第一篇:有理数的加减混合运算教学设计
有理数的加减混合运算(第一课时)
南辛店初中 张海红
一、教学目标
(一)知识与技能目标:
使学生理解有理数的加减法可以互相转化,并了解代数和概念;学生熟练地进行有理数的加减混合运算;
(二)过程与方法目标:
利用有理数的加减法解决一些简单的实际问题,使学生进一步理解转化的数学思想。
(三)情感态度与价值观目标:
通过解决实际问题,培养学生的学习兴趣,体会数学来源于生活。
二、教学重点和难点
重点:准确迅速地进行有理数的加减混合运算. 难点:减法直接转化为加法及混合运算的准确性.
三、教学手段 投影仪、多媒体
四、教学方法及学法指导 自主探究、小组交流、讲练结合
五、教学过程
(一)、复习导入
1.叙述有理数加法法则. 2.叙述有理数减法法则. 3.叙述加法的运算律.
4.化简:+(+3);+(-3);-(+3);-(-3). 5.口算:
(1)2-7;(2)(-2)-7;(3)(-2)-(-7);(4
3.2 + 1.13.2 + 1.1(-10)+(-6)①10+(+4)+(-6)-(-5);
②(-8)-(+4)+(-7)-(+9).(2)说出式子8-7+4-6两种读法. 2.加法运算律的运用
有理数加法运算律:a+b=b+a,(a+b)+c=a+(b+c). 例
3计算-20+3-5+7. 解:-20+3-5+7 =-20-5+3+7 =-25+10 =-15.
注意这里既交换又结合,交换时应连同数字前的符号一起交换. 课堂练习(1)计算:
①-1+2-3-4+5;
②(-8)-(+4)+(-6)-(-1).(2)用较为简便的方法计算下列各题:
(三)、小结
1.有理数的减法法则:减去一个数等于加上这个数的相反数.要注意“两个变化”.2.有理数加减混合运算:减法运算统一为加法运算以后 ,运用加法的交换律和结合律进行计算可以简化运算.3.因为有理数加减法可统一成加法,所以在加减运算时,适当运用加法运算律,把正数与负数分别相加,可使运算简便.但要注意交换加数的位置时,要连同前面的符号一起交换.
六、练习设计
(一)计算:
第二篇:有理数加减混合运算教学设计
《有理数的加减混合运算》教学设计
石娟娟
教学目标: 知识与技能:初步会用有理数的加、减运算法则进行混合运算,并会用运算律进行简便计算。过程与方法:利用有理数的加减混合运算解决一些简单实际问题,使学生初步了解类比学习的思想方法。
情感态度与价值观:通过有理数的混合运算解决实际问题,培养学生浓厚的学习兴趣,体会有理数混合运算的意义和作用,感受数学在生活中的价值。教学重点:利用有理数的混合运算解决实际问题。教学难点:用运算律进行简便计算 教具:多媒体课件 教学方法:启发式教学 课时安排:一课时
一、创设情境复习引入(课件出示)
1.叙述有理数加法法则
2.叙述有理数减法法则。3.叙述加法的运算律。4.符号“+”和“-”各表达哪些意义?
二、自主探究
-9+(+6);(-11)-7
(1)读出这两个算式。
(2)“+、-”读作什么?是哪种符号?“+、-”又读作什么?是什么符号? 把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的有理数的加减混合运算。
由复习的题目巧妙地填“-”号,就变成了今天将学的加减混合运算内容,使学生更形象、更深刻地明白了有理数加减混合运算题目的组成。
三、互评互教
(-9)+(+6)-(-11)-7
学生自己在练习本上计算。先自己练习尝试用两种读法读,并同桌之间相互检测。让学生尝试,给了学生一个展示自己的机会,学生自己就会寻找到简单的、一般性的方法。教师根据学生所做的方法,及时指出最具代表性的方法来给学生指明方向,在把算式写成省略括号代数 和的形式后,通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观察能力及口头表达能力。
1.把下列算式写成省略括号和的形式,并把结果用两种读法读 出来。(1)(+9)-(+10)+(-2)-(-8)+3;(2)-
+(-)-(-)-(+)
(二)用加法运算律计算出结果 -9+6+11-7 1题两个学生板演,两个学生用两 种读法读 出结果,其他学生自行演练,然后同桌读出互相纠正。
四、精讲点拔
例题解析 出示例题:计算: 1.(+3)-(-9)+(-4)-(+2)
2.12-(-18)+(-7)-15;
师生共同小结:有理数加减法混合运算的题目的步骤为1.减法转化成加法;
2.省略加号括号;3.运用加法交换律使同号两数分别相加;4.按有理数加法法则计算
五、反馈练习
三个学生板演,其他学生在练习本上做。
采用同桌互相测验的方法,以达到纠正错误的目的。针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中。归纳小结
教师提问:
1.怎样做加减混合运算题目?
2.省略括号和的形式的两种读法各是什么?
教学反思
——石娟娟
本节课是一节计算课,是学生们在学习了有理数的加法和减法的基础上进行教学的。通过本节课的学习使学生掌握代数和的概念,知道所有含有有理数的加、减混合运算的式子都可以化为有理数的加法的形式即代数和的形式,并能熟练掌握有理数的加减混合运算及运
算顺序。还要培养学生理解事物发展变化是可以相互转化的辩证唯物主义观点。
本节课本着“扎实、有效”的原则,既关注课堂教学的本质,有注重学生能力的培养,且面向全体学生来设计教学。通过教学实践,在本节课上不足的地方是:
1、时间掌握的不好有一些前松后紧,以至于后面没有时间来进行本节课的小结,就显得有一些虎头蛇尾了。
2、练习的形式还有些单调,如时间富裕还可以准备一些判断练习,把学生在做题时容易出错的地方写出来,让学生来进行判断,用这种方式来进行强化来练习,可以收到比较好的效果。
第三篇:有理数加减混合运算教学反思
有理数加减混合运算教学反思
根据学生的年龄特征,本节课利用例题导入,创设问题情境,让学生通过观察、分析等一系列思维活动得出加法运算律在进行加减混合运算时可简化计算。
通过分组竞赛的方式活跃课堂气氛,抓住学生注意力,充分调动学生学习的积极性,达到巩固知识的目的,提高学生的运算能力,并且加强学生彼此间的合作,增强集体荣誉感。让学生自行编题打破了一味由老师出题的模式,可培养学生思维的创新性、灵活性。在课堂的组织上,精心安排:从“我为小组添彩”-“同伴互助”-“合作交流”各个环节组织有序,取得了良好的教学效果。这也为例题的讲解打下很好的底子,使学生能迅速而准确的分析问题的实质。
我想我们在教学时,应鼓励学生算法多样化,在具体情境中体会减法转化为加法的运算含义,在进行加减混合运算时,可以适当运用加法交换律和结合律来简化运算.真正做到“一找二凑三结合”。让计算变得轻松。讲课前教师还要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正。
第四篇:有理数加减混合运算教学反思
《有理数加减混合运算》教学反思
——曹开福
《有理数加减混合运算》是在学生已经初步掌握有理数的加法和减法的基础上学习的。学生对于两个数的加减比较容易掌握,当加减一起混合的时候,思路就会变得比较糊涂了。因此学习《有理数加减混合运算》是有理数这一章的其中一个难点。我上这节课的基本思路是这样的:
复习:有理数的加减法法则,多重符号的化简方法
探索新知讲授新课 讲评(-9)+(+6)-(-11)-7 省略括号和的形式
对此类题目经常采用先把减法转化为加法,这时就成了-9,+6,+11,-7的和,原式=(-9)+(+6)+(+11)+(-7)
加号通常可以省略,括号也可以省略,即:-9+6+11-7,虽然加号、括号省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以这个算式可以读成„„(教师纠正)
学生自己在练习本上计算。
先自己练习尝试用两种读法读,口答。(负9正6正11负7的和或负9加6加11减7)
让学生尝试,给了学生一个展示自己的机会,学生自己就会寻找到简单的、一般性的方法。
教巩固练习1.把下列算式写成省略括号和的形式,并把结果用两种读法读出来。
(+9)-(+10)+(-2)-(-8)+3;
2.判断
式子-7+1-5-9的正确读法是()
A.负
7、正
1、负
5、负9;
B.减
7、加
1、减
5、减9;
C.负
7、加
1、负
5、减9;
D.负
7、加
1、减
5、减9;
(二)用加法运算律计算出结果 -9+6+11-7
(三)巩固练习
1.-4+7-4=-___-___+___ 2.+6+9-15+3=___+___+___-___ 3. -9-3+2-4=___9___3___4___2 1题两个学生板演,两个学生用两 种读法读 出结果,其他学生自行演练,然后同桌读出互相纠正。
2题抢答
按教师要求口答并读出结果
讨论后回答 这两题旨意在巩固怎样把加减混合运算题目都转化成加法运算写成代数和的形式,这里特别注意了代数和形式的两种读法。
学生运用加法交换律时,很可能产生“-9+7+11-6”这样的错误,教师先让学生自 己去做,然后纠正,又做一组巩固练习,使学生牢固掌握运用加法运算律把同号数放在一起时,一定要连同前面的符号一起交换这一知识点。
例题解析 出示例题:计算:(+3)-(-9)+(-4)-(+2)
师生共同小结:有理数加减法混合运算的题目的步骤为1.减法转化成加法;
2.省略加号括号;3.运用加法交换律使同号两数分别相加;4.按有理数加法法则计算。
反馈练习
计算 12-(-18)+(-7)-15;
三个学生板演,其他学生在练习本上做。
采用同桌互相测验的方法,以达到纠正错误的目的。针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中。
教学反思:
本节课是一节计算课,是学生们在学习了有理数的加法和减法的基础上进行教学的。通过本节课的学习使学生掌握代数和的概念,知道所有含有有理数的加、减混合运算的式子都可以化为有理数的加法的形式即代数和的形式,并能熟练掌握有理数的加减混合运 算及其运算顺序。而要熟练准确的进行有理数的加减混合运算的关键首先就是将混合运算的式子看为(化为)代数和的形式,其次就是对有理数加法法则的准确掌握、灵活运用。如-5+3除了利用法则,还可理解为-5中拿了3个-与+3相消,还剩2个-即等于-2.。又如正数、负数可先分别加到一起、最后再将结果加到一起。
在本节课上不足的地方是:
1、练习的形式还有些单调,如时间富裕还可以准备一些判断练习,把学生在做题时容易出错的地方写出来,让学生来进行判断,用这种方式来进行强化来练习,可以收到比较好的效果。
第五篇:有理数加减混合运算((含答案))
有理数加减混合运算((含答案))【模拟试题】(答题时间:20分钟)
1.填空:
(1)某人向东走5米,记作5米,那么向西走10米,应记作__________米,也可以说成向东走__________米。
(2)17米表示比海平面高17米,那么11米表示_________,0米表示_________。
(3)一小组5人的口语成绩平均为8分,将5人的成绩简记为:1,2,0,2,1,请写出这5人的口语成绩____________________。
(4)将下列各数填入相应括号内:
3.4,0.5,
正有理数(整数(非负有理数(负分数(15,0.86,0.8,8.7,0,,7 36);););)。
(5)在原点的右侧,距原点1个单位的点的数是___________。
2(6)到原点的距离等于2个单位长度的数是___________。
2.选择:
(1)下列说法:①零是正数;②零是整数;③零是最小的有理数;④零是非负数;⑤零是偶数,其中正确的个数是()个
A.2 B.3 C.4 D.5
(2)在数轴上表示数2和表示数5的点之间的距离是()
A.7
B.7 C.
3D.3
(3)如图,据有理数a、b、c在数轴上的位置,下列关系正确的是()
A.bc0a
C.acb0 B.abc0 D.b0ac
3.画出数轴,在数轴上记出3,2.5,1及到原点距离与它们分别相等的数,并用“<”将所有数连接起来。
4.某同学给自己的压岁钱记了流水帐,大姑给+50元,二姑给+30元,三叔给+20元,去动物园花10元,记上10元,买文具用品花了15元,记为15元,他的帐上余额为多少元?
12【模拟试题】(答题时间:40分钟)
一.选择题。1.若a的相反数是非负数,则a为()
A.负数
B.负数或零
C.正数 D.正数或零
2.下列说法中正确的是()
A.π的相反数是314.B.符号不同的两个数一定是互为相反数
C.若x和y互为相反数,则xy0
D.一个数的相反数一定是负数
3.一个数大于它的相反数,那么这个数是()
A.负数
B.正数
C.非负数
D.非正数
4.下列叙述错误的是()
A.若a为正数,则a0
B.若a为负数,则a0
C.若a为正数,则a0
D.若a为负数,则a0
5.绝对值最小的数是()
A.不存在B.0 C.1
6.下列各数中,互为相反数的是()
A.5与
5C.4与4 B.3与3 D.a与a
D.1
7.若a为有理数,则aa,那么a是()
A.正数
二.填空题。
1.绝对值等于6 B.负数
C.正数或零
D.负数或零
1的数是___________。
22.6___________,6___________。
3.绝对值小于3.1的所有非负整数为___________。
4.若a10,b12,且a0,b0,则ab___________。
5.若a10,b12,当a、b异号时,则ab___________。
6.若a10,b12,则ab___________。
7.最小的正整数,最大的负整数,绝对值最小的数,它们的和是___________。
三.计算题。
1.05.175.325.7.5
2.5121211356214 4646
3.12345678
4.4018042035
5.37.5284625
727
四.a与b互为相反数,b与c互为倒数,d与e的和的绝对值等于2,则2bc 511abde的值是多少? bc
【模拟试题】(答题时间:30分钟)
一.填空题。
1.比5小2的数是_________,比5大2的数是_________。
2.0242_________,8减去2.8与19.的差是_________。
33.a29,b36,c216,则abc_________。
4.把6425改写为省略加号的和的形式为__________________,结果为__________________。
5.绝对值大于3,而小于8的所有负整数的和是_________。
二.选择题。
1.下列说法中正确的个数有()
(1)两个有理数绝对值的和等于它们的和的绝对值。
(2)两个有理数和的绝对值为正数。
(3)两个有理数差的绝对值等于这两个数绝对值的差。
(4)两个有理数绝对值的差必为负数。
A.0个
B.1个
C.2个
D.3个
2.已知a3,b4,则ab的值是()
A.
1B.1 C.1或1 D.1或7
3.已知a、b是两个有理数,那么ab与a比较,必定是()
A.aba
B.aba
C.aba
D.大小取决于b
4.若两个有理数的差为正数,那么()
A.被减数是负数,减数是正数
B.被减数和减数都是正数
C.被减数大于减数
D.被减数和减数不能同为负数
三.计算题。
(1)131232 43(2)136.2.6452.0.2
(3)3
(4)05.32.757 74251297 45135261412(5)5132211 4343
(6)2 1112132532 32432【试题答案】 1.(1)10,10
(2)比海平面低11米,海平面
(3)7,10,8,6,9
(4)正有理数(0.86,0.8,8.7)
非负有理数(0.86,0.8,8.7,0)
(5)
3.整数(0,7)
负分数(3.4,0.5,
(2)B
15,)361
(6)2
2.(1)B 2(3)D
32.51
4.75元
1112.53 22【试题答案】一.1.B 二.1.6 2.C 3.B 4.C
5.B
6.A
7.D 111
2.6,6
3.0,1,2,3 222
4.2
5.2
6.2,22
7.0 三.1.3 四.0 2.13
3.8
4.328
5.53 7【试题答案】一.填空题。
1.3,3
2.24,12.7
3.223
4.6425,3
5.22
3二.选择题。
1.A 2.D 三.计算题。3.D
4.C 1 423
(3)13
907
(5)
(1)(2)14.(4)2(6)41 4