第一篇:梁军稍复杂的分数除法应用题教学设计
《稍复杂的分数除法应用题》教学设计 教学目标:
1.通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。
2.通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。教学重点:弄清单位“1”的量,会分析题中的数量关系。教学难点:分析题中的数量关系。教具准备:多媒体
一、创设情境,提出问题
小红家买来一袋大米,重40千克,吃了5/8,还剩多少千克? 1.指定一学生口述题目的条件和问题,其他学生画出线段图。2.学生独立解答。
3.集体订正。提问学生说一说两种方法解题的过程。4.小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
5.教学补充例题:小红家买来一袋大米,吃了5/8,还剩15千克。买来大米多少千克?(1)吃了5/8是什么意思?应该把哪个数量看作单位“1”?(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量(4)指名列出方程。解:设买来大米X千克。
x-5/8x=15
二、探索交流,解决问题
1、教学例2(1)出示例题,理解题意。
(2)比航模组多1/4是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的1/4(2)学生试画出线段图。
(3)根据线段图,结合题中的分率句,列出数量关系式: 航模小组人数+美术小组比航模多的人数=美术小组的人数(4)根据等量关系式解答问题。解:设航模小组有χ人。χ+1/4χ=25(1+1/4)χ=25 χ=25÷5/4 χ=20
三、巩固应用,内化提高 练习十第4、12、14题。
四、回顾整理,反思提升
今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
《稍复杂的分数除法应用题》说课稿
一、说教材分析
这节课的教学内容是人教版九年义务教育六年制小学第十一册第三单元第二节分数应用题,具体是分数应用题中“已知一个数的几分之几是多少,求这个数”的两步计算应用题。它是属于本单元、甚至是本册教学中较为重要的内容。这种应用题是属于那种所谓的“逆解”的问题,它的结构特点和解题方法学生理解起来比较困难。为了降低学习上的难度,同时也为了使学生掌握学习方法,教材采取了两方面的措施:第一,充分利用前面在基础训练中所形成的学习能力,用线段图直观地揭示题目中的数量关系。第二,密切联系学生原有的知识(求一个数的几分之几是多少)以及学生初步掌握的列方程解应用题的思路,把“逆解”题转化为“正解”题。本节课的教学目的就是让学生在已学过的分数三类基本应用题、稍复杂的分数乘法应用题的基础上,力求让学生理解“已知一个数的几分之几是多少,求这个数”的分数应用题的数量关系,掌握这类应用题的解题方法和解题思想。从而进一步提高学生分析解答应用题的能力。
二、说教学目标
1.知识、技能目标:
(1)理解数量关系。
(2)通过线段图及数量关系掌握稍复杂分数除法应用题的解法,能正确解答此类应用题。
2.过程、方法目标:
(1)让学生亲身经历由应用题的间接关系转化为直接关系这一过程。
(2)掌握应用题的分析方法,体会转化、迁移的数学思想。3.情感、态度目标:
(1)让学生从经历学习的过程中,体会感悟学习数学的乐趣。教学重点:掌握稍复杂的分数除法应用题的解题思路和解答方法。教学难点
(1)会把应用题的间接关系转化为直接关系。
(2)能从分析数量关系中找出相等关系。
三、说教学方法
1.让学生通过合作学习,探究新知。
2.创设情境,激发兴趣 自主探索,合作交流 分层练习,发散思维。
3.在教学过程中探究过程交给学生,让他们自己体验成功。树立信心。
四、说教学过程:
(一)复习航模小组有20人,美术小组的人数比航模小组多,美术小组有多少人? 1.指定一学生口述题目的条件和问题,其他学生画出线段图。2.学生独立解答。
3.集体订正。提问学生说一说两种方法解题的过程。4.小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
(二)新授
1、导语:如果老师将上面这道复习题的条件和问题变换一下,该如何解答呢?(出示例2)让学生比较例2和复习题的条件和问题有什么不同?
2、教师小结:今天这节课我们就来学习这类应用题的解法,板书课题“稍复杂的分数除法应用题”
3、教学例2:美术小组有25人,美术小组的人数比航模小组多,美术小组有多少人?(1)出示例题,理解题意。
(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组多的人数占航模组的
(2)学生试画出线段图。
(3)根据线段图,结合题中的分率句,列出数量关系式: 航模小组人数+美术小组比航模小组多的人数=美术小组人数(4)根据等量关系式解答问题。解:设航模小组有χ人。χ+χ=25(1+)χ=25 χ=25÷ χ=20(5)让学生尝试用算术方法解答:25÷(1+)
4、练习:再次将例2变形,出示:美术小组有25人,美术小组的人数比航模小组少,美术小组有多少人?
三、小结
1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)
四、练习
练习十第4、12、14题。
板书设计:稍复杂的分数除法应用题
解:设航模小组有χ人。算术方法解答:25÷(1+)χ+χ=25
χ=20 答:设航模小组有20人。
《稍复杂的分数除法应用题》教学反思
分数除法应用题教学是整个小学阶段应用题教学的重、难点之一,为了更好到激发学生主动积极地参与学习的全过程,引导学生正确理解分数除法应用题的数量关系。因而在设计时,我从学生已有知识出发,抓住知识间的内在联系,通过对分数乘法应用题的转化,使学生了解分数除法应用题的特征,并借助线段图,分析题目中的数量关系,通过迁移、类推、分析、比较,找出分数乘除法应用题的区别和联系及解题规律。
一、关注过程,让学生获得亲身体验。
教学中,为让学生认识解答分数应用题的关键是什么时,我故意不作任何说明,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,是因为大多数时间我在课堂教学中为了自己省心、学生省力,往往避重就轻,草草带过,舍不得把时间用在过程中,总是急不可待,直奔知识的技能目标,究其根由,在于教师的课堂行为,我缺乏必要的耐心。或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。因此在今年整体的教学中已经改变了自己的教学方法,尤其在本节课上我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。教师在教学中准确把握自己的地位。教师真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显了学生的主体地位,体现了生本主义教育思想。也只有这样才能真正落实《数学课程标准》中,“在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心”的目标,让学生的思维真正得到发展。
二、多角度分析问题,提高能力。
在解答应用题的时候,我通过鼓励学生尽量找出其它方法,让学生从多角度去考虑,这样做拓展了学生思维,引导了学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。《稍复杂的分数除法应用题》教学心得
一、结合学生的生活学数学。
“数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣。”教学改变复习旧知引入新知的传统做法,直接取材于学生的生活实际,通过班级的人数引出题目,再让学生介绍本班的情况,引发学生参与的积极性,向他们提供充分的从事数学活动和交流的机会。
二、参与学习过程,让学生获得亲身体验。
教学中,为让学生认识解答分数除法应用题的关键是什么时,让学生通读题目、细读题目,圈出题目中的重要词句,理解题意。画出线段图分析数量之间的关系。亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数除法应用题的关键是从题目的关键句找出数量之间的相等关系。
教学中把“自主、合作、探究”的教学方式。和教师分析讲解相结合。把分数除法应用题与分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力。学生毕竟是初学者,他们的自主、合作、探究肯定是不全面的,各种水平的学生在自主、合作、探究中所学的层次也是不一样的。所以教师的讲解是必要的,尤其是概念性的知识,可以为学生节约许多时间。但教师在教学中要准确把握自己的地位。帮助优生建构知识结构,帮助一般学生理解题意掌握知识。真正把自己当成了学生学习的帮助者、激励者。发挥学生的主体地位,重视教师的主导地位。
三、多角度分析问题,提高能力。分析应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,注意启发学生从例题中抽象概括数量关系,总结经验规律。如“是、占、比、相当于“后面的数量就是作单位“1”的数量,画线段图就先画作单位“1”这个数量,再画与之对应的数量的线段图;“知“1”求几用乘法,知几求“1”用除法”等等的做法。充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。
四、充分运用对比,让学生通过分数乘法应用题理解除法应用题。
为让学生认识解答分数除法应用题的关键是什么,教学中,我抓住乘除法之间的内在联系,让学生从中发现与乘法应用题的区别,使学生了解这类分数应用题特征。接着放手让他们借助线段图,分析题中的数量关系,在学习过程中发现规律,得出这类应用题根据“已知一个数的几分之几是多少,求这个数用除法”能解决问题。
五、鼓励方法多样,让学生拓宽解题思路。在解答应用题的时候,我改变以往过早抽象概括数量关系对应量÷对应分率=单位“1”的量,再让学生死记硬背,而是充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力。我鼓励学生对同一个问题采取多种不同的解法,引导学生学会多角度分析问题,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。人教版小学数学三年级下册
《稍复杂的分数除法应用题》
-----教学设计
马滩小学梁军 二〇一三年十月
人教版小学数学三年级下册
《稍复杂的分数除法应用题》
马滩小学梁军 二〇一三年十月
人教版小学数学三年级下册 《稍复杂的分数除法应用题》
-----教学反思
马滩小学梁军 二〇一三年十月
人教版小学数学三年级下册
《稍复杂的分数除法应用题》
马滩小学梁军 二〇一三年十月
-----说课稿-----教学心得
第二篇:《稍复杂的分数除法应用题》教学设计(定稿)
《稍复杂的分数除法应用题》教学设计
教学目标
1.使学生在掌握稍复杂的求一个数的几分之几是多少的分数应用题的基础上,利用其数量关系列方程解答稍复杂的“已知一个数的几分之几是多少,求这个数”的应用题。
2.在分析解答的过程中拓宽学生的思维空间,培养学生分析问题的能力。教学重点和难点
确定单位“1”,理清题中的数量关系。利用题中的等量关系用方程解答。
教学过程
(一)复习准备
1.找出单位“1”。
2.出示第88页的复习题。(1)画图分析并列式解答。
(2)说说你是怎样思考和解答的?(3)学生分析教师板演线段图。3.导入:
今天我们继续学习分数应用题。(二)学习新课
现在老师把这道题改动一下。1.出示例6。千克?
2.分析解答。
(1)读题,找出已知条件和问题。
(2)提问:这两道题有没有相同的条件?(有,都已知吃了这袋大米的 不同的地方在哪儿?(前者已知一袋大米的重量,求还剩的重量,后者已知还剩的重量,求这袋米的重量。)(3)我们把这道题也用线段图表示出来,应从哪个条件入手找单位(4)谁来分析这个条件?
成8份,吃了的占其中的5份。)学生分析的同时教师板演线段图:
(5)上道题是已知单位“1”的重量,求还剩的重量,这道题呢?谁能把条件和问题标在图上?
生在黑板上画出:
(6)对比两道题的线段图说一说是怎样变化的。(条件和问题互相转化了。)(7)无论谁为条件,谁为问题,题中所涉及的数量关系变了吗?(没变)(8)说一说上题在解答的过程中涉及到哪些数量关系?(总重量-它(9)现在买来大米的重量是未知的,根据这个等量关系可以用什么方法解答?(列方程)(10)试着在练习本上列方程解答。(11)谁能说说你是怎样解答的? 生口述: 解设买来大米x千克。答:买来大米40千克。题中的等量关系式是什么?
(买来的重量×还剩几分之几=还剩的重量。)3.小结。
通过刚才的分析解答,你认为这两道题实际上什么相同。(数量关系相同。)解答方法相同吗?为什么?
(解答方法不同。单位“1”已知,可根据数量关系用算术方法解答;单位“1”未知,可用x代替,运用数量关系式列方程解答。)4.出示例7。烧煤多少吨?
(1)读题,找出已知条件和所求问题。(3)画图分析解答。
①从这个条件可以看出题中是几个数量相比?(两个数量相比。)追问:哪两个?(四月份实际烧煤量和四月份计划烧煤量。)我们应把哪个数量看作单位“1”?为什么?(把原计划烧煤量看作单位“1”。因为和它相比,以它为标准,所以把它看作单位“1”。)②画图时我们要用两条线段表示两个数量,先画谁呢?(先画原计划烧煤吨数。)下一步画什么?(实际烧煤吨数。)指名回答:把计划烧煤量看作单位“1”,平均分成9份,实际比计划节约的烧煤量相当于这样的1份,即节约的烧煤量占计划烧煤量的
这两条线段谁为已知?谁为未知? 在提问回答的过程中教师板演线段图:
③指图提问:计划烧煤量与实际烧煤量之间有什么样的等量关系?(计划烧煤吨数-节约吨数=实际烧煤吨数。)计划烧煤吨数未知怎么办?(设计划烧煤吨数为x,用方程解答。)④试做在练习本上。
⑤反馈:说说你的解答方法及依据。解设四月份原计划烧煤x吨。答:四月份原计划烧煤135吨。(1)学生独立画图分析并列式解答。(2)反馈提问:
②你用什么方法解答的?依据的等量关系式是什么?(三)课堂总结
今天我们学习的例
6、例7与前边学过的分数应用题相比有什么相同点?有什么不同点?
(数量间的等量关系相同,解答方法不同。)(四)巩固反馈
(1)课本第91页的第2题。(2)根据列式补充条件: [ ](五)布置作业
课本第91页第1,3题。课堂教学设计说明
本节课的内容是在学习了“已知一个数的几分之几是多少,求这个数”的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。
由于新旧知识联系很密,因此本节课在教案设计上抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在画图分析的过程中抓住数量关系相同,只是已知和问题发生了转化,引导学生利用数量间的等量关系用方程解答。
在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。
第三篇:《稍复杂的分数乘、除法应用题的比较》教学设计
《稍复杂的分数乘、除法应用题的比较》教学设计
教学目标
1.通过观察、分析、改编、解答、比较,使学生进一步弄清较复杂的分数乘、除法应用题数量关系和解题思路的联系和区别,掌握解题方法。
2.培养、提高学生分析推理、解答应用题的能力。教学重点和难点
明确比一个数多(少)几分之几的分数乘除法应用题的联系和区别,掌握解题方法。
教具准备
投影仪、投影片。教学过程(一)复习
1.根据关系句填空。
()是单位“1”,苹果树除了有和梨树同样多的数量外,还多(),苹果树是梨树的()。
()是单位“1”,椅子价钱是桌子价钱的()。椅子价钱○()=()2.仿照上面例子分析关系句。(二)导入新课
我们复习了分数乘、除法应用题的数量关系。通过上题发现,有很多题的叙述形式很相似,但解题方法却大不相同。为什么不相同呢?今天我们就来研究稍复杂的分数乘除法的应用题,对比、区别它们之间的异同点。(板书课题)(三)讲授新课 1.出示例1。(1)默读例题。
(2)同桌互说分析思路。理解足球是单位“1”,篮球除了有和足球 篮球的个数,用乘法计算。
(3)学生在练习本上画图列式。(组长检查)一名学生板书:(4)反馈、订正、说出不同的列式。
(5)问:两种方法在解题思路上有什么相同点?有什么不同点?
(共同点是两种方法中都有一步是求20的几分之几是多少。不同点是:方法一是先求篮球是足球的几倍,再求足球的几倍,也就是篮球的
加上足球个数就是篮球的个数。)2.改编上题,第一个条件不变,只变换单位“1”,即为例2。(改的文字用红粉笔)(1)学生默读例题思考,为什么足球和篮球变换位置?(2)同桌互说分析思路。
(3)画图、列式:(在本上做,一生板书)方法一:解设篮球有x个。
(4)三种解法在解题思路上有什么不同?
等于20个为等量关系列方程;方法二则是先求出足球相当于篮球的几倍,(5)例1和例2的不同点是什么? 位“1”,用除法计算。)3.根据图形编题,出示例3。(1)学生默读。
(2)根据思考题讨论。
①你们所编的题谁是单位“1”?为什么以它为单位“1”? ②列式。
③问例1例3有什么相同点和不同点?
(相同点:例
1、例3的单位“1”都是已知的,都是求单位“1”(1)根据思考题小组讨论。
观察算式,你认为谁是单位“1”,为什么?
(2)学生画图、列式。(方程、算术两种方法。组长检查、辅导,一生板演。)(3)反馈、订正。
方法一:解设篮球有x个
(4)观察例
3、例4与例
2、例4的异同点。(小组讨论)集体订正:例3和例4的单位“1”不同。例3的单位“1”是足
数是多少,根据乘法意义用乘法计算;例4的单位“1”是篮球的个数,法意义就要用方程列式,也可根据逆运算用算术法列式。例2例4的相同点:都是把篮球看作单位“1”,篮球个数都是所求的,因此根据乘法意义,找等量关系,列方程,或根据逆运算用除法列式。不同点:例2 于足球的倍数。
(5)学生自己观察黑板的四个例题,再次观察异同点。(看题、看图、看列式。)(6)质疑。
四、课堂总结(略)
五、巩固练习
1.第94页中“做一做”的第1,2题。2.第95页第1题。课堂教学设计说明
这节课的内容是稍复杂的分数乘除法应用题的比较练习课,目的是明确数量之间的内在联系和区别,明确相比的量相当于单位“1”的几分之几或几倍,所以在教案设计上突出了分数乘除法例题的对比。在让学生独立完成例1的基础上,改变单位“1”出示例2,通过一改一编,突出了两题的区别。例3的出示是根据图形而编出来的,比直接给出例题更容易激发学生的兴趣。对思考题的讨论加深了学生对如何找单位
区别。例4的出示是根据算式编的题,使学生进一步明确了分数应用题的结构及解题思路。
以记作+1200元)
(2)电梯:这里的1和-1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,-1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?
六、课堂小结 这节课我们一起认识了正数和负数。在我们的生活中,零摄式度以上和零摄式度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。
第二课时
教学内容:比较正数和负数的大小。教学目的:
1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。教学重、难点:负数与负数的比较。教学过程:
一、复习:
1、读数,指出哪些是正数,哪些是负数?-8 5.6 +0.9 0-82
2、如果+20%表示增加20%,那么-6%表示。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是摄氏度。
二、新授:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:
A、从0起往右依次是?从0起往左依次是?你发现什么规律?
B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到.5和-1.5处,应如何运动?
(7)练习:做一做的第1、2题。
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习
1、练习一第4、5题。
2、练习一第6题。
3、实践题记录小组同学的身高和体重,以平均身高体重为标准记为0m或(0kg)。超过的记为正数,不足的记为负数,然后按从大到小的顺序排列。
四、全课总结
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。(2)负数比0小,正数比0大,负数比正数小。
第四篇:《稍复杂的分数乘、除法应用题的比较》教学设计
教学目标
1.通过观察、分析、改编、解答、比较,使学生进一步弄清较复杂的分数乘、除法应用题数量关系和解题思路的联系和区别,掌握解题方法。
2.培养、提高学生分析推理、解答应用题的能力。
教学重点和难点
明确比一个数多(少)几分之几的分数乘除法应用题的联系和区别,掌握解题方法。
教具准备
投影仪、投影片。
教学过程
(一)复习
1.根据关系句填空。
()是单位1,苹果树除了有和梨树同样多的数量外,还多(),苹果树是梨树的()。
()是单位1,椅子价钱是桌子价钱的()。
椅子价钱○()=()
2.仿照上面例子分析关系句。
(二)导入新课
我们复习了分数乘、除法应用题的数量关系。通过上题发现,有很多题的叙述形式很相似,但解题方法却大不相同。为什么不相同呢?今天我们就来研究稍复杂的分数乘除法的应用题,对比、区别它们之间的异同点。(板书课题)
(三)讲授新课
1.出示例1。
(1)默读例题。
(2)同桌互说分析思路。理解足球是单位1,篮球除了有和足球
篮球的个数,用乘法计算。
(3)学生在练习本上画图列式。(组长检查)一名学生板书:
(4)反馈、订正、说出不同的列式。
(5)问:两种方法在解题思路上有什么相同点?有什么不同点?
(共同点是两种方法中都有一步是求20的几分之几是多少。不同点是:方法一是先求篮球是足球的几倍,再求足球的几倍,也就是篮球的加上足球个数就是篮球的个数。)
2.改编上题,第一个条件不变,只变换单位1,即为例2。(改的文字用红粉笔)
(1)学生默读例题思考,为什么足球和篮球变换位置?
(2)同桌互说分析思路。
(3)画图、列式:(在本上做,一生板书)
方法一:解 设篮球有x个。
(4)三种解法在解题思路上有什么不同?
等于20个为等量关系列方程;方法二则是先求出足球相当于篮球的几倍,(5)例1和例2的不同点是什么?
位1,用除法计算。)
3.根据图形编题,出示例3。
(1)学生默读。
(2)根据思考题讨论。
①你们所编的题谁是单位1?为什么以它为单位1?
②列式。
③问例1例3有什么相同点和不同点?
(相同点:例
1、例3的单位1都是已知的,都是求单位
1(1)根据思考题小组讨论。
观察算式,你认为谁是单位1,为什么?
(2)学生画图、列式。(方程、算术两种方法。组长检查、辅导,一生板演。)
(3)反馈、订正。
方法一:解 设篮球有x个
(4)观察例
3、例4与例
2、例4的异同点。(小组讨论)
集体订正:例3和例4的单位1不同。例3的单位1是足
数是多少,根据乘法意义用乘法计算;例4的单位1是篮球的个数,法意义就要用方程列式,也可根据逆运算用算术法列式。例2例4的相同点:都是把篮球看作单位1,篮球个数都是所求的,因此根据乘法意义,找等量关系,列方程,或根据逆运算用除法列式。不同点:例
2于足球的倍数。
(5)学生自己观察黑板的四个例题,再次观察异同点。(看题、看图、看列式。)
(6)质疑。
四、课堂总结
(略)
五、巩固练习
1.第94页中做一做的第1,2题。
2.第95页第1题。
课堂教学设计说明
这节课的内容是稍复杂的分数乘除法应用题的比较练习课,目的是明确数量之间的内在联系和区别,明确相比的量相当于单位1的几分之几或几倍,所以在教案设计上突出了分数乘除法例题的对比。在让学生独立完成例1的基础上,改变单位1出示例2,通过一改一编,突出了两题的区别。例3的出示是根据图形而编出来的,比直接给出例题更容易激发学生的兴趣。对思考题的讨论加深了学生对如何找单位
第五篇:稍复杂分数应用题教学片断设计
稍复杂分数应用题教学片断设计
仪征市香沟中心学校
蒋春骏
教学例3
1、出示例3,学生读题。
林阳小学去年有24个班级,今年的班级数比去年增加了1/4。今年一共有多少个班级?
2、找出题目中的关键句,读一读,体会关键句表示的意思。
3、学生尝试画出线段图。
问:关键句中把谁看做单位 “1”?我们画图时先画什么?
讨论:表示今年的线段怎么画?1/4标在哪一段?为什么?
(根据学生的回答教师示范画出线段图)
4、结合线段图分析解题思路 思路一:
问:从图上看,去年的1/4指的是哪一段?
用去年的班级数乘1/4可以求出什么?
求出今年比去年多的部分后怎样求今年的班级数? 板书:去年×1/4=增加的 24×1/4=6(个)
去年+增加的=今年 24+6=30(个)
综合式:24+24×1/4 =24(个)
思路二:
问:从线段图上你能清楚地看出表示今年和去年班级数的线段各有几份吗?你会用份数方法来解答吗?
学生尝试解答后交流思路。今年的班级数为什么是5份?
板书:24÷4×5=30(个)
思路三:
问:从线段图上看,1/4指的是哪一段?你能想出表示今年的线段是去年的几分之几吗?能说说你是怎么想出来的吗?
知道了“今年的班级数是去年的(1+1/4),”你能求出今年的班级数吗?
板书:24×(1+1/4)
5、巩固这几种解题思路,把每种方法的想法和同桌说说。
6、对比这几种思路,选择对自己来说最容易理解的方法做到练习本上。