一元一次方程的应用-和差倍分问题(教案)

时间:2019-05-12 20:29:46下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《一元一次方程的应用-和差倍分问题(教案)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《一元一次方程的应用-和差倍分问题(教案)》。

第一篇:一元一次方程的应用-和差倍分问题(教案)

北京市陈经纶中学分校 课时教案活页纸 总课题

列一元一次方程解应用题

总课时

6课时

第 课时

课题

和差倍分问题

课型

新授课

2011年 10月24

教材 分析

在运用一元一次方程解决实际问题的处理上,教材力求体现实际问题转化为数学问题的过程,分析问题、解决问题的过程,使学生在解决数学问题的过程中学习、并形成解决问题的策略,理解数学的思想和方法,学会数学地思考。在教科书的第四节安排了“问题解决的基本步骤”,初步介绍了波利亚的解决问题模式(四个步骤),这样的处理方式既符合学生的认知特点,又突出了问题解决的过程和方法。当然,这种方法在后续内容的学习中会不断加以渗透和应用,在九年级上、下各设置一章予以阐述。

学情 分析

学生在基本掌握一元一次方程的解法后,教科书通过几个典型例子,引导学生把实际问题转化为数学问题,建立方程的模型,体验一元一次方程与实际的密切联系。通过例题的教学,使学生逐步掌握运用方程解决实际问题的一般过程;通过画线段示意图、列表等手段使学生初步学会分析问题、寻找等量关系的方法;通过不同的设元方法、变换问题的条件、根据方程设计问题情境等内容,培养学生思维的灵活性、发散性,最终达到提高解决问题能力的目的。

教学 目标

熟悉一元一次方程的应用中的“和差倍分问题”,体会借助图表分析复杂问题中的数量关系,提高学生分析问题、解决问题的能力,进一步体会方程解决问题的作用,树立把实际问题转化为数学问题的思想。

教学 重点

让学生进一步体会方程是刻画现实世界的重要数学模型,而解方程是解决实际问题的重要组成部分;

在学习移项法则的基础上,学习含有括号的一元一次方程的解法。

教学 难点

探索列方程解决问题的过程;

教学 方法

启发式讨论

教具

PPT和导学案

教师活动

学生活动

时间 设计意图

教学 过程

[活动1]

复习巩固已经熟悉的两个等量关系式 回顾: 关于怎样根据实际问题中的数量关系列出方程 两个基本的相等关系: 总量=所有分量之和

表示同一个量的两个式子相等 教师展示问题,学生测试。

问题1.顾客用540元买了两种布料共138尺,其中蓝布料每尺3元,黑布料每尺5元,两种布料各买了多少?

教师:这个问题已知条件较多,数量关系较复杂,列算式有一定难度。

列出图表,帮助学生分析题意,分清已知量、未知量,寻找题目中的数量关系

学生:思考

蓝布料

黑布料

总数

买的数量

x

138-x 138

每尺价钱 5

共花钱数

3x

5(138-x)540

问题:

学生:解:设买蓝布x俄尺,则买黑布(138-x)俄尺。3x + 5(138-x)= 540 6

由买布问题引出带括号的方程。体会“去括号”在解决实际问题中的应用。通过列表格分析已知与未知间的关系及相等关系列出方程,揭示实际问题向数学问题的转化。巩固列方程解应用题的一般步骤。完全掌握总量=所有分量之和

同时初步尝试运用列表方法分析实际问题,体会此种方法的益处。

问题2.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生? [活动2] 实践练习活动

一元一次方程解实际问题的一般步骤

审题

设未知数

找相等关系

列方程

解方程 答题(先检验再答)

练习1:学校组织初一年级79名同学捐旧报纸,1班每人捐5斤,二班每人捐4斤,总共捐了354斤,求两班各有多少人?

练习2:蜘蛛有8条腿,蜻蜓有6条腿,现在有蜻蜓、蜘蛛若干只,它们共有270条腿,且蜻蜓的只数是蜘蛛的2倍少5只,问蜘蛛、蜻蜓各有多少只? 解:设有蜘蛛x只,蜻蜓有(2x-5)只,则8x+6(2x-5)=270

解方程得

x=15,2x-5=25 答:蜘蛛有15只,蜻蜓有25只。6

让学生巩固找出相等关系列出方程 数量关系:

各部分之和=全体

让学生体会:找相等关系是列方程的关键所在。培养学生观察、概括及语言表达能力。

充分调动学生学习的积极性,让学生各抒己见,充分展开讨论,得到不同的方程,不同的解法。

及时巩固所学的知识。

[活动3] 配套问题和调度问题

例2.某车间有28名工人,生产特种螺栓和螺母,一个螺栓的两头各套上一螺母配成一套,每人每天平均生产螺栓12个或螺母18个,问多少工人生产螺栓,多少工人生产螺母,才能使一天所生产的螺栓和螺母正好配套? 生产调度问题(劳力调配问题)例3:甲班有45人,乙班有39人,现在需要从甲、乙两班各抽调一些同学去参加歌咏比赛。如果甲班抽调的人数比乙班多1人,那么甲班剩余的人数恰好是乙班剩余人数的2倍。问从甲、乙两班各抽调了多少人参加歌咏比赛?

分析:

本题中的配套需满足的等量 关系是:

生产的螺栓的件数×2=生产的螺母的件数 新问题:

教师:解:设x名工人生产螺栓,(28-x)名工人生产螺母,列方程得× 12x=18(28-x)解得

x=12,生产螺母的人数为 28-x=16 答:12名工人生产螺栓,16名工人生产螺母,才能使一天所生产的螺栓和螺帽正好配套

巩固列表格分析已知与未知间的关系的方法,根据倍数关系列方程 在激发学生的学习兴趣的同时,巩固列表的方法解决实际问题

[活动4] 某抗洪突击队有50名队员,承担着保护大堤的任务。已知在相同的时间内,每名队员可装土7袋或运土3袋。问应如何分配人数,才能使装好的土及时运到大堤上?

思考已知5台A型机器一天的产品装满8箱还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求每箱有多少个产品? 教师提出新问题:你还能列出其他方程吗?如果能,你依据的是哪个相等关系?

相等关系往往不只一个,所以列方程也不只一个。引导学生观察、概括,明确方程特点,把握方程本质。

师生归纳

[活动5] 归纳总结巩固发展 布置作业

学生总结含有一元一次方程应用题的步骤。1 审题 设未知数

找相等关系

列方程

解方程 答题(先检验再答)

使学生明确解列方程解应用题的一般步骤。通过小结,使学生把所学的知识系统化

作业 布置

课后作业

课本:P94 7、8、9

P102 9、10、12 《西城探究》

板书 设计

课后 反思

第二篇:差倍问题教案

Abc暑期奥数班课程安排

第三讲 差倍问题

教学目标: 进一步掌握运用画图线的方法表示差倍关系中的两个量。比较和倍问题的阶梯方法的基础上,熟练掌握解答差倍问题的方法,理解和倍问题中各个量之间的关系。

教学重点:运用画图线的方法,准确分析差倍关系中各量之间的关系。教学难点:能够理解差倍应用题中各倍数和差倍数的量得关系。教学过程:

前面讲了应用线段图分析“和倍”应用题,这种方法使分析的问题具体、形象,使我们能比较顺利地解答此类应用题.下面我们再来研究与“和倍”问题有相似之处的“差倍”应用题。“差倍问题”就是已知两个数的差和它们的倍数关系,求这两个数。

例1:

甲班的图书本数比乙班多80本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?

分析与解答:

上图把乙班的图书本数看作1倍,甲班的图书本数是乙班的3倍,那么甲班的图书本数比乙班多2倍.又知“甲班的图书比乙班多80本”,即2倍与80本相对应,可以理解为2倍是80本,这样可以算出1倍是多少本.最后就可以求出甲、乙班各有图书多少本。解:①乙班的本数: 80÷(3-1)=40(本)

②甲班的本数: 40×3=120(本)

或40+80=120(本)。

验算:120-40=80(本)

120÷40=3(倍)

答:甲班有图书120本,乙班有图书40本。

拓1.菜市场上萝卜比青菜多1200千克,萝卜的重量比青菜的3倍多200千克。.萝卜青菜各有多少千克?

例2:

菜站运来的白菜是萝卜的3倍,卖出白菜1800千克,萝卜300千克,剩下的两种蔬菜的重量相等,菜站运来的白菜和萝卜各是多少千克?

分析与解答:

这样想: 根据“菜站运来的白莱是萝卜的3倍”应把运来的萝卜的重量看作1倍;“卖出白菜1800千克,萝卜300千克后,剩下两种蔬菜的重量正好相等”,说明运来的白菜比萝卜多1800-300=1500(千克).从上图中清楚地看到这个重量相当于萝卜重量的3-1=2(倍),这样就可以

Abc暑期奥数班课程安排

先求出运来的萝卜是多少千克,再求运来的白菜是多少千克。

解:①运来萝卜:(1800-300)÷(3-1)=750(千克)

②运来白菜: 750×3=2250(千克)

验算:

2250-1800=450(千克)(白菜剩下部分)

750-300=450(千克)(萝卜剩下部分)

答:菜站运来白菜2250千克,萝卜750千克。

拓1.某校买来的排球比足球多50个,如果再买40个排球,排球的个数就是足球的6倍。学校买来的排球和足球各有多少个?

拓2.甲仓存粮吨数是乙仓的3倍,如果甲仓取出80吨运到乙仓,甲、乙两仓存粮吨数正好相等。甲乙两仓原来各存粮多少吨?

拓3.有甲、乙两个书架,甲书架上的书是乙书架上的4倍。如果从甲书架上取出180本书放到乙书架上,这时两个书架上的书的本数相等。甲、乙两个书架上原来各有书多少本?

例3:

有两根同样长的绳子,第一根截去12米,第二根接上14米,这时第二根长度是第一根长的3倍,两根绳子原来各长多少米?

分析与解答:

上图,两根绳子原来的长度一样长,但是从第一根截去12米,第二根绳子又接上14米后,第二根的长度是第一根的3倍.应该把变化后的第一根长度看作1倍,而12+14=26(米),正好相当于第一根绳子剩下的长度的2倍.所以,当从第一根截去12米后剩下的长度可以求出来了,那么第一根、第二根原有长度也就可以求出来了。

解:①第一根截去12米剩下的长度:

(12+14)÷(3-1)=13(米)

②两根绳子原来的长度:13+12=25(米)

答:两根绳子原来各长25米。

自己进行验算,看答案是否正确.另外还可以想想,有无其他方法求两根绳子原来各有多长.小结:解答这类题的关键是要找出两个数量的差与两个数量的倍数的差的对应关系.用除法求出1倍数,也就是较小的数,再求几倍数。

解题规律:

差÷倍数的差=1倍数(较小数)

1倍数×几倍=几倍的数(较大的数)

或:较小的数+差=较大的数。

拓1.妈妈把糖平均分给哥哥和弟弟,哥哥给弟弟4块后,弟弟的糖就是哥哥的两倍。哥哥和弟弟原来各有几块糖?

例4:

三(1)班与三(2)班原有图书数一样多.后来,三(1)班又买来新书74本,三(2)班从

Abc暑期奥数班课程安排

本班原书中拿出96本送给一年级小同学,这时,三(1)班图书是三(2)班的3倍,求两班原有图书各多少本?

分析与解答:

两个班原有图书一样多.后来三(1)班又买新书74本,即增加了74本;三(2)班从本班原有图书中取出96本送给一年级同学,则图书减少了96本.结果是一个班增加,另一个班减少,这样两个班图书就相差96+74=170(本),也就是三(1)班比三(2)班多了170本图书.又知三(1)班现有图书是三(2)班图书的3倍,可见这170本图书就相当于三(2)班所剩图书的3-1=2倍,三(2)班所剩图书本数就可以求出来了,随之原有图书本数也就求出来了(见上图)。

解:①后来三(1)班比三(2)班图书多多少本?

74+96=170(本)

②三(2)班剩下的图书是多少本?

170÷(3-1)=85(本)

③三(2)班原有图书多少本? 85+96=181(本)(两个班原有图书一样多)

综合算式:

(74+96)÷(3-1)+96 =170÷2+96 =85+96 =181(本)

验算:181+74=255(本)

181-96=85(本)

255÷85=3(倍)

答:两班原来各有图书181本。

拓1.学校里白粉笔的盒数是彩色粉笔的4倍,如果白色粉笔和彩色粉笔各购进12盒,那么白粉笔的盒数是彩色粉笔的3倍。原来白粉笔和彩色粉笔各有多少盒?

例5甲工程队有72人,乙工程队有42人,将两个工程队调走同样多的人数后,甲工程队剩下的人数是乙工程队的3倍,甲乙两个工程队各剩下多少人?

拓1.小王与小李的存款数相等,小王取出149元,小李取出26元后,小李的存款数是小王的4倍。小王和小李的剩下的存款数各是多少元?

拓2.甲、乙两人各有若干本书,若甲给乙45本,则两人的书相等,若乙给甲45本,则甲的本数是乙的2倍,甲、乙原来各有书多少本?

习题:

1.一只大象的体重比一头牛重4500千克,又知大象的重量是一头牛的10倍,一只大象和一头牛的重量各是多少千克?

2.果园里的桃树比杏树多90棵,桃树的棵数是杏树的3倍,桃树和杏树各有多少棵?

3.有两块布,第一块长74米,第二块长50米,两块布各剪去同样长的一块布后,剩下的第一块米

Abc暑期奥数班课程安排

数是第二块的3倍,问每块布各剪去多少米?

4.甲、乙两校教师的人数相等,由于工作需要,从甲校调30人到乙校去,这时乙校教师人数正好是甲校教师人数的3倍,求甲、乙两校原有教师各多少人?

第三篇:差倍问题教案

第八讲 差倍问题教案

教学目标: 进一步掌握运用画图线的方法表示差倍关系中的两个量。比较和倍问题的阶梯方法的基础上,熟练掌握解答差倍问题的方法,理解和倍问题中各个量之间的关系。

教学重点:运用画图线的方法,准确分析差倍关系中各量之间的关系。教学难点:能够理解差倍应用题中各倍数和差倍数的量得关系。教学过程:

前面讲了应用线段图分析“和倍”应用题,这种方法使分析的问题具体、形象,使我们能比较顺利地解答此类应用题.下面我们再来研究与“和倍”问题有相似之处的“差倍”应用题。“差倍问题”就是已知两个数的差和它们的倍数关系,求这两个数。

学习例1:

甲班的图书本数比乙班多80本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?

分析与解答:

上图把乙班的图书本数看作1倍,甲班的图书本数是乙班的3倍,那么甲班的图书本数比乙班多2倍.又知“甲班的图书比乙班多80本”,即2倍与80本相对应,可以理解为2倍是80本,这样可以算出1倍是多少本.最后就可以求出甲、乙班各有图书多少本。解:①乙班的本数: 80÷(3-1)=40(本)

②甲班的本数: 40×3=120(本)

或40+80=120(本)。

验算:120-40=80(本)

120÷40=3(倍)

答:甲班有图书120本,乙班有图书40本。

学习例2:

菜站运来的白菜是萝卜的3倍,卖出白菜1800千克,萝卜300千克,剩下的两种蔬菜的重量相等,菜站运来的白菜和萝卜各是多少千克?

分析与解答:

这样想: 根据“菜站运来的白莱是萝卜的3倍”应把运来的萝卜的重量看作1倍;“卖出白菜1800千克,萝卜300千克后,剩下两种蔬菜的重量正好相等”,说明运来的白菜比萝卜多1800-300=1500(千克).从上图中清楚地看到这个重量相当于萝卜重量的3-1=2(倍),这样就可以先求出运来的萝卜是多少千克,再求运来的白菜是多少千克。

解:①运来萝卜:(1800-300)÷(3-1)=750(千克)

②运来白菜: 750×3=2250(千克)

验算:

2250-1800=450(千克)(白菜剩下部分)

750-300=450(千克)(萝卜剩下部分)

答:菜站运来白菜2250千克,萝卜750千克。

学习例3:

有两根同样长的绳子,第一根截去12米,第二根接上14米,这时第二根长度是第一根长的3倍,两根绳子原来各长多少米?

分析与解答:

上图,两根绳子原来的长度一样长,但是从第一根截去12米,第二根绳子又接上14米后,第二根的长度是第一根的3倍.应该把变化后的第一根长度看作1倍,而12+14=26(米),正好相当于第一根绳子剩下的长度的2倍.所以,当从第一根截去12米后剩下的长度可以求出来了,那么第一根、第二根原有长度也就可以求出来了。

解:①第一根截去12米剩下的长度:

(12+14)÷(3-1)=13(米)

②两根绳子原来的长度:13+12=25(米)

答:两根绳子原来各长25米。

自己进行验算,看答案是否正确.另外还可以想想,有无其他方法求两根绳子原来各有多长.小结:解答这类题的关键是要找出两个数量的差与两个数量的倍数的差的对应关系.用除法求出1倍数,也就是较小的数,再求几倍数。

解题规律:

差÷倍数的差=1倍数(较小数)

1倍数×几倍=几倍的数(较大的数)

或:较小的数+差=较大的数。

学习例4:

三(1)班与三(2)班原有图书数一样多.后来,三(1)班又买来新书74本,三(2)班从本班原书中拿出96本送给一年级小同学,这时,三(1)班图书是三(2)班的3倍,求两班原有图书各多少本?

分析与解答:

两个班原有图书一样多.后来三(1)班又买新书74本,即增加了74本;三(2)班从

本班原有图书中取出96本送给一年级同学,则图书减少了96本.结果是一个班增加,另一个班减少,这样两个班图书就相差96+74=170(本),也就是三(1)班比三(2)班多了170本图书.又知三(1)班现有图书是三(2)班图书的3倍,可见这170本图书就相当于三(2)班所剩图书的3-1=2倍,三(2)班所剩图书本数就可以求出来了,随之原有图书本数也就求出来了(见上图)。

解:①后来三(1)班比三(2)班图书多多少本?

74+96=170(本)

②三(2)班剩下的图书是多少本?

170÷(3-1)=85(本)

③三(2)班原有图书多少本?

85+96=181(本)(两个班原有图书一样多)

综合算式:

(74+96)÷(3-1)+96 =170÷2+96 =85+96 =181(本)

验算:181+74=255(本)

181-96=85(本)

255÷85=3(倍)

答:两班原来各有图书181本。

习题:

1.一只大象的体重比一头牛重4500千克,又知大象的重量是一头牛的10倍,一只大象和一头牛的重量各是多少千克?

2.果园里的桃树比杏树多90棵,桃树的棵数是杏树的3倍,桃树和杏树各有多少棵?

作业:

3.有两块布,第一块长74米,第二块长50米,两块布各剪去同样长的一块布后,剩下的第一块米数是第二块的3倍,问每块布各剪去多少米?

4.甲、乙两校教师的人数相等,由于工作需要,从甲校调30人到乙校去,这时乙校教师人数正好是甲校教师人数的3倍,求甲、乙两校原有教师各多少人?

第四篇:和差问题、和倍问题、差倍问题(实用)

第三、四讲:和差问题、和倍问题、差倍问题

教学目标:通过本次课的的学习,正确运用和差问题、和倍问题、差倍问题的有关公式,理清题意,解决实际问题。

教学重点:分清类型,正确运用不同类型的数量关系。

教学难点:理清题意,准确判断题目是“和差问题、和倍问题、差倍问题”中的哪一类,然后正确运用相关的数量关系

需要课时:4课时 教学过程:

一、和差问题:

已知两个数的和与差,求出这两个数各是多少的应用题,叫做和差应用题。基本数量关系是:

(和+差)÷2=大数(和-差)÷2=小数

解答和差应用题的关键是选择合适的数作为标准,设法把若干个不相等的数变为相等的数,某些复杂的应用题没有直接告诉我们两个数的和与差,可以通过转化求它们的和与差,再按照和差问题的解法来解答。

例1:有甲乙两堆煤,共重52吨,已知甲比乙多4吨,两堆煤各重多少吨?

分析:根据公式,我们要找出两个数的和与差,就能解决问题。由题意:堆煤共重52吨知:两数和是52;甲比乙多4吨知:两数差是4。甲的煤多,甲是大数,乙是小数。故解法如下:

甲:(52+4)÷2=28(吨)乙:28-4=24(吨)

例2:两只笼子里共有15只鸡,从甲笼提出3只后,甲笼比乙笼还多2只,两只笼子原来各有多少只鸡?

分析:从题意知:甲比乙多5只,所以,两数和是15,两数差是5.甲是大数。

甲:(15+5)÷2=10(只)乙: 15-10=5(只)

练习:

1、两堆石子共有800吨,第一堆比第二堆多200吨,两堆石子各有多少吨?

2、黄茜和胡敏两人今年的年龄 是23岁,4年后,黄茜比胡敏大3岁,问黄茜和胡敏今年各是多少岁?

3、把长84厘米的铁丝围成一个使长比宽多6厘米的长方形。长和宽各是多少厘米?

二、和倍问题

已知两个数的和,又知两个数的倍数关系,求这两个数分别是多少,这类问题称为和倍问题。

解决和倍问题的基本方法:将小数看成1份,大数是小数的n倍,大数就是n份,两个数一共是n+1份。基本数量关系:

小数=和÷(n+1)

大数=小数×倍数 或 和-小数=大数

例1 :甲班和乙班共有图书160本,甲班的图书是乙班的3倍,甲乙两班各有图书多少本?

分析:从题目中知,乙班的图书数较少,故乙是小数,占1份,甲占(3+1)份。

乙:160÷(3+1)=40(本)甲:160-40=120(本)

例2:果园里有梨树和桃树共165棵,桃树棵数比梨树棵数的2倍少6棵,梨树和桃树各多少棵?

分析:由题意,桃树增加6棵,桃树正好是梨树的2倍,这时总数就是:165+6=171,这样就转化成标准和倍问题,将梨树看成1份,一共是3份。梨树的棵数:171÷3=57,求桃树的棵数时要减去6棵。桃树:171-57-6=108 梨树:(165)÷(2+1)=57(棵)桃树:171-57-6=108(棵)练习:

1、小明和小强共有图书120本,小明的图书是小强的2倍,他们两人各有图书多少本?

2、果园里一共有桃树和杏树340棵,其中桃树比杏树的3倍多20棵,两种树各种了多少棵?

3、甲仓库存粮104吨,乙仓库存粮140吨,要使仓库的存粮是乙仓库的3倍,那么必须人乙仓库运出多少吨放入甲仓库?

4、一个长方形的周长是是30厘米,长是宽的2倍,求长方形的面积是多少?

三、差倍问题

已知两个数的差,并且知道两个数倍数关系,求这两个数,这样的问题称为差倍问题。

解决差倍问题的基本方法:设小是1份,如果大数是小数的n倍,根据数量 3

关系知道大数是n份,又知道大数与小数的差,即知道n-1份是几,就可以求出1份是多少。

基本数量关系:

小数=差÷(n-1)大数=小数×n 或 大数=差+小数

例1:一张桌子的价格是一把椅子的3倍,购买一张桌子比一把椅子贵60元。问桌椅各多少元?

分析:桌子的价格与椅子的价格的差是60,将椅子看成小数占1份,桌子占3份,份数差为3-1,根据数量关系:

椅子的价格:60÷(3-1)=30(元)桌子的价格:30+60=90(元)

例2:两筐重量相同的苹果,甲筐卖出7千克,乙筐卖出19千克后,甲筐剩余的苹果是乙筐的3倍,原来两筐各有苹果多少千克?

分析:两筐苹果的重量相同,故两筐卖出的数量差即是原来苹果的数量差。两筐苹果的差为19-7=12(千克),将乙筐看成1份,甲筐为3份,份数差为2.乙筐现有苹果:(19-7)÷(3-1)=6(千克)乙筐原来有:6+19=25(千克)甲筐原来有25千克。

练习:

1、甲桶酒是乙桶酒重量的5倍,如从甲桶中取出20千克到入乙桶,那么两桶酒重量相等。两桶酒原来各多少千克?

2、六、一班有花盆的数量是六、二班的3倍,如果六、一班再购买20个花盆后,两班花盆数相等,两班原有花盆多少个?

作业:

1、甲、乙两桶油共重100千克,从甲桶中取出5千克放入乙桶中,此时两桶油正好相等。求两桶油原来各有多少千克?

2、甲、乙两箱洗衣粉共有90袋,如果从甲箱中取出4袋放入乙箱中,则两箱中洗衣粉的袋数相等。求原来两箱洗衣粉各有多少袋?

3、刘晓每天早晨沿长和宽相差40米的操场跑步,每天跑6圈,共跑2400米,问这个操场的面积是多少平方米?

4、小强今年15岁,小亮今年9岁。几年前小强的年龄是小亮的3倍?

5、有两段一样长的绳子,第一根剪去21米,第二根剪去13米后是第一根剩下的3倍,两根绳子原来有多长?

6、老猫和小猫去钓雨,老猫钓的鱼是小猫的3倍,如果老猫给小猫3条后,小猫比老猫还少2条。两只猫各钓了多少条鱼?

第五篇:差倍问题(简单)

差倍问题

例题1 妈妈从超市买来苹果和梨,已知苹果的个数是梨的3倍,苹果的个数比梨多18个,妈妈买的苹果和梨各多少个?

练习1 新华小学三(1)班的男同学是女同学的4倍,男同学比女同学多27人,新华小学三(1)班的男同学和女同学各多少人?

例题2 哥哥的数学本比弟弟多20本,妈妈又给弟弟买了2本数学本以后,哥哥的数学本是弟弟的3倍。哥哥和弟弟原来有多少本数学本?

练习2 弟弟的故事书比哥哥多18本,哥哥不小心丢了3本,这时哥哥的故事书是弟弟的3倍。哥哥和弟弟原来有多少本故事书?

例题3 甲、乙两筐的苹果个数一样多,如果再放入甲筐18个苹果,甲筐的苹果个数是乙筐苹果个数的7倍。原来甲、乙两筐各有苹果多少个?

练习3 甲、乙两筐的苹果个数一样多,如果从乙筐拿走18个苹果,甲筐的苹果个数是乙筐苹果个数的4倍。现在甲、乙两筐各有苹果多少个?

例题4 甲、乙两筐的苹果个数一样多,如果从乙筐拿走18个苹果,甲筐放入14个苹果,甲筐的苹果个数是乙筐苹果个数的5倍。原来甲、乙两筐各有苹果多少个?

练习4 李明和小华相同本数的故事书,李明借给同学3本故事书,小华借同学5本故事书,这时小华的故事书本数是李明的3倍。原来李明和小华各有多少本故事书?

例题5 甲筐的苹果个数是乙筐苹果个数的3倍,如果从甲筐中拿出6个放进乙筐,甲、乙两筐的苹果个数一样多,原来甲、乙两筐各有苹果多少个?

练习5 哥哥和弟弟有相同本数的漫画书,哥哥给弟弟20本以后,弟弟的漫画书是哥哥的6倍。哥哥和弟弟原来有多少本漫画书?

例题6 哥哥的数学本比弟弟多10本,弟弟给哥哥20本数学本以后,哥哥的数学本是弟弟的6倍。哥哥和弟弟原来有多少本数学本?

练习6 哥哥的故事书比弟弟多8本,弟弟给哥哥1本故事书以后,哥哥的故事书是弟弟的6倍。哥哥和弟弟原来有多少本故事书?

例题7 两数相除,商是7,被除数比除数大24。被除数、除数各是多少?

练习7(1)被除数比除数大63,商是8。被除数、除数各是多少?

(2)被除数比除数大72,商是9。被除数、除数各是多少?

(3)两数相除,商是7,除数比被除数小54。被除数、除数各是多少?

例题8 两数相除,商是10,余数是2,被除数比除数大83。被除数、除数各是多少?

练习8(1)被除数比除数大27,商是6,余数是2。被除数、除数各是多少?

(2)被除数和除数相差70,商是9,余数是6。被除数、除数各是多少?

(3)除数比被除数小79,商是10,余数是7。被除数、除数各是多少?

下载一元一次方程的应用-和差倍分问题(教案)word格式文档
下载一元一次方程的应用-和差倍分问题(教案).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    差倍问题(一)·教案专题

    差倍问题 第 一 讲 一、兴趣导入(Topic-in): 趣味分享 麒麟飞到北极变什么啊?答案:冰激凌 世界上什么鸡跑的快?答案:肯德鸡块 一片大草地(植物)答案:梅花(没花) 又一片大草地(植物)答......

    教案—和倍差倍问题[推荐阅读]

    和倍、差倍问题 【教学内容】 教材第41~42页例6及练习九第1~5题。 【教学目标】 1.使学生理解与掌握分数和倍、差倍问题的解题思路与方法。 2.提高学生分析数量关系及列方程......

    差倍问题,习题课教案

    教学内容:差倍问题 教学目标:1、帮助学生掌握解决差倍问题的技巧 2、体会数学问题解决的策略的灵活性,体会解题技巧对提高解题速度的重要性 3、培养学生的观察力和抽象概括能力......

    差倍问题教案(合集5篇)

    差倍问题 知识要点 解答差倍问题与解答和倍问题相类似,要先找出差所对应的倍数,先求1倍数,再求出几倍数。此外,还要充分利用线段图帮助分析数量关系。 用关系式可以这样表示: 两......

    差倍问题练习题

    差倍问题练习题 1、 实验小学举行运动会,参加跑步的人数是参加跳高的4倍,并且参加跑步的比参加跳高的多36人,那么参加跑步和跳高的人数各是多少人?2、 某工程队运回一批水泥,第......

    差倍问题1

    差倍问题 许多同学都觉得应用题很难,有时候伤透了脑筋不知从何下手,为什么应用题会比较难呢?因为应用题的条件和问题千变万化,有时候数量关系也比较复杂,解题方法也是变化摸测。......

    和差倍问题[大全5篇]

    和差倍问题 2.甲等奖学金是乙等奖学金的3倍,乙等奖学金是丙等的2倍,甲等比丙等多1800元,三种奖学金各是多少元?3. 校园内有一块长方形草地,它的周长是96米,长是宽的3倍,这块草地的......

    三年级和差倍问题

    优学教育——为学生创造奇绩! 三年级 整合训练 优学教育——为学生创造奇绩! 三年级 整合训练 优学教育三年级和差倍问题专题讲解 和、差、倍是两个数之间最基本的数量关系,这......