第一篇:《多边形内角和》教学设计及反思
《多边形内角和》教学设计及反思
一、教材分析
本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。
二、教学目标
1、知识目标:了解多边形内角和公式。
2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。
3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。
4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。
三、教学重、难点
重点:探索多边形内角和。
难点:探索多边形内角和时,如何把多边形转化成三角形。
四、教学方法:引导发现法、讨论法
五、教具、学具
教具:多媒体课件
学具:三角板、量角器
六、教学媒体:大屏幕、实物投影
七、教学过程:
(一)创设情境,设疑激思 师:大家都知道三角形的内角和是180º,那么四边形的内角和,你知道吗?
活动一:探究四边形内角和。
在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360º。
方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360º。
接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?
活动二:探究五边形、六边形、十边形的内角和。学生先独立思考每个问题再分组讨论。
关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。
(2)学生能否采用不同的方法。学生分组讨论后进行交流(五边形的内角和)
方法1:把五边形分成三个三角形,3个180º的和是540º。方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180º的和减去一个周角360º。结果得540º。
方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180º的和减去一个平角180º,结果得540º。方法4:把五边形分成一个三角形和一个四边形,然后用180º加上360º,结果得540º。师:你真聪明!做到了学以致用。
交流后,学生运用几何画板演示并验证得到的方法。
得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720º,十边形内角和是1440º。
(二)引申思考,培养创新
师:通过前面的讨论,你能知道多边形内角和吗? 活动三:探究任意多边形的内角和公式。思考:(1)多边形内角和与三角形内角和的关系?
(2)多边形的边数与内角和的关系?
(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?
学生结合思考题进行讨论,并把讨论后的结果进行交流。
发现1:四边形内角和是2个180º的和,五边形内角和是3个180º的和,六边形内角和是4个180º的和,十边形内角和是8个180º的和。
发现2:多边形的边数增加1,内角和增加180º。
发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。
得出结论:多边形内角和公式:(n-2)·180。
(三)实际应用,优势互补
1、口答:(1)七边形内角和()
(2)九边形内角和()
(3)十边形内角和()
2、抢答:(1)一个多边形的内角和等于1260º,它是几边形?
(2)一个多边形的内角和是1440º,且每个内角都相等,则每个内角的度数是()。
3、讨论回答:一个多边形的内角和比四边形的内角和多540º,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?
(四)概括存储
学生自己归纳总结:
1、多边形内角和公式
2、运用转化思想解决数学问题
3、用数形结合的思想解决问题
(五)作业:练习册第93页1、2、3
八、教学反思:
1、教的转变
本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。
2、学的转变 学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。
3、课堂氛围的转变
整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。
第二篇:《多边形内角和》教学反思
《7.3.2多边形内角和》教学反思
钦州市浦北外国语学校
本节课,我先从问题“把一个四边形纸片剪去一个角后会得到一个什么图形呢?”入手,让学生思考,通过验证得到“五边形、四边形、三角形”这三个答案,由此让学生知道一些数学问题可以有多种答案,从而激发学生学习新知识的欲望。然后让学生回顾三角形内角和等于180°,为后面“转化”作铺垫。接着让学生经历三个探究活动得出多边形内角和公式。
探究一:任意一个四边形的内角和是多少?学生以小组为单位,通过自己亲手操作、找结论,通过讨论、交流得到拼图法、度量法,以及把四边形分割成三角形的方法,让学生体会四种分割方法,有利于深入领会转化思想,既激发了他们的学习兴趣,又培养了他们合作交流的能力;
探究二:让学生选择自己认为最好的一种分割方法求五边形、六边形、七边形的内角和,鼓励学生用多种方法求它们的内角和,通过图形的复杂性,再一次让学生经历转化的过程,加深对转化思想的理解。同时关注学生用类比的方法解决问题,进一步提高学生的推理表达能力。
探究三:n边形内角和是多少?学生很快借助求任意五边形、六边形、七边形内角和的方法推出n边形的内角和等于:
(n-2)·180°,180°n-360°,(n-1)·180°-180°,并由此引导学生通过观察发现上面三个式子是相等的,是可以互相转化的,通过比较还发现(n-2)·180°这个式子形式较简单,所以把它作为多边形的内角和公式,由此获得了新知。
一节课下来,我觉得整个思路还是很连贯的,也是很清晰的。新的课 1
程标准强调教学不能把知识的结果强加给学生,不能单纯地只让学生掌握知识的结果,而应重视获取知识的过程。因此,本课我借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生‘的“解放学生的手,解放学生的大脑,解放学生的时间”思想,把更多的机会、更多的时间让给学生,让学生分小组交流与探究,然后由各小组代表汇报探索的思路与方法,讲明理由,学生汇总所探索出的不同方法,让学生来发现、归纳和总结规律。一个结论若由教师“给”只需用1分钟,而真正放手让学生自己去“取”的时间就可能是其数倍,甚至几十倍。这样做让学生的学习能力确实得到了锻炼,学生的学习热情提高了,小组主动合作了,同学敢于上台讲题了,这样做发掘了学生的潜能和创造力,培养学生的探索求知的精神。具体还表现在:
1、教的转变
本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者,在引导学生通过观察、探究、讨论后,发现结论,展示成果,激发学生自觉探究数学问题,体验发现的乐趣。
2、学的转变,学生的角色从学会转变为会学。本节课学生不是停留在学会本知识层面,而是站在研究者的角度深入其境。
3、课堂氛围的转变,整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”、“提问”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。
整节课虽然让学生通过动手操作体验了多边形内角和定理的形成过
程,但在具体的课堂实施时还存在一些不足之处:
(1)本课较多的着眼于课堂形式的多样化及学生能力(如:合作、探究、交流等)的培养,而忽视了教学中最重要的知识点的落实。学生做练习的机会不多,时间偏少,学生没有板演的机会。
(2)我虽然本着以学生为本的原则,但是没有兼顾个体差异,基础较薄弱的学生也许不能真正理解并运用多种方法去求多边形的内角和。
最后,我将在今后的教学中,继续为学生提供更多自主探究知识的机会,发展每位学生的数学才能,让自己的课堂教学更有魅力。
第三篇:多边形内角和教学反思
《多边形内角和》教学反思
歇马镇中心学校 吴秀珍
《多边形内角和》这节课,我基本上完成了教学任务,教学目标基本达成。学生明确了转化的思想是数学最基本的思想方法,知道研究一个新的问题要从简单的已知入手,能够用多种方法探究出多边形的内角和,并且能够运用多边形的内角和公式解决相关问题。同时也有几个地方引起了我深深的思考。
在这节课的设计中,我采用完全开放的探究,每步探究先让学生尝试,把学生推到主动位置,放手让学生自己学习,尽可能做到让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。要充分体现学生学习的自主性:规律让学生自主发现,方法让学生自主寻找,思路让学生自主探究,问题让学生自主解决。课前我很担心,但事实说明,这种探究才是真正的让学生去尝试,去挑战。因此,在课堂教学中选用探究式,可以让学生在自主学习中探究,在质疑问题中探究,在观察比较中探究,在矛盾冲突中探究,在问题解决中探究,在实践活动中探究。总之我对探究课有了更深刻的理解。
在探究这个环节中,有一个关键的地方处理的很不到位。即:当一个学生提出分割方法时,这时没有及时把握住这个时机,让更多的学生去尝试这种方法,而是让他自己把所得到的结论直接告诉大家,因此没有让更多的学生去体验转化的思想,我认为这节课最大的败笔就在于此。课下我反复的思考出现问题的原因,是因为对学生估计的不足造成的。我总认为,在教师不指导的情况下,不会有学生想到分割这种方法,当课堂上学生出现这种方法时,我就有点激动,顺着学生的思路走了,而忽视了大多数。因此,在备课时一定要更为细致的研究学生可能出现的情况,在上课时才能应对自如。
总之,这节课我不是很满意,细分析,偶然当中也包含着必然。新课标要求数学教学过程中要注重学生学习的过程,而知识的学习是一个建构过程,教师通过以组织者、合作者、和引导者的身份,根据学生的具体情况,对教材进行再加工,有创造地设计教学过程,在教学设计中要求新求变。用“新”和“变”来激发学生学习数学的欲望和兴趣。根据不同的教学内容选择不同的教学模式。因为只有这样,课堂教学才能焕发出生机和活力。教师在这个过程中要为学生营造一个积极的、宽松的教学氛围。所以,要做一个新时代的教师,除具备一定的专业知识外,还要具备领导才能,能够驾御整个课堂。发现了自己的不足就意味着自己的进步。在今后的教学中,我会更加努力,让我的每一位学生在我的每一节课上都能够有新的收获。
第四篇:多边形内角和教学设计
《多边形内角和》教学设计
一、教学目标
1、知识目标
(1)使学生了解多边形的有关概念。
(2)使学生掌握多边形内角和公式,并学会运用公式进行简单的计算。
2、能力目标
(1)通过对“多边形内角和公式”的探究,培养学生分析问题、解决问题的能力,同时让学生充分领会数学转化思想。
(2)通过变式练习,培养学生动手、动脑的实践能力。
3、情感与态度目标
通过公式的猜想、归纳、推断一系列过程,体验数学活动充满着探索性和创造性,培养学生对学习数学勇于创新的精神。
二、教材分析
为了更好地突出重点、突破难点,圆满地完成教学任务,取得较好的教学效果。根据教材和学生的特点,本节课我采用了“观察、点拨、发现、猜想”等探究式教学方式,在创设问题,新课引入等教学环节中,我提出问题,质疑,引导学生观察,分析、思考等。启发、点拨下发现问题的方法。这种教学方法目的在让学生通过观察、猜想、主动探讨获得新知识,同时培养学生分析、归纳、概括能力,培养学生的创新意识和创造精神。
三、教学重点和难点
重点:多边形内角和定理的理解和运用 难点:多边形内外角和的灵活运用
四、教学设计
(一)创设问题情境,引出新课。
1、复习提问,知识巩固。⑴三角形内角和等于多少度? ⑵四边形内角和定理以及推导方法。(3)从多边形的一个顶点能引多少条对角线,这些对角线将多边形分成了几个三角形。
3、引入新课
上一节课学习了求四边形内角和的方法,怎样求五边形、六边形……n边形的内角和呢?下面我们一起来讨论这个问题(板书课题)。
(二)引导探索,研讨新知
1、以动激趣,浅探求知。
一画:画三角形、四边形、五边形、六边形(让学生自己动手画)。二量:量出五边形、六边形各内角,并求出其和(让学生自己求知)。三比较:比较四边形、五边形、六边形分别是三角形内角和的多少倍,并由此去探索他们之间的初步规律。
2、观察联想,启迪思维。
(1)观察引探:观察比较以上结论后,启发提问:“边数少的多边形可以通过量角来求和,如果边数很多那又怎么办?由上述结论可知,多边形的内角和是三角形内角和的若干倍,那么这个倍数与多边形的边数有何关系?能否找出其规律?”(让学生猜想,大胆尝试)
(2)启发联想:我们已经学过求四边形内角和的推导方法,它是以三角形为基础求得的,即连结一条对角线,将四边形分割为两个三角形,其和为180°×2,那么五边形、六边形、……n边形能否依此类推呢?
3、讨论、交流、创新 探索方法
(一):
(1)启发连线:依照四边形求内角和的方法,从任一角的顶点作对角线,将多边形分割为若干个三角形。(先让学生想,再启发学生)
(2)自主探索、讨论交流:让学生自己去研讨发现多边形内角和与各三角形内角和之间的关系,三角形个数与多边形边数的关系。
三角形有(?-2)个三角形,内角和是180°×(?-2);
四角形有(?-2)个三角形,内角和是180°×(?-2); 五角形……
有(?-2)个三角形,内角和是180°×(?-2);
n边形 有(?-2)个三角形,内角和是180°×(?-2);(4)揭示规律(由学生汇报)
a、三角形的个数与多边形边数有何关系?(比边数少2)b、多边形的内角和与所有三角形的内角和有何关系?(相等)(5)归纳结论(由学生概述)
n边形内角和等于(n-2)×180°[让学生自主探索,寻找规律,发现知识] 探索方法
(二):
(1)变换分割:在多边形内任取一点O,顺次边各顶点。
(2)再次研讨:让学生去发现多边形内角和与三角形内角和之间的关系。(多边形的内角和=所有三角形的内角和-1周角)
(3)找规律,填空(让一名学生上黑板填写,其他学生各自完成)。
三角形有?个三角形,内角和是180°×?-360°=180°×(?-2);
四角形有?个三角形,内角和是180°×?-360°=180°×(?-2)
五角形……
有?个三角形,内角和是180°×?-360°=180°×(?-2)
n边形 有?个三角形,内角和是180°×?-360°=180°×(?-2)(4)归纳结论(由学生得出)n边形的内角和是:180°×(n-2)探索方法
(三):(1)改变连线:以多边形任一边上的一点为起点,连结各顶点。(2)再次研讨:让学生去发现多边形内角和与三角形内角和之间的关系。(多边形的内角和=所有三角形的内角和-1平角)
(3)找规律,填空。(抽一名学生登台填空,其他学生各自完成)
三角形的内角和是180°×(?-2)
四角形有(?-1)个三角形,内角和是:
180°×(?-1)-180°=180°×(?-2)
五角形有(?-1)个三角形,内角和是:
180°×(?-1)-180°=180°×(?-2)……
n边形 有?个三角形,内角和是: 180°×(?-1)-180°=180°×(?-2)(4)揭示其特点(启发学生去发现)a、分割后三角形的个数有何变化?
b、求多边形内角和的方法有何不同?(探索方法1,是由多边形内角和等于各三角形内角和求得;探索方法2,是由多边形的内角和=各三角形内角和-1周角求得;探索方法3,是由多边形的内角和=各三角形内角和-1平角求得)。(5)比较结论(由学生总结)[进一步让学生自主探索,培养学生一题多证的能力和兴趣。
(6)课堂训练。
1、已知一个多边形的内角和等于1440°,求它的边数。
2、在四边形ABCD中,∠A=120度,∠B:∠C:∠D
= 3:4:5,求∠B=
,∠C =
,∠D =。
3、如果一个四边形的一组对角互补,那么另一组对角的关系是。
4、一个多边形的各内角都等于120°,它是_____ 边形。
(三)推导n边形外角和定理
(1)引导学生找出各内角与相邻外角的关系。(互补)(2)找出多边形外角和与内角和之间的关系:
外角和=n个平角-多边形内角和=n×180°-(n-2)×180°=360°(3)推出结论:n边形的外角和等于360°(由学生得出)。
(四)例题讲解
例:已知一个多边形,它的内角和等于外角和的2倍,求这个多边形的边数。
(五)随堂练习• • • • •(1)一个多边形的内角和为4320°,则它的边数为______(2)五边形的内角和为_____,它的对角线共有_____条(3)一个多边形的每一个外角都等于30°,则这个多边形为____边形(4)一个多边形的每一个内角都等于135°,则这个多边形为_____边形(5)如果一个多边形的边数增加一条,那么这个多边形的内角和增加________,外角和增加_______.
第五篇:多边形内角和教学设计
《多边形内角和》教学设计
一、教材分析
本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。
二、教学目标
1、知识目标:
(1)使学生了解多边形的有关概念。
(2)使学生掌握多边形内角和公式,并学会运用公式进行简单的计算。
2、能力目标
(1)通过对“多边形内角和公式”的探究,培养学生分析问题、解决问题的能力,同时让学生充分领会数学转化思想。
(2)通过变式练习,培养学生动手、动脑的实践能力。
3、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。
三、教学重、难点
重点:探索多边形内角和。
难点:探索多边形内角和时,如何把多边形转化成三角形。
四、教学方法:引导发现法、讨论法
五、教具、学具及辅助教学媒体
教具:多媒体课件
学具:三角板、量角器
教学媒体:大屏幕、实物投影
六、教学过程:
(一)创设情境,设疑激思
1、以疑导入,引发求知欲。先展示六螺帽,八角石英钟、多边形水果盘等多边形实物。由此激发学生自己要设计,怎样设计的求知欲。然后提出具体问题。
2、复习提问,知识巩固。(1)三角形内角和等于多少度?(2)四边形内角和定理以及推导方法。
3、引入新课
上一节课学习了求四边形内角和的方法,怎样求五边形、六边形……n边形的内角和呢?下面我们一起来讨论这个问题。
师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的? 活动二:探究五边形、六边形、十边形的内角和。学生先独立思考每个问题再分组讨论。
关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。
(2)学生能否采用不同的方法。学生分组讨论后进行交流(五边形的内角和)
方法1:把五边形分成三个三角形,3个180º的和是540º。
方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180º的和减去一个周角360º。结果得540º。
方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180º的和减去一个平角180º,结果得540º。
方法4:把五边形分成一个三角形和一个四边形,然后用180º加上360º,结果得540º。
交流后,学生运用几何画板演示并验证得到的方法。
得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720º,十边形内角和是1440º。
(二)引深思考,培养创新
师:通过前面的讨论,你能知道多边形内角和吗? 活动三:探究任意多边形的内角和公式。
思考:(1)多边形内角和与三角形内角和的关系?
(2)多边形的边数与内角和的关系?
(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?
学生结合思考题进行讨论,并把讨论后的结果进行交流。
发现1:四边形内角和是2个180º的和,五边形内角和是3个180º的和,六边形内角和是4个180º的和,十边形内角和是8个180º的和。
发现2:多边形的边数增加1,内角和增加180º。
发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。
得出结论:多边形内角和公式:(n-2)·180。
(三)实际应用,优势互补
1、口答:(1)六边形内角和()(2)九边形内角和()
2、抢答:(1)一个多边形的内角和等于1260º,它是几边形?
(2)已知一个多边形的每个外角都等于72°,这个多边形是几边形?(3)若多边形的外角和等于内角和的三分之二,则这个多边形的边数是多少?
3、讨论回答:一个多边形的内角和比四边形的内角和多540º,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?
(四)概括存储
学生自己归纳总结:
1、多边形内角和公式
2、运用转化思想解决数学问题
3、用数形结合的思想解决问题
(五)作业:练习册第93页1、3
七、教学反思:
上完这节课后,自我感觉良好,学生在课堂上也积极参与思考、大胆尝试、主动探讨、勇于创新。
1、教的转变
本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。
2、学的转变
学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。
3、课堂氛围的转变
整节课以“流畅、开放、合作”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话、讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的放向,判断发现的价值。
4.不足:
(1)班级学习不是很好的学生在展示时还是不理想,声音小,站姿也不行。
(2)粉笔字写的不理想。特别是做学案或答题时字写的很乱,并且一点也不规范。(3)没有给学生整理出现问题的时间,因此效果不理想。