第一篇:五年级数学下册《体积单位的换算》教学设计马利宽
北师大版五年级数学下册
《体积单位的换算》教案
马利宽
教学目标:
1、结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。
2、在观察、操作中,发展空间观念。
3、学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。
教学重点、难点:
观察、操作中会进行体积、容积单位之间的换算。教学准备:
体积是1cm的小正方体,容积是1dm的小正方体,多媒体课件 按照课前准备要求摆放好学习用品,然后坐端正,准备上课。请学生把正方体放在小组桌子中间、其它学习用品放在左上角 教学过程:
一、复习回顾,导入新课
师:上课,同学们,马老师了解到咱们班同学已经认识了体积单位(指着板书),研究了长方体、正方体体积的计算方法,今天马老师和大家一起接着探索与体积单位有关的知识。
师:首先,我们一起复习一些学习过的知识。(幻灯片出示说一说)师:(读题提问)常用的体积单位有哪些?(生齐答)师:(继续提问)容器内的液体量一般使用哪些单位?
33(生齐答)师:还有补充吗?(生思考后①回答正确,师,表扬,思考真全面,重复说;②回答不出来,师提示:如果液体的量比较大,比如游泳池、蓄水池中的水?)
师:(读题,举例说明1m³,1dm³,1cm³分别有多大)
生:举例说明,(每个举例两、三个)师:这个例子很恰当,你真聪明,直接拿了桌面上的物体
师:我们接着来看填一填的答案。师读题 生:10cm、10dm。
师:也就是说,相邻长度单位间的进率是()生:10
师:接着来看,应该填多少 生:100
师:相邻面积单位间的进率是()生:100
那么,在猜一猜中,你填的是多少? 生:1000
师:确定吗?生:确定
师:没有猜不是1000的吗?生:没有
师:那它们间的进率是不是1000呢,你有哪些方法可以说明它们之间的进率是1000呢,首先请我们来探索立方分米与立方厘米之间的进率。到此大约6分钟
二、自主探究,获取新知 师:同桌两人合作,一起观察、分析课前准备的正方体,怎样能够说明1立方分米=1000立方厘米,听明白要求了吗?开始吧(音乐播放,学生探索大约5分钟)
师:哪位同学来说说你们探索的结果?生举手 师:进率是1000吗 生:是
师:说说你的理由,生:这个小的正方体是1立方厘米的小正方体,这个大的是1立方分米的正方体,可以放入1000,所以1立方分米=1000立方厘米。
师:能不能说说可以怎样放?
生:一排摆10个,每层正好可以摆10排,也就是说一层可以摆100个,正好摆10层,所以就有1000个,师:听明白了吗?
哪位同学再来说一说,还有同学不明白,谁再来说一遍,生复述
师:由于受时间和条件的限制,我们不能一个个摆,所以老师用课件演示一遍摆的过程,老师操作,大家一起来数一数。
师:进率是1000吗,生:是 师:说说你的理由
生1:(师提示,拿着手中的正方体)棱长1分米的正方体,体积是1分米×1分米×1分米=1立方分米;棱长10厘米的正方体体积是10厘米×10厘米×10厘米=1000立方厘米。由于1分米等于10厘米,所以1立方分米和1000立方厘米只不过是单位不同,表示的正方体的大小是相同的。生2:1分米等于10厘米,所以这两个正方体是一样的,师,能不能说的完整一些,生3:…… 生4:……
师:你分析得真棒,听明白的举手,再请一位同学来复述一遍。(如果没有师逐步提示)这两个正方体的什么是一样的 生:棱长是一样的,师:所以体积也是相等的,棱长1分米的正方体体积怎么计算 生;1×1×1=1立方分米;
师:棱长10厘米的正方体,体积怎么计算 生:10×10×10=1000立方厘米
而他们的体积又是相等的,所以1立方分米等于1000立方厘米。师:我们也可以通过计算分析的方法来研究它们之间的进率,明白了吗? 师:还有别的方法来说明进率是1000吗?此过程5分钟
师:这是1立方厘米的正方体,这是容积是1立方分米的正方体,我们现在来摆一摆。
师生一起数:1、2、3……10
师:现在是1排共10个了,我们接着摆 师生一起数:20、30、40……100
师:现在是一层一共100个了,我们接着摆 师生一起数:200、300……1000
师:正好1000个,这样就验证了大家的猜想是正确的。师:马老师有一个问题,在前面的学习中我们学习了升和立方厘米的关系,毫升和立方厘米的关系,现在你知道升和毫升的关系吗?
生:1000,师:说说你的想法
生:1升=1立方分米,1毫升=1立方厘米,1立方分米=1000立方厘米,所以1生=1000毫升。
师:你的逻辑推理能力真厉害,大家同意吗?
师:好的,那我们就得出了升和毫升这两个单位之间的进率也是1000 还有哪一个体积单位我们还没有研究呢? 生:立方米
师:好的这一个问题就交给你自己来解决了,请你独立解决课堂学习卡中的第二项,独立探索
(学生独立探索)
老师看大部分同学都完成了,我们一起来回答吧,师读题,生填空
师:这样大家得出了立方米和立方分米之间的进率,太棒了 下面我们来小结一下
也就是说相邻的体积单位间的进率都是1000,一定是相邻的体积单位,还有升和毫升的进率也是1000,下面请你根据所掌握的知识完成课堂学习卡的第三项,填表
生:汇报答案
师:这就是我们这节课要掌握的第一个知识,体积单位间的进率,具备了这一知识,我们就可以进行体积单位间的换算,板书(的换算)。
三、巩固练习,应用新知 请大家独立完成 师读题,生汇报
生5000,师:怎样得到5000的生:5×1000 生1350,师:怎样得到1350的,生:1.35×1000 生1200或者1200000,师:到底是多少呢? 生讨论得出1200000
生2.8,师:怎样得到2.8,生:2800÷1000 生0.72,32.5 师:怎样得到
师:能不能用自己的话总结一下单位换算到额规律 生尝试总结,汇报
师:展示小结,建立认知结构
师:看来同学们掌握的真不错,还有没有不明白的? 师:我们来解决一个生活中的实际问题 先猜一猜,买哪种瓶装的比较划算? 生:大瓶的,师:说说你猜测的依据
到底是不是呢?请你在练习本上来具体算一算,再进行比较 生:列算式进行比较
师巡视,寻找不同方法的同学,到前面进行展示。师:哪位同学看明白了这种方法,点名来讲一讲 生讲解、不能讲解的师逐步提示讲解。师:老师把以上几种方法中常用的两种总结如下,我们一起来看一看 方法1:比较每毫升牛奶的价钱 方法二比较每元钱可以买牛奶的量
四、课堂小结,回顾新知
通过今天的学习,你有哪些收获,谈一谈 生:进率,体积单位的换算
师:有关今天的学习还有什么疑问吗? 五,布置作业
老师这里有一个问题留给大家思考。
电视机包装箱的长是60米、60分米,还是60厘米?宽和高呢?箱子的体积是多少?
好今天这节课我们就学习到这里,下课!
第二篇:体积单位换算教学设计
《体积单位的换算》教学设计
【教学目标】
知识技能:结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。
数学思考:渗透类比思想,在观察、操作的过程中,进一步发展空间观念。
问题解决:会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握相邻两个单位间的进率。
情感态度:学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中相关的实际问题。
【教学重点】观察、操作中会进行体积、容积单位之间的换算。【教学难点】推导体积单位间的进率和建立相应的空间观念。【教学准备】课件、1dm3的正方体盒子、棱长为1厘米的正方体模型。
【教学过程】
一、复习导入
1、复习体积和容积的概念。
(1)说说常见的长度单位的名称,以及相邻两个单位的进率。
(2)说说面积单位的名称,以及相邻两个单位之间的进率。2、1平方分米=100平方厘米想想是怎么推导出来的?
3、揭示课题:这课我们学习相邻体积单位间的进率。
二、自主探索,验证猜测
1、我们认识的体积单位有哪些? 板书:立方米 立方分米 立方厘米
提问:1立方分米=?立方厘米,你认为可能是多少?(可能有认为是100,也有可能认为是1000。)
2、究竟哪种猜想是正确的呢?我们一起来验证一下。
棱长为1dm的正方体盒子中,可以放多少个体积为1cm3的小正方体呢?把你的想法在小组内交流一下,然后摆一摆,算一算。(小组讨论、拼摆,推导相邻体积单位之间的进率,教师巡视,加以指导)
3、全班交流:谁再来说说,1立方分米=?立方厘米(估计三种说法)①棱长1分米的正方体体积是1立方分米;棱长10厘米的正方体体积是1000立方厘米,而棱长1分米的正方体和棱长10厘米的正方体体积相等,所以1立方分米=1000立方厘米。
②在棱长1分米的正方体中摆棱长1厘米的正方体,一排能摆10个,能摆10排,摆10层,一共能摆10×10×10=1000个,所以1立方分米=1000立方厘米。
(电脑展示这种思考,然后请每个学生都把推导过程相互说一说。)③1立方分米=1升,1立方厘米=1毫升,而1升=1000毫升,所以1立方分米=1000立方厘米。
④口头回答:3立方分米=?立方厘米,5000立方厘米=?立方分米
4、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?
①学生独立思考,并组织语言准备交流,然后请1-2名学生说说推导过程。
a.计算小正方体的个数;b.计算体积;c.1dm3=1000cm3,得到相邻的单位分米3和米3之间的进率是1000,即1m3=1000dm3.(板书:1立方米=1000立方分米)②口头回答:
2立方米=?立方分米。9000立方分米=?立方米
5、补全表格,继续填写:
单位名称
相邻两个单位间的进率 长度 面积 体积
①总结体积单位以及它们之间的进率
②说说它们分别是计量物体的什么的? ③怎么来记忆它们相邻单位之间的进率?
三、巩固深化
1、出示书第45页的“练一练”第3题。学生先独立完成。交流你是怎样想的。
小结:把高级单位化成低级单位,要用高级单位的数乘进率(小数点向右移动三位);把低级单位化成高级单位,要用低级单位的数除以
进率(把小数点向左移动三位)。
2、辨别
有一个小朋友计算出一只微波炉的体积是63立方分米,他想用立方厘米做单位,他是这样换算的: 63立方分米=0.063立方厘米 他换算得对吗?(引导学生认识:①单位换算的方法;②联系实际分析换算的合理性,促进数感的发展。)
3、下面每一组数中都有一个数与其他数不同,请找出它!1.02m³
1020dm³
10200L
1020000cm³
5046dm³
5.046m³
5046000cm³
5046ml
4、课本P45 第2题。
鼓励学生通过观察得出长方体的长、宽、高,再应用公式进行计算。
5、棱长为2m的正方体盒子中,可以放多少个棱长为2dm的小正方体?
让学生先想象一排可以摆几个,一层可以摆几排,共可以摆几层。
6、课本P45 第4题。
7、课本P45 第5题。
四、课堂总结。
通过这节课的学习,你有什么收获? 【板书设计】
体积单位的换算
1分米3 = 1000厘米3
1升 = 1000毫升
1米3 = 1000 分米3
1m3 = 1000 dm3
第三篇:体积单位换算教学设计[范文]
体积单位的换算
教学目标:
1、了解并掌握体积单位间的进率。
2、理解并掌握体积高级单位与低级单位间的化和聚。
3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。
教学重点: 体积单位进率和单位之间的互化。教学难点:复名数和单名数之间的转化。教学过程:
一、复习准备
1、教师提问
(1)常用的长度单位有哪些?相邻的两个单位间的进率是多少?
(2)常用的面积单位有哪些?相邻的两个单位间的进率是多少?
2、口答填空,并说明算法和算理。
(1)4米=()分米=()厘米
(2)500厘米=()分米=()米
3、谈话引入:我们复习了长度单位和面积单位的进率,和高级单位和低级单位之间转换的方法,今天我们学习常用的体积单位间的进率和单位之间的转化。
二、学习新课
(一)认识体积单位间的进率
1、认识立方分米和立方厘米的关系
(1)指导学生自学,出示自学提纲
A、棱长是l分米的正方体的体积是多少?
B、棱长是l0厘米的正方体的体积是多少?
C、1立方分米与1000立方厘米哪个大?为什么?
(2)学生分组汇报.教师演示动画“体积单位间的进率l”
2、推导立方米与立方分米的关系.
(1)教师提问:请同学们猜想一下立方米与立方分米之间有什么关系?用什么方法可以验证你的想法是否正确呢?
(2)棱长是1米的正方体的体积是1立方米.而1米=10分米,所以棱长是l米的正方体可以划分成1000个棱长是l分米的小正方体,即1000个体积为l立方分米的正方体。板书:l立方米=1000立方分米
(3)思考:1立方米等于多少立方厘米呢?
3、小结:相邻的两个体积单位间的进率是l000
4、完成书上想一想,填一填。
三、巩固反馈.
1、口答填空,说出计算过程
0.9立方米=()立方分米
540立方厘米=()立方分米
38立方分米=()立方米
4立方分米50立方厘米=()立方分米 10.35立方米=()立方米()立方分米
2、判断正误,并说明理由. 0.5立方米=500立方厘米()
2.6立方分米=2立方米60立方厘米()
四、课堂总结.
今天我们学习了什么内容?你还有什么不懂的地方吗?
设计意图 :体积单位的换算是在学生认识了体积单位,学习了长方体、正方体的体积计算公式后进行教学的。引导学生通过实际操作,结合实际模型理解立方厘米和立方分米之间的进率。为了更好地学习本节课的内容,本节课在教学设计上主要体现以下两个特点: 1.重视学生的自主猜测、主动探究。在教学中,我先让学生猜想相邻体积单位间的进率,再通过验证发现常用的相邻体积单位间的进率是1000。这一过程充分体现了学生的主体作用,既掌握了知识,又培养了学生发现问题、提出问题、分析问题和解决问题的能力。2.重视转化、推算等方法。为了让学生明确体积单位间的进率,本节课先对旧知识进行复习,借以引导学生利用转化、类推的方法,让学生提出猜想,然后通过合作验证等活动得到结论,这样既让学生掌握了数学知识,又提高了学生解决问题的能力。
五、板书设计:
体积单位的换算 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1升=1000毫升
第四篇:北师大五年级数学体积单位的换算教学设计
体积单位的换算教学设计
教学目标:
1、结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。
2、在观察、操作中,发展空间观念。
3、学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。
教学重点、难点:
观察、操作中会进行体积、容积单位之间的换算。
教学准备:
体积是1立方厘米的小正方体,容积是1立方分米的小正方体,多媒体课件 前置预习:
1、棱长为1分米的正方体容器里可以放()个体积为1立方厘米的小正方。2、1m3=()dm3 1L=()立方分米,1ml=()立方厘米 1L=()ml 教学过程:
一、复习回顾,导入新课
师:我们班同学已经认识了体积单位(指着板书),研究了长方体、正方体体积的计算方法,今天马老师和大家一起接着探索与体积单位有关的知识。师:首先,我们一起复习一些学习过的知识。(幻灯片出示说一说)
师:(读题提问)常用的体积单位有哪些?(生齐答)
师:(继续提问)容器内的液体量一般使用哪些单位? 师:(读题,举例说明1m³,1dm³,1cm³分别有多大)
生:举例说明,(每个举例两、三个)
师:那它们间的进率是多少呢,猜一猜,你有哪些方法可以说明它们之间的进率是1000呢,首先请我们来探索立方分米与立方厘米之间的进率。
二、自主探究,获取新知
师:小组合作,一起观察、分析课前准备的正方体,棱长为1分米的正方体盒子中,可以放多少个体积为1立方厘米的小正方体?想一想,说一说,填一填
生:这个小的正方体是1立方厘米的小正方体,这个大的是1立方分米的正方体,大的正方体一排摆10个,每层正好可以摆10排,也就是说一层可以摆100个,正好摆10层,刚好能装1000个,所以棱长为1分米的正方体盒子中,可以放1000个体积为1立方厘米的小正方体,所以1立方分米=1000立方厘米。
生:体积为1立方分米的正方体,棱长为1分米,也可以看成是棱长为10厘米的正方体,体积是10×10×10=1000立方厘米。所以1立方分米=1000立方厘米,它们只是单位不同,但是表示的正方体的大小是相同的。师:演示订正 师:同学通过探索知道了立方分米和立方厘米的关系1立方分米=1000立方厘米,老师有一个问题,在前面的学习中我们学习了升和毫升,现在你知道升和毫升的关系吗?请大家说说1L=()立方分米,1ml=()立方厘米,1L=()ml? 生:棱长为1分米的容器的容积为1升,这个容器所能容纳物体的体积就是1立方分米,所以1升=1立方分米。
生:棱长为1厘米的容器的容积为1毫升,这个容器所能容纳物体的体积就是1立方厘米,所以1毫升=1立方厘米。
生:因为1升=1立方分米,1毫升=1立方厘米,1立方分米=1000立方厘米,所以1生=1000毫升
师:你的逻辑推理能力真厉害,大家同意吗?
师:好的,那我们就得出了升和毫升这两个单位之间的进率也是1000,还有哪一个体积单位我们还没有研究呢?1立方米等于多少立方分米?你是怎样想的,生独立尝试 方法同上
师:同学真棒,我们得出了1立方米=1000立方分米,请大家观察这个些体积单位,相邻的体积单位之间的进率是?、容积单位呢? 师:请大家完成书本第44页的表格 生汇报订正
师:同学都理解了吗?请大家思考一下1立方米=()立方厘米。与组员说说你的想法。生:因为1立方米=1000立方分米,1立方分米=1000立方厘米,所以1立方米=1000立方分米=(1000000)立方厘米
师:通过学习,我们知道了相邻的体积单位,容积单位之间的进率是1000,你们能用学习的知识完成下面的练习吗?
三、巩固练习,应用新知
书本第45页练一练第1、2、3、4、5题
四、全课总结
五、板书设计
体积单位的换算
1m3=1000dm3 1dm3=1000cm3
1m3=1000dm3=1000000cm3 1L=1dm3 1mL=1cm3
1L=1000mL
第五篇:五年级下册数学《体积和体积单位》教学设计
五年级下册数学《体积和体积单位》教学设计
一、教学内容: 人教版小学数学五年级下册教材38—39页。
二、教学目标:
知识与技能:学会用体积单位来描述物体的大小;能合理估计物体体积的大小。过程与方法:通过学生的观察思考、交流探究等学习活动,让学生经历物体体积概念的形成过程,体验和感悟空间观念。
情感态度与价值观:让学生在学习活动中学会学习,获得成功的体验,培养学生的应用意识,建立学生的学习自信心。
三、教学重难点:
教学重点:形成体积的概念和掌握常用的体积单位。
教学难点:初步建立1立方厘米、1立方分米、1立方米的空间观念。
四、教学准备:
玻璃杯,里面盛五分之二体积的水,若干石块;1立方分米和1立方厘米的正方体模型;
五、教学过程:
(一)创设问题情境。
根据以前学过的知识,我们知道线有长短,面有大小;线的长短叫长度,面的大小叫面积;那么体有大小吗?体的大小是指什么?体积的单位是怎样规定的?这些问题你了解吗?能说一说吗?在此基础上引入课题。(板书课题:体积和体积单位)
(二)探究体积概念。
1、由教材的《乌鸦喝水》的故事引入,提问:乌鸦是怎样喝到水的?
演示:拿出一个盛有2/5杯水的透明杯,再拿出准备好的小石块若干,请一名同学上台演示乌鸦喝到水的过程。其他同学仔细观察,当石子放入水中后,水面会有什么变化?
讨论:水面为什么会上升?(因为石头把水推上去了,为什么能推上去?因为石头把下面的位置占了,那个位置叫什么?用一个准确的词来表示是?-----空间)
2、什么是空间呢?(老师拿出一个长方形和一个长方体,对比两种图形。)
师:请同学们观察,长方形放在地上,它占了地的什么?(面积)长方体呢?(面积)长方体除了占地的面积以外还占了什么?(地面上空的大小)对了,除了地面的大小以外还有空中的这一部分,那么这一部分就是我们所说的----空间。
(设计意图:在这里我的设计是不急于把空间两个字说出来,要一步一步地按照学生的思路说出来,因为对于空间两个字的理解学生有一定的困难)
3、引出体积概念。
通过刚才的比较,我们发现,物体都会占空间,大家举例说一说物体占空间的现象。同学们举的这些例子中老师取出两个楼房和桌子,大家比较一下这两个物体所占的空间有什么不同?(一个大一个小)不错,这也就是说物体所占的空间有大小之分,我们把这种物体所占空间的大小就叫做物体的体积。
请同学重复一遍体积的概念,请一名同学板书:物体所占空间的大小叫做物体的体积。
4、进一步强化体积的概念 师:“同学们,现在你们观察一下自己的抽屉,说一说你们抽屉里有些什么?”
师:“为什么你们的抽屉还能放东西,说明什么?你能用一句话说一说吗?”
〔设计意图:通过引导观察和思考,让学生体验抽屉里有“空间”。将空间这一概念形象化,具体化,丰富学生的空间表象。〕
〔设计意图:由 “空间”到“物体要占空间”,再由“物体要占空间”到每一样物体所占空间多少的不一样,引出物体的体积概念,步步相扣,层层推理。以学生天每天接触的抽屉、书包为学习素材,让学生学习亲切,最这样容易让学生理解和体会学习的内容和学习方法。〕
(三)探索学习常用的体积单位。
1、比较两种体积大小差异大的物体。
师:“物体占空间多,那个物体的体积就大,物体占空间少,那个物体的体积就小。”
师:“拿出你们的书包或新华字典,摸一摸它们的大小,感觉一下自己书包或新华字典体积的大小。”
学生活动后,点同学分别到讲台上比划着告诉大家自己的书包或字典的大小。
2、引出体积单位。
师:你们知道他们的书包有多大了吗?字典具体是多大吗?刚才这两种体积非常近似的物体他们的体积大小又怎么表示呢?还有高大的楼房、山脉,细小的黄豆粒等,所有物体的体积大小的区分除了数字的大小以外,还有一个很重要和关键的量,是什么?------体积单位。
(1)、认识立方厘米(cm³)
A:出示一立方厘米的正方体模型,让大家观察、感知1立方厘米的体积有多大。B:从书本中找到描述1立方厘米的话,画出来再读一遍。C:估一估自己的橡皮有多少立方厘米、香皂的体积。(2)、认识立方分米(dm³)老师拿出1立方分米的正方体教具,方法同上,先让学生从书本中划出概念,再读一读,接着举出身边近似于1立方分米的物体,用手比划一下1立方分米有多大。
(3)认识立方米(m³)通过前面两种体积单位的学习,大家能不看书用自己的话说一说怎么样的体积是1立方米的体积吗?(变长为1米的正方体的体积为1立方米)大家说的很好,那么老师这里有一些一米长的线段,谁能帮老师搭建一个正方体?
师拿出三条长为1米的教具条,拼接在一起,组成一个三维的图形,请同学搭建在教室的墙角,组成一个体积为1立方米的正方体,全体同学观察、感知1立方米的大小。
(4)、初步区分二维和三维,进一步区分和巩固面积单位与体积单位的联系与区别
师:通过刚才的演示,大家发现,立体图形的构成是由不在同一个平面的几条线段围成的,如这个三条线段的框架,我们把立体图形就叫三维图形,因此它的单位都是在长度单位的基础上加立方两个字,它的简写也就是在字母的右上角写一个3,而平面图形它的构成是由几条在同一个面的线段围成的,它的搭建最简单的是需要两条线和别的一围,就可以组成,因此它是二维的,所以它的单位是在长度单位的前面加上平方两个字,它的简写是在字母的右上角写一个2。.因此,大家说一说,体积单位都是什么?(都是立方什么、立方什么)(设计意图:通过学生独立阅读教材和同伴合作交流,让学生从书中找到解决问题的方法。引出大家对“立方米、立方分米、立方厘米等体积单位的认识、理解和体验。
(5)试一试估计身边物体的大小。”
学生交流尝试用体积单位描述身边物体的大小。
(四)引导学生反思整理,形成体积概念。
师:“通过今天的学习你知道了哪些知识?哪些知识你觉得很重要?通过今天的学习你能解决生活中的哪些问题?
(设计意图:引导学生进行反思性学习应该引起教师的关注,反思整理让学生理清所学知识,感悟学习过程,体会学习方法,积累学习经验。同时在学习反思中,也让学生体验到学习的乐趣,增加学生的学习自信心。〕
(五)启发课后观察操作,深化巩固课堂知识。
师:“今天大家的学习很投入,也学了不少有关物体体积的知识,我也很高兴。其实学习不单是在课堂上学习,也可以在课外学。比如今天学习后,大家就可以去观察一下生活中的一些物品所占空间,想一想怎样用今天所学的体积单位来描述它,如一枝钢笔大约有20立方厘米等。”
师:“课后,同学们也可以做一个棱长是1分米的正方体和一个棱长是1厘米的正方体,比较一下1立方分米和1立方厘米的大小。我相信同学们的课外学习会比课堂上更认真,更投入,会有很多发现和收获。”
(设计意图:将学生的学习从课堂引到课外,由理论引向实践,培养学生的应用意识。)
六、板书设计:
体积和体积单位
物体所占空间的大小叫做物体的体积
立方厘米 立方分米 立方米 cm³ dm³ m³
七、教学反思:
在课堂中,我觉得我上课的语言不够生动,关注学生的情感不够,对学生的回答未能作出适当的评价。我这方面做得还不够,以后一定要在这方面加倍努力争取进步。同时,上了这节课,让我深深体会到,在教学几何类概念课过程中要多以观察、比较、动手操作量一量、摸一摸等活动,为学生建立情感,形成表象。学生对一个新的概念的接受和形成需要不断地体验和强化,而操作性的体验强化可以提高学生形成新概念的效果。对像1立方厘米、1立方分米和1立方米这样的规定性知识虽然不需要学生的探究和讨论,但采用学生愿意接受的活动方式(如读一读、说一说、估一估、比划比划等)去解读知识和理解概念,体验概念是很有必要的。