第一篇:平行四边形对角线判定教案
9.3平行四边形(3)
主备人:沐文中
审核人:沙卫霞
教学目标:
1、逐步学会分析和综合的思考方法,反战学生的演绎推理能力。
2、从简单的例子中体会反证法的含义。
教学重难点:
1、平行四边形判定方法的综合。
2、反证法的理解与简单运用。
教学过程:
一、交流展示,探究引入
1、复习(1)平行四边形有哪些性质?平行四边形的性质:
(1)平行四边形两组对边分别平行(2)平行四边形两组对边分别相等
(3)平行四边形两组两组对角分别相等(4)平行四边形对角线互相平分
复习(2)你能说出哪些判定平行四边形的方法?平行四边形的判定方法:
(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形(3)一组对边平行且相等的四边形是平行四边形
2、比较:
(1)平行四边形两组对边分别平行与两组对边分别平行的四边形是平行四边形(2)平行四边形两组对边分别相等与两组对边分别相等的四边形是平行四边形 你发现以上各组两个命题之间有什么关系?
请问:平行四边形的对角线互相平分的逆命题是什么?这个命题是真命题吗?
二、自主质疑,互动解惑
3、操作思考: 画两条相交直线a、b,设交点为O,在直线a上截取OA=OC,在直线b上截取OB=OD,连接AB、BC、CD、DA.你能证明所画的四边形ABCD是平行四边形吗?
4、讨论交流1: 如图,已知直线AC、BD相交于点O,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.定理:对角线互相平分的四边形是平行四边形. 几何语言:
∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.
5、讨论交流2 如果OA=OC,OB≠OD,那么四边形ABCD还是平行四边形吗?
你能证明吗?
证明:假设四边形ABCD是平行四边形,那么OA=OC,OB=OD 这与OB≠OD矛盾,所以四边形ABCD不是平行四边形 反证法的证题步骤:(1)假设结论不成立
(2)根据假设推出矛盾(与已知条件矛盾,与定义、定理或公理矛盾)(3)说明假设错误,原命题正确
6、简单运用:
用反证法说明:等腰三角形的底角只能是锐角。
三、分层训练,巩固提高 新知应用
例:已知:如图,在□ABCD中,点E、F在AC上,且AE=CF.求证:四边形EBFD是平行四边形.
四、归纳反馈,拓展延伸
本节课你有哪些收获?本节课你还有哪些疑惑? 拓展延伸
如图,□ABCD的对角线相交于点O,直线EF过点O分别交BC,AD于点E、F,G、H分别为OB,OD的中点,求证:四边形GEHF是平行四边形.
第二篇:平行四边形的对角线特征教案
第2课时平行四边形的对角线特征
【知识与技能】
理解并掌握平行四边形的对角线互相平分的性质,并能用它来解决问题.【过程与方法】
通过活动探究获得平行四边形的对角线互相平分的性质过程中,增强学生的合作交流意识和探究精神,培养分析问题,解决问题的能力.【情感态度】
在问题解决过程中让学生体验成功的快乐,激发学习数学的兴趣.【教学重点】
平行四边形的对角线互相平分这一性质的探究与应用.【教学难点】
综合运用平形四边形性质解决问题.一、情境导入,初步认识
探究 如图,在纸上画ABCD,将它剪下,再在一张纸上沿ABCD的边缘画一个与ABCD相同的EFGH.在它们的中心(两条对角线的交点)钉一个图钉,将ABCD绕点O旋转180°后,它能与EFGH重合吗?从中你能看出上节课得到的ABCD的边、角关系吗?进一步地,你能发现OA与OC,OB与OD的关系吗?
【教学说明】教学时,教师应给出适当的时间让学生能够完成操作实践,并通过观察思考获得结论,一方面巩固上节课学过的两个性质,另一方面又为本节探讨平行四边形对角线互相平分的性质作铺垫,引入新课.二、思考探究,获取新知
通过ABCD绕点O旋转180°后与EFGH重合,易发现OA=OC,OB=OD这一结论,于是有:平行四边形的对角线互相平分,即在ABCD中,AC、BD相交
于O,则有OA=OC,OB=OD.思考
请观察下边的图形(在ABCD中,AC、BD相交于O),你能证明上述结论吗?
【教学说明】教师可引导学生利用三角形全等来得到上述结论,让学生自主完成证明过程.三、典例精析,掌握新知
例1 如图,四边形ABCD是平行四边形,且AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的长及ABCD的面积.【分析】由平行四边形的对边相等易知BC=AD=8,CD=AB=10,再在Rt△ACB中,AB=10,BC=8,∠ACB=90°,∴AC=6,由平行四边形的对角线互相平分知OA=OC=12AC=3,从而易得ABCD的面积为BC×AC=6×8=48.【教学说明】教师给出本题后,应让学生先独立完成试试,然后教师给出评讲,让学生在成功或挫折中加深对知识的领悟.例2 如图,ABCD的对角线AC、BD相交于点O,过点O的一直线交AD于E,交BC于F.求证:OE=OF.【分析】由平行四边形的性质有OA=OC,又AD∥BC,故∠EAO=∠FCO,又由∠AOE=∠COF易知△AOE≌△COF,从而OE=OF.【教学说明】本例仍可先让学生自己独立完成,然后相互交流,教师巡视,对有困难同学及时予以指导.四、运用新知,深化理解
1.如图,在ABCD中,BC=10cm,AC=8cm,BD=14cm,△AOD的周长是多少?为什么?△ABC与△DBC的周长哪个长?长多少?
2.如图,ABCD的周长为50cm,对角线AC、BD相交于点O,且△AOB的周长比△BOC的周长长7cm,求ABCD的各边长.3.如图,在ABCD中,对角线AC,BD相交于点O.(1)若AB=4,AD=8,求对角线AC的范围;(2)若AB=4,BD=10,求对角线AC的范围.4.如图,王大爷有一块平行四边形菜地,现在想把它分成面积相等的两块,两块地中间挖一条与一组对边AD、BC都垂直的水沟,你能帮助他完成这个分法吗?
【教学说明】通过上述四道题的探究,可进一步增强学生对平行四边形性质的认识,积累解题经验,锻炼分析问题,解决问题的能力.【答案】1.解:在ABCD中,AC=8cm,BD=14cm.∴AO=1/2AC=4cm,DO=1/2BD=7cm.∴△AOD的周长是AO+OD+AD=4+7+10=21cm.又∵△ABC的周长为AB+AC+BC=AB+8+10=AB+18,△DBC的周长为BD+CD+BC=14+AB+10=24+AB.∴△DBC的周长比△ABC的周长长,长(24+AB)-(18+AB)=6cm.2.解:∵ABCD的周长为50cm,∴2(AB+BC)=50cm,即AB+BC=25cm ①,由平行四边形的性质得:AO=CO,故C△AOB-C△BOC=(AB+AO+BO)-(BO+CO+BC)=AB-BC=7cm ②,联系①②解得:AB=16cm,BC=9cm.即ABCD的边长分别为16cm,9cm,16cm,9cm.3.解:(1)∵四边形ABCD是平行四边形,∴BC=AD,在△ABC中,BC-AB<AC<BC+AB,∴8-4<AC<8+4,即4<AC<12.(2)∵BO=12BD=5,∴BO-AB<OA<BO+AB,∴5-4<OA<5+4,∴1<OA<9,∴2<AC<18.4.解:(1)连接AC、BD交于点O;
(2)过点O作OE⊥AD于点E,延长EO交BC于点F,则EF即为水沟的位置.五、师生互动,课堂小结
通过这节课的学习,你又有哪些收获?与同伴交流.1.布置作业:从教材“习题18.1”中选取.2.完成练习册中本课时练习.本课的教学是在前一课时的基础上对平行四边形对角线的性质进行探索.本课时教学时,应关注以下几个方面:
(1)新课讲解过程中,要让学生通过观察、拼一拼、折一折、量一量等方法去探究,去亲身感受知识的形成和发展过程.(2)在练习的过程中要注意方法指导和“转化”思想的渗透.比如:当学生利用连接对角线方法来解决实际问题后,老师应该强调,我们在解决四边形问题时常用的方法是将其“转化”成三角形问题.(3)对于学生的练习情况要多用多媒体来展示,使说和写有利地结合起来,培养学生的论证推理能力.
第三篇:平行四边形判定教案
平行四边形判定
(一)教案
一、教学目标
知识技能:通过探索平行四边形常用判定条件的过程,掌握平行四边形常用的判定方法 数学思考:在探索平行四边形常用判定条件的过程中,发展学生的合情推理能力、创新能力、动手操作能力及应用数学的意识与能力
问题解决:通过观察、实验、交流等数学活动,让学生掌握平行四边形常用的判定方法 情感态度:在操作活动和观察、分析过程中培养学生的主动探索、质疑和独立思考的习惯。
二、教学重点及难点
教学重点:平行四边形判定方法的探究
教学难点:平行四边形判定方法的寻找及掌握平行四边形常用的判定方法
三、教具准备
尺子、量角器、吸管、剪刀、大头针等
四、教学过程
(一)创设情境,引入新知
学校计划在操场边上建一个平行四边形的花圃,工人师傅该怎样画出这个平行四边形呢?你能利用平行四边形的定义解决这个问题吗?试一试,并说说你的想法和做法。这个情境是引导学生用定义判别平行四边形,即作两组相交的平行线所围成的图形就是平行四边形。以实际问题为切入点引入新课,不仅自然,而且反映了数学来源于生活,来源于人的实际需要的基本观点。由学生独立思考后再以三人一小组讨论并提出发言申请,说出本组讨论结果,最后将实验方案在电子白板上展示出来。
(二)、新知探索及内化
提出问题:1.平行四边形有哪些性质?
本活动是复习近平行四边形的性质,由学生独立思考后电子抢答。(参考答案)性质: 1.两组对边分别平行; 2.两组对边分别相等;(或者说“两组对边分别平行且相等); 3.两组对角分别相等; 4.对角线互相平分; 5.邻角互补;
6.内角和为360度; 7.外角和为360度。(等等)教师:上述性质中,哪些是平行四边形特有的? 你能把它们的逆命题写出来吗?并猜测这些逆命题的真假性。
本活动引导学生写出它们的逆命题,为探究平行四边形的判定条件埋下伏笔。由学生独立思考,并口答。用课堂讨论相互交流写出的逆命题及真假性的猜测。逆命题及真假性:1.两组对边分别平行的四边形是平行四边形;2.两组对边分别相等的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.对角线互相平分的四边形是平行四边形。(都是真命题。)等等。
出示活动:大家按三人一组,用学具做一做,看看还能用什么方法画出平行四边形?把你的想法和做法记下来,并将实验方案在电子白板上展示出来。比比哪个小组得到的方法更多、更好!教师:你能类比平行四边形性质定理的逆命题设计出实验方案吗?大家三人为一组用学具做一做,验证自己的想法。
学生进行小组讨论并动手做实验。
教师:请各组选一名代表说出你们的实验方案,并简要说明自己做法的依据。学生口答,教师课件展示。
教师:你们能将实验方案在电子白板上展示出来吗? 学生展示。
这部分是本课重点和难点,应放手让学生充分地进行实验与交流,教师参与其中加以指导。学生若得出不正确方案,可通过实验、证明、举反例等方式来验证。我在课件中准备了三种不同的方案给学生参考,并提供了相应的证明过程。
(三)、新知运用
例1:已知:AB=CD, AD=BC 求证:四边形ABCD是平行四边形(提示:利用三角形的全等,根据平行四边形的定义证明)证明:
例2:已知:OA=OC, OB=
求证:四边形ABCD是平行四边形 证明:
ADBCAD
OBC
(四)、归纳小结
平行四边形的几种常用的判定方法:
(1).两组对边分别平行的四边形是平行四边形(2).两组对边分别相等的四边形是平行四边形(3).对角线互相平分的四边形是平行四边形(4).一组对边平行且相等的四边形是平行四边形
(五)、布置作业
基础题
变式训练题
综合运用题
(六)、板书设计
(七)、教学反思
第四篇:平行四边形的判定教案
平行四边形的判定
(一)荷塘中学 马致远
教学目标
1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法.
2.理解平行四边形的这两种判定方法,并学会简单运用. 尝试,从中获得成功的体验,激发学生的学习热情. 教学重点:平行四边形判定方法的探究、运用.
难点:对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用.
第一环节 复习引入:
1.平行四边形的定义是什么? 2.平行四边形还有哪些性质? 问题2 有一块平行四边形的玻璃块,假如不小心碰碎了一部分,聪明的技师拿着细绳很快将原来的平行四边形画了出来,你知道他用的是什么方法吗?
第二环节 探索活动
活动1:
工具:两根长度相等的笔, 两条平行线(可利用横格线).动手:请利用两根长度相等的笔和两条平行线,摆出以笔顶端为顶点的平行四边形吗? 思考1.1:你能说明你所摆出的四边形是平行四边形吗? 思考1.2:以上活动事实,能用文字语言表达吗? 目的:
一组对边_______________的四边形是平行四边形.活动2 工具:两根不同长度的细纸条.动手:能否用这两根细纸条在平面上
摆出平行四边形?
思考2.1:你能说明你们摆出的四边形是平行四边形吗? 思考2.2:以上活动事实,能用文字语言表达吗? 目的:
对角线________________的四边形是平行四边形
总结结论:__________________________________是平行四边形 ___________________________________是平行四边形 第三环节 巩固练习
例1 如图,AC∥ED,点B在AC上且AB=ED=BC .找出图中的平行四边形.
随堂练习:
1.已知:在平行四边形ABCD 中,点E、F在对角线AC上,并且OE=OF.
(1)OA与OC,OB与OD相等吗?(2)四边形BFDE是平行四边形吗?
(3)若点E,F在OA,OC的中点上,你能解决上述问题吗? 2.再回到课前问题:同学们想想看,有没有办法把原来的平行四边形重新画出来?
第四环节 小结:
EDAEOFDABCBC
师生共同小结,主要围绕下列几个问题:
(1)判定一个四边形是平行四边形的方法有哪几种?
(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?
第五环节 思考:
1、四边形ABCD中已知AB=CD若要添加一个条件,使之成为平行四边形那么这个条件是 _____________________。
2、AC和BD是平行四边形ABCD的对角线,点E,F在BD上要使四边形AECF是平行四边形,还需要添加一个条件是______________________。
3、平行四边形ABCD对角线AC和BD交与O点若AC=12,BD=10,AB=M则M的取值范围是()
A 1<M<11
B 2<M<22
C 10<M<12
D 5<M<6
第五篇:平行四边形判定定理教案
18.1.2平行四边形的判定
(第一课时)
一、教学目标
(一)知识教学点
1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用.
2.使学生理解判定定理与性质定理的区别与联系.
3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理.
(二)能力训练点
1.通过“探索式试明法”开拓学生思路,发展学生思维能力.
2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力.
二、重点·难点·疑点及解决办法
1.教学重点:平行四边形的判定定理1、2、3的应用.
2.教学难点:综合应用判定定理和性质定理.
3.疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理(强调在求证平行四边形时用判定定理,在已知平行四边形时用性质定理).
三、课时安排
2课时
四、教具学具准备
投影仪,投影胶片,常用画图工具
五、师生互动活动设计
复习引入,构造逆命题,画图分析,讨论证法,巩固应用.
六、教学步骤
【复习提问】
1.平行四边形有什么性质?学生回答教师板书
2.将以上性质定理分别用命题的形式叙述出来. 【引入新课】
用投影仪打出上述命题的逆命题.
上述第一个逆命题显然是正确的,因为它就是平行四边形的定义,所以它也是我们判定一个四边形是否为平行四边形的基本方法(定义法).
那么其它逆命题是否正确呢?如果正确就可得到另外的判定方法(写出命题).
【讲解新课】
1.平行四边形的判定
我们知道,平行四边形的对角相等,反过来对角相等的四边形是平行四边形吗?
如图1,在四边形 中,如果,那么 .
∴ .
同理 .
∴四边形 是平行四边形,因此得到:
平行四边形判定定理1:两组对角分别相等的四边形是平行四边形. 类似地,我们还会想到,两组对边相等的四边形是平行四边形吗? 如图1,如果,那么
,,连结
,则△
≌△
得到
,则四边形 是平行四边形.
由此得到:
平行四边形判定定理2:两组对边分别相等的四边形是平行四边形.
(判定定理1、2的证明采用了探索式的证明方法,即根据题设和已有知识,经过推理得出结论,然后总结成定理).
我们再来证明下面定理
平行四边形判定定理3:对角线互相平分的四边形是平行四边形.
(该定理采用规范证法,如图1由学生自己证明,教师可引导学生用前面三种依据分别证明,借以巩固所学知识)
2.判定定理与性质定理的区别与联系
判定定理1、2、3分别是相应性质定理的逆定理,彼此之间分别为互逆定理,在使用时不得混淆.
例1 已知:且 是
对角线 上两点,并,如右图.
是平行四边形.
是平行四边形,所以对边平行且相等,由已知易证出两组三角形全等,用
交
于
利用判定定理3简单.
求证:四边形
分析:因为四边形定义或判定定理1、2都可以,还可以连结
证明:(由学生用各种方法证明,可以巩固所学过的知识和作辅助线的方法,并比较各种证法的优劣,从而获得证题的技巧).
【总结、扩展】
1.小结:(投影打出)
(1)本堂课所讲的判定定理有
(2)在今后解决平行四边形问题时要尽可能地运用平行四边形的相应定理,不要总是依赖于全等三角形,否则不利于掌握新的知识.
2.思考题
教材P144B.3
八、布置作业
教材P142中7;P143中8、9、10
九、板书设计
十、随堂练习
1.下列给出了四边形
中
、、的度数之比,其中能判定四边形 是平行四边形的是()
A.1:2:3:4 B.2:2:3:3
C.2:3:2:3 D.2:3:3:2 2.在下面给出的条件中,能判定四边形 是平行四边形的是()
A.,B.,C.,D.,3.已知:在 中,点
求证:四边形 是平行四边形.、在对角线上,且
.