八年级上册《多边形的内角和》教学设计5篇范文

时间:2020-04-25 19:20:01下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《八年级上册《多边形的内角和》教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《八年级上册《多边形的内角和》教学设计》。

第一篇:八年级上册《多边形的内角和》教学设计

作为一名默默奉献的教育工作者,通常需要用到教学设计来辅助教学,借助教学设计可以更好地组织教学活动。我们该怎么去写教学设计呢?下面是小编收集整理的八年级上册《多边形的内角和》教学设计,希望能够帮助到大家。

教学目标:

1、理解多边形及正多边形的定义

2、掌握多边形内角和公式。

教学重、难点:

教学重点:1、多边形内角和公式。

2、计算多边形的内角和及依据内角和确定多边形边数。

教学难点:多边形内角和公式的推导。

一、创设情境,导入新课

前面我们学过了三角形内角和定理,你还记得三角形内角和是多少度吗?你知道四边形内角和的度数吗?如何计算多边形内角和吗?今天,老师想和同学们一起走进多边形的家园去揭开多边形的内角和的奥秘。(设计说明:复习引入,开门见山,提出简单的问题,吸引学生的注意力,激发学生自主学习的兴趣和积极性,从而自然引入新课。)

二、自主探究,发现新知

自学教材内容,动手操作,并思考:

1、三角形内角和多少度?

2、分别从四边形、五边形、六边形一个顶点出发可以引出多少条对角线?你能类比归纳出从n边形的.一个顶点出发可以引出多少条对角线吗?

3、分别四边形、五边形、六边形从一个顶点出发引出的对角线将原图形分割成多少个三角形?你能类比归纳出从n边形的一个顶点出发引出的对角线把这些多边形分别分割成了多少个三角形吗?

4、请结合图形计算四边形、五边形、六边形的内角和。

5、从n边形一个顶点出发可以引出多少条对角线呢?这些对角线将n边形分割成了多少个三角形?现在你知道多边形内角和公式了吗?

6、用几何符号表示你的发现。

(师生活动:学生自学教材,结合探究提纲思考、作图、观察、讨论,教师做好板书准备后巡视检查学生自学情况,深入学生之间交流,掌握学情,为展示交流做准备。)

(设计意图:从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,让学生体会分割的过程,有利于深入领会转化的本质——n边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性, 同时,渗透类比的数学思想。)

三、学生交流,展示归纳

1、自主探究展示:

(1)从四边形、五边形一个顶点引发的对角线的条数。

(2)从n形一个顶点引发的对角线的条数。

2、合作探究展示:

四边形、五边形内角和度数及计算方法。

3、归纳展示:

n边形内角和公式:(n-2)×180°(n是大于或等于3的正整数)

(师生活动:教师结合巡视检查,让中差生先展示,充分的暴露问题,再由中等生或优等生纠错、说理、补充、评价、修正)

设计意图:

通过展示交流,培养学生的“发现、归纳、总结”能力,让学生体验从特殊到一般的数学思想方法,积累数学活动经验。

四、类比练习,巩固提升。

1、课本第24页练习1、2、3.1、下列角度中,不能成为多边形的内角和的是()

(A)540°(B)580°(C)1800°(D)900°

2、正五边形 的每一个外角等于___.每一个内角等于_____,3、如果一个多边形的每一个外角等于30°,则这个多边形的边数是_____

(师生活动:抽学生口答、板演,发动其他同学评价、补充、修订,教师做必要的点拨和纠正。)

(设计意图:通过一系列与探究多边形内角和过程相呼应以及内角和公式的基础应用,进一步巩固学生多本节课知识的掌握,使学生获得必需的数学知识。)

五、回顾反思,内化提升

1.这节课你学到了什么?

2.你对大家有哪些建议或提醒?

(师生活动:学生自主小结,同学相互补充评价,教师补充完善。)

(设计意图:培养学生对三角形内角和相关知识的归纳能力和对知识点进行概括的语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。)

六、当堂检测、知识过关

1、已知四边形ABCD中,∠A与∠C互补,如果∠B=80°,求∠D。

2、某四边形四个内角的度数之比为1:2:3:3,求这四个内角的度数。3、在四边形ABCD中,已知∠A=85 °∠C =115 °∠B比∠D大20°,求∠B和∠D的度数。

4、已知多边形的一个内角的外角与其它各内角的度数总和为600°,求这个多边形的边数。

(师生活动:学生独立完成,教师手拿红笔进行选择性批阅,5分钟左右,教师出示答案,学生自我评价,师生共同评价)

(设计意图:通过当堂检测,及时的反馈学生对本节课的学习情况,并让学生进一步掌握多边形内角和定理及外角和定理的应用,提高学生应用数学的能力。)

七、布置作业

1、必做题:习题15.3复习巩固第1、2题。

2、选做题:绩优学案本节课的典例探究3和巩固训练的5题。

设计意图:

体现课标理念:“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。”必做题面向全体,选做题使学有余力的同学有发展的空间。

【八年级上册《多边形的内角和》教学设计】相关文章:

1.多边形的内角和与外角和教学反思

2.《多边形的内角和与外角和》教学反思

3.《多边形的内角和》说课稿

4.《多边形的内角和》的说课稿

5.多边形的内角和教学设计范文

6.《探索多边形的内角和与外角和》的课程教学设计

7.《多边形的内角和与外角和》的说课稿

8.多边形的内角和与外角和导学案PPT课件公开课实录

第二篇:多边形的内角和-教学设计

《多边形的内角和》教学设计

09应数三班 任骅 37号

【学习内容分析】

本节课的内容是人教版七年级数学下册第7章第3小节第1课时的内容,是学生在学习了三角形的定义、边、角以及内角和、外角和的基础上来,来进行多边形的定义、边、角、对角线、内角和以及内角和的推理。【学习者分析】

七年级的学生已经具备一定的图形知识,学生可以通过对比学习来掌握多边形的定义、边角、内角和,同时也具备一定的动手操作能力,通过让学生运用多种方法动手分割多边形,分析、讨论、归纳出多边形内角和的公式,并能利用其公式进行多边形的一些简单计算。使学生理解多边形的基本知识,锻炼学生的动手操作能力,激发学生的学习兴趣,为学生终身发展打下基础。【教学目标】 知识与技能:

1、正确识别多边形的顶点、边、内角、外角、对角线、内角和公式.

2、探索、归纳多边形内角和公式,并能运用多边形内角和公式解决一些计算问题. 过程与方法:

1、通过让学生动手操作、合作讨论多边形内角和公式,体验探索、归纳过程。

2、让学生运用类比和转化的思想,学会合情推理的,培养学生的数学思想方法。

情感、态度与价值观:

学生在动手操作和合作交流中,体验探索、归纳数学学习方法;体会类比和转化的数学思想;感受数学的价值。【教学重点】

1、多边形的基本概念,通过让学生阅读,自主学习、合作探讨完成,借助多媒体展示,来强化学生对这部分内 容的理解和识记;

2、多边形内角和公式的推导,通过让学生动手操作、归纳出多边形的内角和公式:(n-2)•180°,教师通过多媒体课件的展示验证学生推导多边形内角和的方法。

3、多边形的内角和与多边形的边数的关系,拓展学生的学习,锻炼学生的猜想;教师通过让学生列表格,填写多边形的内角和的度数,探索多边形的边数与其内角和之间的关系。【教学难点】

多边形内角和公式的推导,通过让学生分小组合作,动手分割多边形(分

割的方法很多,可以用对角线分割三角形,可以用一边上一点分割三角形,也可以用内部一点分割三角形,还可以用多边形外部一点分割三角形)为三角形的方法,来探究多边形的内角和公式,教师利用多媒体课件展示验证学生可能想到的方法,激发学生动手动脑的学习习惯。【设计思路】

本节课教材是在学生学习了三角形的基本概念和内角和的基础上,来探究多边形的基本概念和内角和的,学生可以通过自主学习,理解多边形的基本结构、基本概念,通过学生之间的合作交流,动手操作,归纳出多边形的内角和公式。教师通过展示多媒体课件,强化学生对多边形基础知识的理解,验证学生对多边形内角和的推导。【教学课时】 1课时 【教学准备】

白卡纸、三角尺(直尺)、多媒体课件 【教学过程】

一、复习旧知

1.什么叫三角形?什么叫正三角形?

2.指出图中三角形ABC的顶点、内角、边.

3.三角形的外角和、内角和各等于多少度?

上述问题,可以帮助学生复习巩固三角形的有关概念和结论,以便于研究多边形时进行类比.

二、探究新知

1.由三角形概念类比得出多边形及相关概念:

(1)由学生画出3个边数不同的多边形,分别读出它们的名称.

(2)让学生根据所画的图形,类比三角形的定义,尝试说出四边形、五边形及n边形的概念.

(3)引导学生类比三角形的顶点、边、内角,指出所画多边形的顶点、边、内角.

(4)类比正三角形的概念,得出正多边形的概念.

(5)让同学在图中连接不相邻的顶点,由此引出对角线的概念,突出对角线的作用.

整个教学过程,以小组讨论、动手操作为主,合作交流结果,互相补充,老师概括,自然类比得出多边形及相关概念.

强调:我们现在研究的是如图

1、图2所示的多边形,也就是所谓的凸多边形,图3也是多边形,但不在现在的研究范围内.

2.探究多边形的内角和公式.

数学的研究方法往往是变新问题为所熟悉的问题.我们已知一个三角形的内角和等于180,那么四边形的内角和等于多少度呢?五边形、六边形呢?由此,n边形的内角和等于多少度呢?我们熟悉三角形的知识,因此在研究多边形时,可以通过分割图形将其转变为三角形来进行研究.那么想想看,四边形、五边形以至多边形可以分割为多少个三角形?如何分割比较好?请同学们动手画一下.

教学中尊重并鼓励学生尝试从不同角度寻求解决问题的方法.分割多边形成若干个三角形的方法是多样的,在探究多边形内角和前探讨,有助于学生拓宽思路.各组讨论,交流结果.展示各组的分割图,尝试评价不同分法间的差异.概括有如下三种:

1.由图4,从n边形的一个顶点引出的对角线把多边形划分成(n-2)个三角形.

2.如图5,在n边形内任取一点P,连接P点与多边形的每一个顶点,可得n个三角形.

3.如图6,在n边形某一边上任取一点P,连结P点与多边形的每一顶点,可得(n-l)个三角形.

根据三角形内角和公式,再结合图形,接下来我们探讨n边形的内角和.让学生分组讨论、交流,鼓励学生用多样化的方法探讨,对思路不明确的小组,可适当引导学生参照书上的方法,完成下表.此时的课堂气氛十分活跃,在探究过程中,经历了收集、选择、处理数学信息的过程,并作出合理的推断.适时地引导学生进行归纳,大多数同学通过动手、动脑、交流,能够得出多边形的内角和公式,体会到在解决问题的过程中与他人合作的重要性,从而感受到成功的喜悦.

图 形 多边形的边数 分成三角形的个数 多边形内角的和

三角形 四边形 3 1 180° 2 360°

五边形 5

六边形 6

… n边形 … … …

由此得出:

1、n边形的内角和为(n-2)·180°(n≥3)。

2、多边形每增加一条边,其内角和增加180°。3.运用发现结果.

例1 求八边形的内角和的度数。

2、一个多边形的内角和为900°,求多边形的边数。

根据多边形的内角和公式,大多数同学做这道题都没有问题.老师可以让中等程度学生口述思路,上黑板板演,老师适当评价.

三、巩固新知

1.第55页练习第1题.

2.如果一个四边形增加一边成为五边形,那么它的内角和增加多少度?若将四边形的边增加一倍成为八边形,内角和又增加多少度?

采用阶梯式练习,让所有同学都能享受到成功的喜悦,进一步激发学生学习的兴趣.

四、小结

这节课你学到了哪些数学知识和思想方法?引导学生小结,五、作业

习题8.3第1题;复习题A组第5题.

选做题:如果一个多边形的边数增加1倍,它的内角和是1800°,那么原多边形的边数是几? 教学反思:

本节课主要是让学生采用自学、合作、动手的学习方法,来学习和探究多边形的基本知识,通过三角形与多边形的

类比学习,使学生理解这部分知识,并体会类比和转化的数学思想。而教师通过展示课件,使学生加深对知识理 解,拓展学生的思维,激发学生学习兴趣。

第三篇:多边形的内角和教学设计

多边形的内角和教学设计

场坝二中郑茂

教学目标:

1、理解多边形及正多边形的定义

2、掌握多边形内角和公式。教学重、难点: 教学重点:

1、多边形内角和公式。

2、计算多边形的内角和及依据内角和确定多边形边数。教学难点:多边形内角和公式的推导。

一、创设情境,导入新课

前面我们学过了三角形内角和定理,你还记得三角形内角和是多少度吗?你知道四边形内角和的度数吗?如何计算多边形内角和吗?今天,老师想和同学们一起走进多边形的家园去揭开多边形的内角和的奥秘。(设计说明:复习引入,开门见山,提出简单的问题,吸引学生的注意力,激发学生自主学习的兴趣和积极性,从而自然引入新课。)

二、自主探究,发现新知

自学教材内容,动手操作,并思考:

1、三角形内角和多少度?

2、分别从四边形、五边形、六边形一个顶点出发可以引出多少条对角线?你能类比归纳出从n边形的一个顶点出发可以引出多少条对角线吗?

3、分别四边形、五边形、六边形从一个顶点出发引出的对角线将原图形分割成多少个三角形?你能类比归纳出从n边形的一个顶点出发引出的对角线把这些多边形分别分割成了多少个三角形吗?

4、请结合图形计算四边形、五边形、六边形的内角和。

5、从n边形一个顶点出发可以引出多少条对角线呢?这些对角线将n边形分割成了多少个三角形?现在你知道多边形内角和公式了吗?

6、用几何符号表示你的发现。

(师生活动:学生自学教材,结合探究提纲思考、作图、观察、讨论,教师做好板书准备后巡视检查学生自学情况,深入学生之间交流,掌握学情,为展示交流做准备。)

(设计意图:从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,让学生体会分割的过程,有利于深入领会转化的本质——n边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性, 同时,渗透类比的数学思想。)

三、学生交流,展示归纳

1、自主探究展示:

(1)从四边形、五边形一个顶点引发的对角线的条数。

(2)从n形一个顶点引发的对角线的条数。

2、合作探究展示:

四边形、五边形内角和度数及计算方法。

3、归纳展示:

n边形内角和公式:(n-2)×180°(n是大于或等于3的正整数)

(师生活动:教师结合巡视检查,让中差生先展示,充分的暴露问题,再由中等生或优等生纠错、说理、补充、评价、修正)

【设计意图】通过展示交流,培养学生的“发现、归纳、总结”能力,让学生体验从特殊到一般的数学思想方法,积累数学活动经验。

四、类比练习,巩固提升。

1、课本第24页练习1、2、3.1、下列角度中,不能成为多边形的内角和的是()(A)540°(B)580°(C)1800°(D)900°

2、正五边形的每一个外角等于___.每一个内角等于_____,3、如果一个多边形的每一个外角等于30°,则这个多边形的边数是_____(师生活动:抽学生口答、板演,发动其他同学评价、补充、修订,教师做必要的点拨和纠正。)

(设计意图:通过一系列与探究多边形内角和过程相呼应以及内角和公式的基础应用,进一步巩固学生多本节课知识的掌握,使学生获得必需的数学知识。)

五、回顾反思,内化提升

1.这节课你学到了什么?

2.你对大家有哪些建议或提醒?

(师生活动:学生自主小结,同学相互补充评价,教师补充完善。)(设计意图:培养学生对三角形内角和相关知识的归纳能力和对知识点进行概括的语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。)

六、当堂检测、知识过关

1、已知四边形ABCD中,∠A与∠C互补,如果∠B=80°,求∠D。

2、某四边形四个内角的度数之比为1:2:3:3,求这四个内角的度数。

3、在四边形ABCD中,已知∠A=85 °∠C =115 °∠B比∠D大20°,求∠B和∠D的度数。

4、已知多边形的一个内角的外角与其它各内角的度数总和为600°,求这个多边形的边数。(师生活动:学生独立完成,教师手拿红笔进行选择性批阅,5分钟左右,教师出示答案,学生自我评价,师生共同评价)

(设计意图:通过当堂检测,及时的反馈学生对本节课的学习情况,并让学生进一步掌握多边形内角和定理及外角和定理的应用,提高学生应用数学的能力。)

七、布置作业

1、必做题:习题15.3复习巩固第1、2题。

2、选做题:绩优学案本节课的典例探究3和巩固训练的5题。

【设计意图】体现课标理念:“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。”必做题面向全体,选做题使学有余力的同学有发展的空间。

第四篇:《多边形的内角和》教学设计

《多边形的内角和》教学设计

作为一名老师,就有可能用到教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。那么问题来了,教学设计应该怎么写?以下是小编为大家收集的《多边形的内角和》教学设计,希望对大家有所帮助。

《多边形的内角和》教学设计1

教学过程

(一)创设问题情境,引出新课。

1、以疑导入,引发求知欲。先展示六螺帽,八角石英钟、多边形水果盘等多边形实物。由此激发学生自己要设计,怎样设计的求知欲。然后提出具体问题。

引题:我们学校要准备建造一个各边长为5米,各内角都相等的十二边形花坛。问各角是多少度?

2、复习提问,知识巩固。

⑴三角形内角和等于多少度?

⑵四边形内角和定理以及推导方法。

3、引入新课

上一节课学习了求四边形内角和的方法,怎样求五边形、六边形……n边形的内角和呢?下面我们一起来讨论这个问题(板书课题)。

(二)引导探索,研讨新知

1、以动激趣,浅探求知。

一画:画三角形、四边形、五边形、六边形(让学生自己动手画)。

二量:量出五边形、六边形各内角,并求出其和(让学生自己求知)。

三比较:比较四边形、五边形、六边形分别是三角形内角和的多少倍,并由此去探索他们之间的初步规律。

2、观察联想,启迪思维。

(三)回顾小结,验收成效

1、已知边数如何求内角和;

2、已知内角和如何求边数;

3、n边形的内角和与外角和成一定的比例关系,求其n边形的边数。

(四)课后作业(教材P91习题7.3第8、9题)

《多边形的内角和》教学设计2

尊敬的各位领导:

老师大家好!

由我为大家介绍我们工作坊团队成员共同设计的《多边形的内角和》一课。我将从教材思考、学生调研、教学目标完善、教学过程设计等方面进行汇报。

(一)教材思考:

《多边形的内角和》是冀教版小学数学四年级下册第九单元探索乐园的第1课时,本单元要求是“在问题探索中,促进数学思维发展”。实现“不同的人在数学上得到不同的发展”是《数学课程标准》的基本理念,“发展合情推理和演绎推理能力”“清晰地表达自己的想法”“学会独立思考、体会数学的基本思想和思维方式”是课程标准关于数学思考方面的具体要求。

教材安排了两个例题,一是探究多边形边数与分割的三角形个数的规律,二在分割三角形的基础上探索多边形内角和。为了促进学生思考的连续性与有序性,我们将教材中的两个例题进行有机结合,在充分研究四边形五边形内角和方法的基础上提出如何得出任意多边形内角和问题,为发展学生的数学思维提供素材、创造探索的空间,让学生充分体会“画线段—分割三角形—求内角和”这样一个连续推理归纳得出规律的活动。

(二)学生调研及分析:

学生在本册第四单元认识了三角形、知道三角形内角和等于180度,会用字母表示数、字母表示数量关系的基础上进行学习的。我们团队的成员对所在学校四年级同学进行了调研,发现他们对于数学问题具有“猜想”的意识,但是缺乏理性的思考。他们愿意自己动手尝试探索研究问题,但是对于探索之后有序思考、归纳总结认识还不够全面。

有了以上分析,我们在尊重教材的基础上,确定了本节课教学目标,并对“过程与方法”目标进行了完善补充。

知识与技能:探索并了解多边形的边数与分割成的三角形个数,以及内角和之间隐含的规律;能运用多边形的内角和知识解决相关问题。

过程与方法:学生经历探索的全过程,积累探索和发现数学规律的经验,让学生尝试从不同的角度寻求解决问题的方法,体会从特殊到一般的认识问题的方法,发展理性思考。

情感态度与价值观:让学生在参与活动的过程中获得探索规律解决问题的成功体验,产生对数学的好奇心,培养归纳概括和推理能力

教学重点:经历由具体的图形发现规律的过程,获得初步的数学建模活动经验,产生对数学的好奇心,培养推理能力

教学难点:字母表达式的总结

教学准备:教师准备三角形、四边形、五边形、六边形图片,裁纸刀,课件。

学生学具准备四边形、五边形等多边形图片模型,三角板。

教学过程共分为四个环节。

教学过程:

一、创设情境,回顾三角形知识---注重知识的“生长点”

同学们请看这是什么图形?你了解它吗?你能向大家介绍三角形哪些知识?(这样设计意图是注尊重学生已有知识经验,体会数学知识的内在联系,重点认识三角形内角的含义及三角形内角和是180度的特点)

我们知道了三角形内角和是180度,那么四边形,五边形的内角和是多少度呢?这节课我们就一起来研究。

二、自主合作,探究新知—注重“数学算法的优化”共设计了三个探究活动。

1、四边形内角和

(1)有同学愿意猜想四边形内角和吗?猜想也要有根据,你能说说你的根据吗?(引导学生体会理性思考)

有没有同学一看到四边形就马上想到360度呢?你是根据哪个图形直接想到的?(让学生借助已有的长方形、正方形知识进行理性推理,打通新旧知识之间联系)

我们通过计算长方形、正方形的内角和是360度,是不是能说明所有四边形内角和都是360度?(引导学生体会这是一种“假设”因为它是特殊图形中做的成“猜想”)

我们需要研究怎样的图形才能发现它们一般的特征和规律?(任意四边形)

(2)小组活动,利用学具中的任意四边形想办法计算内角和。师巡视(注意学生不同的方法)

(3)学生汇报。可能有计算法,引导学生起名字“量角求和法”

撕角法,起名字“拼角求和法”。

切割法1,起名字“一分为二求和法”(学生演示这种方法时,教师帮忙切割,强调弄清楚四个内角怎样变成六个角,分成了几个三角形,一是画了一条线段,二是分成了二个三角形)

切割法2,起名字“一分为四求和法”180x4=720度,讨论这种方法的问题,怎样用这种方法计算四边形内角和是360度

归纳总结:四边形内角和是360度。(通过不同的个性方法,验证四边形内角和,进一步认识内角含义,感受不同算法的好处)

2、五边形内角和

今天的研究我们就停在这里吗?根据经验,我们要向什么挑战?(五边形)你能猜想它是多少度吗?请你选择一种方法,证实你的猜想。

总结:看来数学的方法有很多,但是有的方法有局限性,有的方法只适合三角形和四边形,量角有误差,拼角法有的会超过360度,而第三种看起来最简便。我们称之为“优化法”

列出算式:180x3=540度(学生不仅在计算度数上有了经验,而且在计算方法上也有了经验)

利用这种最优的方法,同桌同学互相说一说,四边形和五边形各画了几条线段,分割成几个三角形,怎样求内角和?(设计意图是让学生对探究过程进行归纳整理,为进一步有序的研究其他图形指明研究方向。)

现在我们就来看一看其他图形是不是也有这样的规律?

3、六边形、七边形内角和

小组合作,自己完成探究过程,填写表格。

学生汇报,总结画出的线段数和三角形个数之间联系。

三、归纳总结,形成规律---注重字母表达式的推理

通过大家的研究,找到了规律,请问10边形,能画几条线段,分成几个三角形?

90边形?100边形?n边形呢?(老师说我们研究三角形的个数,怎么去找边数的呢?学生说分割出的三角形的个数跟边数有关。那一千边形形,n边形呢?n-2得到的是什么?得到分成的三角形的个数。)

四、课堂总结,拓展延伸---注重数学思想方法的形成

师:今天你学到了什么?在今天的研究中哪些知识或研究的过程给你留下了深刻的印象?师:今天我们所研究的多边形都是凸多边形,还有一种多边形,它们叫做凹多边形,你能不能运用今天的研究方法,探究凹多边形的内角和吗?老师期待你在课后的研究成果。(设计意图是不仅让学生对本节课知识进行总结,也对数学的思想方法进行回顾,鼓励学生利用这些思想方法向类似数学问题挑战,以达到学以致用的目的。)

以上是我们对这节课的粗浅设计,恳请大家给予批评指正,谢谢!

《多边形的内角和》教学设计3

[教学目标]

知识与技能:

1.会用多边形公式进行计算。

2.理解多边形外角和公式。

过程与方法:

经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力.

情感态度与价值观:

让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。

[教学重点、难点与关键]

教学重点:多边形的内角和.的应用.

教学难点:探索多边形的内角和与外角和公式过程.

教学关键:应用化归的数学方法,把多边形问题转化为三角形问题来解决.

[教学方法]

本节课采用“探究与互动”的教学方式,并配以真的情境来引题。

[教学过程:]

(一)探索多边形的内角和

活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。

活动2:①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?②总结多边形内角和,你会得到什么样的结论?

多边形边数分成三角形的个数图形

内角和计算规律

三角形31180°(3-2)·180°

四边形4

五边形5

六边形6

七边形7

。。。。。。

n边形n

活动3:把一个五边形分成几个三角形,还有其他的分法吗?

总结多边形的内角和公式

一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180×______。

巩固练习:看谁求得又快又准!(抢答)

例1:已知四边形ABCD,∠A+∠C=180°,求∠B+∠D=?

(点评:四边形的一组对角互补,另一组对角也互补。)

(二)探索多边形的外角和

活动4:例2如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和.五边形的外角和等于多少?

分析:(1)任何一个外角同于他相邻的内角有什系?

(2)五边形的五个外角加上与他们相邻的内角所得总和是多少?

(3)上述总和与五边形的内角和、外角和有什么关系?

解:五边形的外角和=______________-五边形的内角和

活动5:探究如果将例2中五边形换成n边(n≥3),可以得到同样的结果吗?

也可以理解为:从多边形的一个顶点A点出发,沿多边形的各边走过各点之后回到点A.最后再转回出发时的方向。由于在这个运动过程中身体共转动了一周,也就是说所转的各个角的和等于一个______角。所以多边形的外角和等于_________。

结论:多边形的外角和=___________。

练习1:如果一个多边形的每一个外角等于30°,则这个多边形的边数是_____。

练习2:正五边形的每一个外角等于________,每一个内角等于_______。

练习3.已知一个多边形,它的内角和等于外角和,它是几边形?

(三)小结:本节课你有哪些收获?

(四)作业:

课本P84:习题7.3的2、6题

附知识拓展—平面镶嵌

(五)随堂练习(练一练)

1、n边形的内角和等于__________,九边形的内角和等于___________。

2、一个多边形当边数增加1时,它的内角和增加。

3、已知多边形的每个内角都等于150°,求这个多边形的边数?

4、一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()

A:360°B:540°C:720°D:900°

5.已知一个多边形,它的内角和等于外角和的2倍,求这个多边形的边数?

《多边形的内角和》教学设计4

学情分析:

学生已经学过三角形的内角和定理的知识基础,并且具备一定的化归思想,但是推理能力和表达能力还稍稍有点欠缺。针对这种情况,我会引导学生利用分类、数形结合的思想,加强对数学知识的`应用,发展学生合情合理的推理能力和语言表达能力。

教学目标:

1.知识与技能:运用三角形内角和定理来推证多边形内角和公式,掌握多边形的内角和的计算公式。

2.过程与方法:经理探究多边形内角和计算方法的过程,培养学生的合作交流的意识。

3.情感态度与价值观:感受数学化归的思想和实际应用的价值,同时培养学生善于发现,积极探究,合作创新的学习态度。

教学重点:

多边形的内角和公式。

教学难点:

探索多边形的内角和定理的推导

教学过程:

一、创设情境,导入新课

1、请看:我身后的建筑物是什么?─水立方。我看到水立方时发现它的膜结构的结合处都是多边形,你们想知道这些多边形的内角和吗?(多媒体展示)

这节课咱们一起来探究《多边形的内角和》。

二、合作交流,探究新知

1、多边形的内角和

问:要求内角和你联想到什么图形的内角和?(示三角形的内角和定理)。如果两个三角形能够拼成四边形,你能求出四边形的内角和是多少度呢?

预设回答:三角形的内角和360°。四边形的内角和360°

知道四边形的内角和为360°,现在你能利用三角形的内角和定理证明吗?自主学习教材第34页“动脑筋”

【教学说明】“解放学生的手,解放学生的大脑”,鼓励学生积极参与合作交流,寻找多种图形形式,深入全面转化的本质——将四边形转化为三角形问题来解决.

2、是否所有的多边形的内角和都可以“转化”为两个三角形的内角和来求得呢?如何“转化”?

预设回答:能,可以引对角线,将多边形分成几个三角形。

让学生合作交流讨论,展示探究成果。教材第35页“探究”

示图,取多边形上任意一个顶点,连接除相邻的两点,则多边形的内角和可转化为三角形内角和之间的关系,

多边形边数可分成三角形的个数多边形的内角和56 7┅┅┅┅n边形n

n边形有几个内角?是否可以“转化”为多个三角形的角来求得呢?如何“转化”?

预设回答:有n个内角,可以转化多个三角形来求,n边形可以引n-3条对角线,即有n-2个三角形。所有n边形的内角和等于(n-2)x180°

【教学说明】通过五边形、六边形、七边形、八边形等特殊多边形内角和的探索,让学生从特殊到一般归纳总结出多边形内角和公式,体会数形间的联系,感受从特殊到一般的数学推理过程和数学思考方法.

例:教材第36页例1

【教学说明】让学生利用多边形的内角和公式求一个多边形的内角和或它的边数,加深知识的理解与运用.

三、课堂演练

1、若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是()

A.十三边形B.十二边形

C.十一边形D.十边形

2、十二边形的内角和为,已知一个多边形的内角和是1260°,则这个多边形的边数是。

【教学说明】由学生自主完成,教师及时了解学生的学习效果,让学生经历运用知识解决问题的过程.对需要帮助的学生及时点拨并加以强化.在完成上述题目后,让学生完成练习册中本课时的对应训练部分.

四、课时小结

1、这节课你有什么新的收获?

五、布置作业

教材第36页练习1、2题。

六、板书设计多边形的内角和n边形内角和等于(n-2)×180°。

多边形的内角和是180的倍数;

边数越多,内角和就越大;

每增加一条边,内角和就增加180度。

第五篇:八年级数学教学设计:多边形的内角和8

(1)要结合图形.(2)要与三角形类比.(3)讲清定义中的关键词语.如四边形定义中要说明为什么加上“同一平面内”而三角形的定义中为什么不加“同一平面内”(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图4—2中的点.我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制).(4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原四边形的关系.(5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图4—1.(6)在判断一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4-4,图4-5.2.四边形内角和定理

教师问:

(1)在图4-3中对角线AC把四边形ABCD分成几个三角形?

(2)普宁新闻chaoshannews.com在图4-6中两条对角线AC和BD把四边形分成几个三角形?

(3)若在四边形ABCD 如图4-7内任取一点O,从O向四个顶点作连线,把四边形分成几个三角形.我们知道,三角形内角和等于180°,那么四边形的内角和就等于:

①2×180°=360°如图4—6;

②4×180°-360°=360°如图4-7.例1 已知:如图4—8,直线 于B、于C.求证:(1);(2).本例题是四边形内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出.【总结、扩展】

1.四边形的有关概念.2.四边形对角线的作用.3.四边形内角和定理.八、布置作业

教材P128中1(1)、2、3.九、板书设计

四边形(一)

四边形有关概念

四边形内角和

例1

十、随堂练习

教材P122中1、2、3.

下载八年级上册《多边形的内角和》教学设计5篇范文word格式文档
下载八年级上册《多边形的内角和》教学设计5篇范文.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《多边形内角和》教学反思

    《7.3.2多边形内角和》教学反思 钦州市浦北外国语学校 本节课,我先从问题“把一个四边形纸片剪去一个角后会得到一个什么图形呢?”入手,让学生思考,通过验证得到“五边形、四边......

    多边形内角和教学反思

    《多边形内角和》教学反思 歇马镇中心学校 吴秀珍 《多边形内角和》这节课,我基本上完成了教学任务,教学目标基本达成。学生明确了转化的思想是数学最基本的思想方法,知道研究......

    《多边形内角和》教学设计及反思

    《多边形内角和》教学设计及反思 一、教材分析 本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。 二、教学目标 1、知识目......

    11.3 多边形及其内角和 教学设计 教案

    教学准备 1. 教学目标 观察生活中大量的图片,认识一些简单的几何体(四边形、五边形),了解多边形及其内角,对角线等数学概念; 能由实物中辨别寻找出几何体,由几何体图形联想......

    《多边形的内角和》教学设计与说明

    多边形的内角和 [教学内容]苏教版四年级下册第96页~97页探究多边形内角和计算规律。 [教材简析] 这部分内容是一次探索规律的活动,主要引导学生通过观察、操作、归纳、类比......

    《多边形的内角和》教学反思

    《多边形的内角和》教学反思 《多边形内角和》这节课,我基本上完成了教学任务,教学目标基本达成,《多边形的内角和》教学反思。学生明确了转化的思想是数学最基本的思想方法,知......

    《多边形的内角和》教学反思

    《多边形的内角和》教学反思 伊滨区佃庄镇碑楼小学 盛晓红 本节课从复习旧知入手,在引课时提问三角形的相关知识,让学生在思想上对本节课产生兴趣,并且会觉得知识点不是很难......

    多边形的内角和教学反思

    多边形的内角和教学反思(一)《多边形内角和》这节课,我基本上完成了教学任务,教学目标基本达成。学生明确了转化的思想是数学最基本的思想方法,知道研究一个新的问题要从简单的已......