一、趣字当头,乐在其中。
本课的设计非常注重趣味性,多处设置符合学生年龄特点的游戏、儿歌等:为理解“关联”而设置的课前热身“听指令做动作”、为新课即兴提供正比例素材的“剪刀石头布”游戏、伴随着“数青蛙”的儿歌进行的数青蛙活动等,使学生乐在其中,很享受这个学习的过程。
二、从“关联”切入,有效突破认知难点。
两个量要成正比例,必须符合两个条件:①两个量是相关联的量,一个量的变化引起另一个量的变化。②两个量想对应的比值一定。在这两个正比例的本质属性中,认知难点是认识相关联的量。而本课就是从“关联”切入的,先设计一个“听指令做动作”的游戏,让学生体验“关联”,再顺水推舟地把这种生活中的“关联”迁移到数学上。在认识“相关联的量”时,为学生提供了多个表格素材“已读页数与未读页数”、“每天读的页数与需要天数”等,使学生充分理解与认识了“怎样的两个量是相关联的量”。
三、提供多种素材,使“正比例”的本质自然凸显。
在探究发现中,教师为学生提供了多种“成正比例的量”的素材:“剪刀石头布”游戏中即兴产生的表格、教材例题1的表格等,使学生累积与体验了大量的“成正比例关系”的内在规律,使“成正比例的量”的本质属性自然地凸显
学生眼前。待到“观察比较、归纳概念”时,本质属性则是呼之欲出、水到渠成。
四、练习新颖且丰满。
本课的练习很新颖,除了肩负巩固新知的作用外,还承载了很多独到的内涵,就像作家笔下塑造的人物形象般,很丰满。如:
“生活中的正比例关系”,让学生体会到只要留心观察,正比例关系在生活中比比皆是,了解生活中变量的规律,可以帮助我们更好地认识世界。
“学习到现在,你对自己的表现满意吗?如果全班的人数一定,满意与较满意的人数成正比例吗?”既激发了学生的兴趣,又培养了学生自我评价学习过程的意识。
“数学周记”那题,把原来的一个判断题“人的年龄与体重成正比例。()”转变成以学生数学周记的形式呈现。既让学生萌发了寻找生活中正比例关系的欲望,又给我们提供了本课作业的新方向——数学周记。
“正比例的名言欣赏”,既有利于学生更好地理解正比例,又勉励了学生,教育了学生。
【我的调整】
我在执教本课时,对杭老师的设计作了某些小小的调整:
1、“数青蛙活动”置后。
杭老师的“数青蛙活动”是设置在“认识相关联的量”的第三部分并贯穿到“归纳概念”环节的。但我认为“数青蛙活动”中形成的“成正比例的量”有太多组了,有点纷繁复杂,不利于放置在认识本质属性的环节。所以我把数青蛙活动放置在后面的巩固练习中处理。
2、观察表格中,增加一问,使认识更深刻。
在认识“相关联的量”中观察表格一环,除了让学生观察思考“表中有哪两个量?这两个量是怎样变化的?”之外,我认为还应该在这两问之后增加这样一问“从表格中,你能找到一些不变的东西吗?”,这样,既可让学生体会到这些量的变化不是杂乱无章的变化,而是遵循着一定的规则在变化,又可为学生后续发现“成正比例的量”中相对应的比值不变埋下伏笔。
3、课容量较大,适当删减了一些内容。
为了节约时间,“数学书的研究”换成了“购买QQ糖的情况表”,名言欣赏从4句缩减成了1句并放在课尾(毕竟是数学课)。
4、课后作业增加了题为“生活中的正比例”的数学周记一篇。
【总而言之】
当然,本课对教师的调控能力提出了很高的要求,特别是在引导发现、归纳概括环节变数很大,要随时跟着学生的节拍不断调整预案、引领生成。
上这样的课,很有挑战性!
【《认识成正比例的量》教学反思】 数学教学要让学生学习有价值的数学和必需的数学,就应该密切联系学生的生活,使学生感到数学与生活密不可分,数学是生动的、有趣的,而不是单调的、枯燥的。数学教学中应该培养学生学会用数学的眼光观察问题、分析问题,使数学问题生活化,生活问题数学化,从而激起学生学习数学的积极性和学好数学、用好数学的自信心。
正比例意义的教学,研究的是数量关系中两种相关联的量的变化规律,如何使这个抽象的内容变得生动又形象,本课进行了设计。
课始,教师联系生活实际导入,让数学从生活中来。通过教师的举例,说明日常生活和学习活动中的许多事物相互之间有一定的联系,如天气和穿衣、秋风和落叶以及学习方法和学习效益等。进而让学生自己举例,使学生进一步体会到生活和学习中确实有许多事物相互之间有着密切的联系,一个量发生变化,另一个量也随着变化,从而非常自然地引入相关联的量而且它们之间具有更强的规律性,这样即使学生感受到数学和生活的联系,又有效地激起学生探求新知的欲望。
最后,联系生活结束全课,让数学到生
中去。在学习了正比例的意义后,让学生联系生活解决实际问题,使学生深切地体会到数学知识和生活实际的紧密联系。教学中用教师口述,学生随机口答的方式,把学生带入特定的生活情景,有效解决问题。先要求同学们有序的走出教室,每次出去两名同学,从而建立出去的人数和次数成正比例关系的条件。这样即使学生感到数学就在我们身边,又使课堂教学形成最后的高潮。
第五篇:"成正比例的量"教学设计[定稿]
成正比例的量
一、教学设计说明:
这部分内容是在教学过比和比例的知识的基础上进行教学的,着重使学生理解正比例的意义。
这节课的教学目标是:
1、使学生感受正比例在实际生活中的存在,经历概括两种量成正比例关系的过程。
2、理解正比例的意义,并能根据正比例的意义正确判断两种量是否成正比例关系。
3、培养学生的抽象概括能力和分析判断能力。
4、培养学生初步的函数意识。
教学重点:学生理解正比例的意义。
教学难点:引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念。
二、教学设计:
(一)复习准备:
已知路程和时间,怎样求速度?已知总价和数量,怎样求单价?已知工作总量和工作时间,怎样求工作效率?已知正方形的周长,怎么求边长?已知正方形的面积,怎么求边长?
(二)导学:
1、出示以下两个表格:
表1:甲车行驶的时间和所行的路程如下表: 时间(时)1 2 3 4 „ 路程(千米)50 100 150 200 „
表2:乙车行驶的时间和所行的路程如下表: 时间(时)1 2 3 4 „ 路程(千米)50 88 120 204 „
2、分组讨论:
(1)
表
1、表2中有哪两种量?它们相关联吗?(2)哪个表中的两种量的变化更有规律?有什么规律?
3、学生汇报讨论结果。汇报时教师引导学生比较上面两种情况的相同点和不同点。同时教师根据学生的回答板书:
相同点:一种量变化,另一种量也随着变化
不同点:表1中甲车的路程和时间这两种量中相对应的两个数的比值一定; 表2中乙车的路程和时间这两种量中相对应的两个数的比值不一定。
4、教师说明:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
这节课,我们就来学习和研究“成正比例的量”。板书课题:成正比例的量
5、教师质疑:根据正比例的意义想一想:上面例子中甲车的路程和时间是不是成正比例的量?为什么?乙车的路程和时间是不是成正比例的量?为什么?构成正比例关系的两种量必须具备哪些条件?
6、尝试:判断下面的每张表格中的两种量是不是成正比例的量?(1)在一间布店的柜台上,有一张写着某种花布的米数和总价的表: 数 量(米)1 2 3 4 „
总 价(元)8.2 16.4 24.6 32.8 „(2)正方形的边长和周长如下表。正方形的边长(厘米)1 2 3 4 „ 正方形的周长(厘米)4 8 12 16 „(3)正方形的边长和面积如下表。正方形的边长(厘米)1 2 3 4 „ 正方形的面积(平方厘米)1 4 9 16 „
7、字母关系式
教师提问:如果字母y 和x 表示两种相关联的量,用k表示它们的比值,正比例关系怎样用字母表示出来?
学生回答后,教师板书:y/x=k(一定)
8、教学例3
例3.每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?
(1)根据正比例的意义,由学生讨论解答.
(2)汇报判断结果,并说明判断的根据.
(三)尝试练习:
判断下面每题中的两种量是不是成正比例,并说明理由。①每小时织布米数一定,织布总米数和时间。
②每人树植棵数一定,参加植树人数和植树总棵数。③订阅《中国少年报》的份数和钱数。④小新跳高的高度和他的身高。⑤长方形的宽一定,它的面积和长。
(四)深化练习
1、a和b相关联的两种量,下面哪个式子表示a和b成正比例?
①a+b=12
②a/b=5
③ab=3/4
④a-b=3.8
⑤b=7a
2、x、y、z是三种相关联的量,已知x×y=z。当()一定时,()和()成正比例。
(五)课堂小结
通过这节课的学习和研究,你们都知道了什么?怎样判断两种量是否成正比例?