两角和与差的余弦函数、正弦函数教学设计(5篇材料)

时间:2019-05-12 21:08:25下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《两角和与差的余弦函数、正弦函数教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《两角和与差的余弦函数、正弦函数教学设计》。

第一篇:两角和与差的余弦函数、正弦函数教学设计

数 学 学 案

两角和与差的 余弦函数、正弦函数

【问题情境】

1.求cos150=___,cos750=___。(提示:150=450-300,750=450+300)

思考:已知角,的正余弦函数值,如何求-,+的正余弦函数值? 【新知探究】

1.已知0<<<,则角的终边与单位圆的交点P1的坐标为____,向量OP1的坐标为____;角的终边与单位圆的交点p2的坐标为____, 向量OP2的坐标为____,根据

①平面向量的数量积公式

OP1·OP2=____________? 2②平面向量的数量积的坐标表示公式

OP1·OP2=____________?

求cos(-)=___________? 应用:求cos150=___。

2.当角,为任意角时,求cos(-)=_________? 【合作探究】 试根据cos(-),求

① cos(+)=___________?(提示:cos(+)=cos[-(-)])② sin(-)=___________?(提示:sin(-)=cos[-(+)])③ sin(+)=___________?

说明:cos(-)常记作C,cos(+)常记作C sin(+)常记作S,sin(-)常记作S 【知识应用】

1.求cos750,sin750,cos150的值。

变式练习: 求值:(1)cos 530 cos230+ sin 530 sin 230;

(2)cos(+)cos+ sin(+)sin。

2442.已知sin=,(,), cos=-的值。

4525,求cos(-),cos(+)133.已知sin=-,是第四象限的角,求sin(-),cos(+)的值。3544

第二篇:《正弦函数、余弦函数的性质》教学设计

《正弦函数、余弦函数的性质》教学设计

一、教材分析 1.教材的内容和地位

《正弦函数、余弦函数的性质》是人教A版数学必修4的第一章三角函数的内容,是学习了正弦函数、余弦函数的定义和图像之后,进一步学习正弦函数、余弦函数的性质。该内容共两课时,这里讲的是第一课时,主要是探究正弦、余弦函数的定义域、值域(最值)和周期性,而对奇偶性、对称性和单调性的探究则放在第二节课。正弦函数、余弦函数的图象和性质是三角函数里的重要内容,也是高考热点考察的内容之一。本节课的学习过程中,数形结合的思想方法贯穿了本节内容的始终,利用图像研究性质,反过来再根据性质进一步地认识函数的图象,充分体现了数形结合的数学思想方法。2.教学目标

根据《新课标》的具体要求,结合学生现有的认知水平,确定教学目标如下:

(1)知识与技能:通过观察正弦、余弦函数图像得到正弦函数、余弦函数的性质,并灵活应用性质解题;

(2)过程与方法:培养学生分析、探索、类比和数形结合等数学思想方法在解决问题中的应用能力,培养学生自主探究的能力,深化研究函数性质的思想方法;

(3)情感、态度与价值观:让学生亲身经历数学的研究过程,感受数学的魅力。

3.教学重点和难点

重点:通过观察正弦、余弦函数的图像研究正弦、余弦函数的性质; 难点:周期函数、最小正周期的意义。

二、学情分析

本课之前,学生已经学习了《必修一》,学习了函数的性质和研究函数的一般方法,学习了正弦函数、余弦函数的概念、图像以及诱导公式,这些都为本节课的学习打好了基础。函数的定义域、(最值)值域、奇偶性、单调性等性质,学生类比指数函数、对数函数、幂函数的研究方法不难由观察图像得出结论,但对于函数的周期性,学生是第一次接触,对概念的理解可能会有困难。

三、教法学法分析 1.教法分析

本节课以学生为主体,教师引导学生通过观察正弦函数图像,自主探究,总结规律,再类

比正弦函数得到余弦函数的相应结论,并能应用规律分析问题,解决问题。在教学中以引导启发为主,在学生观察比较的基础上,师生以问答形式共同研究探讨,让学生经历知识再发现、再创造的过程。

2.学法分析

教师的“教”不仅要让学生“学会知识”,更重要的是要让学生“学会方法”,而正确的学法指导是培养学生这种能力的关键。本节教学中通过观察函数图象,充分调动学生已有的学习经验,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。

四、教学过程分析

这节课的流程主要分为五个阶段:复习回顾;探究正弦函数的定义域、值域(最值);探究正弦函数的周期性;探究余弦函数的性质;巩固练习。

(一)、复习回顾,引入新知

师:回顾前面学习函数时,是如何研究它的性质?研究它的哪些性质?

生:(预计)先画图,通过观察图象得性质,主要研究函数的定义域、值域、最值、单调性、奇偶性、对称性、定点等

师:本节课我们只研究前三个问题,对其它性质的研究放在下节课。PPT展示画正弦函数图像

【设计意图】:通过复习,建立新旧知识间的联系,为通过观察函数图象研究函数性质做好准备,让学生对周期性有个直观的印象,为周期性的出现做好铺垫。

(二)、探究正弦函数的定义域、值域(最值)

师:观察正弦函数的图象,填写下表(学生回答,相互补充,师生一问一答间得出结论)

例1:求下列函数的最大值和最小值,并求出取最大值和最小值时x的集合.(1)ysinx1,xR;(2)y3sin2x,xR.【设计意图】:通过观察函数图像,结合已有知识和方法,学生自己归纳总结正弦函数的性质,培养学生自主探究、研究问题、解决问题的能力。

(三)、探究正弦函数的周期性

师:从正弦函数的作图过程中,我们发现正弦函数值具有“周而复始”的变化规律,这个规律是之前所学函数不具有的,我们用“周期性”来刻画这一规律。观察正弦函数的图象,发现将

正弦函数图象向左或向右平移2π个单位,图象保持不变,向左或向右平移4π个单位,图象也不变

(给出周期函数、周期的定义)

周期函数定义:一般地,对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数。非零常数T叫做这个函数的周期.

师:正弦函数的周期是多少?(2kπ(k∈Z且k≠0))师:概念中有哪些关键词?(辨析概念)

思考:等式sin(42)sin4是否成立?如果成立,能不能说2是y=sinx的周期?

判断下列说法是否正确:(1)x3时,sin(x2)sinx,则23一定不是ysinx的周期;((2)由诱导公式sin(x3(3)若T(T≠0)是f(x)的周期,则32)sinxxkT(k3,所以ysin3的周期为2π;(∈Z且k≠0)一定是f(x)的周期;(【设计意图】:引导学生关注定义中的关键词,从而加深对数学概念的理解.例2:求下列函数的周期:

(1)y=3sinx(x∈R);

(2)y=sin2x(x∈R);

(2)y=2sin(12x6);(x∈R)

变式练习:yAsin(x)(A0,0)(xR)结论:yAsin(x),(A0,0)的周期是T2 【设计意图】:进一步加深对周期函数和周期的理解。

(四)、探究余弦函数的性质

PPT展示正弦函数的性质(表格形式)

师:请画出余弦函数的图像,类比正弦函数的性质,试探究余弦函数的相关性质。(学生活动:学生合作学习,得到余弦函数性质,完成表格)

(五)、巩固练习:)))

1.求下列函数的周期

x(2)y3cos,xR;4 1(3)ysin(2x),xR;(4)y3cos(x),xR.1024(1)ysin3x,xR;2.已知函数yf(x)的周期是3,且当x[0,3]时,f(x)x21.(1)求f(1),f(5),f(16);

(2)求当x[3,6]时得解析式

(六)、总结回顾,提出课后思考

以问题的形式:本节课主要学习了哪些知识?让学生自己概括出所学内容。正弦函数、余弦函数性质,周期函数、周期、最小正周期概念 【设计意图】:通过小结,深化学生知识理解、完善学生认知结构。

拓展思考:

1.是不是只有三角函数是周期函数呢?你还能找出其他的周期函数吗?

2.周期函数一定存在最小正周期吗?

1,当x是有理数,3.函数D(x)是周期函数吗?

0,当x是无理数.作业:

P46习题1.4 A组3, 10

B组1, 3

第三篇:正弦函数余弦函数图象教学设计

正弦函数、余弦函数的图象的教学设计

一、教学内容与任务分析

本节课的内容选自《普通高中课程标准实验教科书》人教A版必修四第一章第四节1.4.1正弦函数、余弦函数的图象。本节课的教学是以之前的任意角的三角函数,三角函数的诱导公式的相关知识为基础,为之后学习正弦型函数 y=Asin(ωx+φ)的图象及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础。

二、学习者分析

学生已经学习了任意三角函数的定义,三角函数的诱导公式,并且刚学习三角函数线,这为用几何法作图提供了基础,但能不能正确应用来画图,这还需要老师做进一步的指导。

三、教学重难点

教学重点:正弦余弦函数图象的做法及其特征

教学难点:正弦余弦函数图象的做法,及其相互间的关系

四、教学目标

1.知识与技能目标

(1)了解用正弦线画正弦函数的图象,理解用平移法作余弦函数的图象

(2)掌握正弦函数、余弦函数的图象及特征

(3)掌握利用图象变换作图的方法,体会图象间的联系(4)掌握“五点法”画正弦函数、余弦函数的简图 2.过程与方法目标

(1)通过动手作图,合作探究,体会数学知识间的内在联系(2)体会数形结合的思想

(3)培养分析问题、解决问题的能力 3.情感态度价值观目标

(1)养成寻找、观察数学知识之间的内在联系的意识(2)激发数学的学习兴趣(3)体会数学的应用价值

五、教学过程

一、复习引入

师:实数集与角的集合之间可以建立一一对应关系,而确定的角又有着唯一确定的正弦(或余弦)值。

这样任意给定一个实数x有唯一确定的值sinx(cosx)与之对应,有这个对应法则所确定的函数y=sinx(或y=cosx)叫做正弦函数(或余弦函数),其定义域是R。

遇到一个新的函数,我们很容易想到的就是画函数图象,那怎么画正弦函数、余弦函数的图象呢?

我们先来做一个简弦运动的实验,这就是某个简弦函数的图象,通过实验是不是对正弦函数余弦函数的图象有了直观印象呢

【设计意图】通过动手实验,体会数学与其他的联系,激发学习兴趣。

二、讲授新课

(1)正弦函数y=sinx的图象

下面我们就来一起画这个正弦函数的图象

第一步:在直角坐标系的x轴上任取一点O1,以O1为圆心作单位圆,从这个圆与x轴的交点A起把圆分成n(这里n=12)等份.把x轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x值—弧度制下角与实数的对应).第二步:在单位圆中画出对应于角0,,,„,2π的正弦线正弦线632(等价于“列表”).把角x的正弦线向右平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点”).第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx,x∈[0,2π]的图象.

【设计意图】通过按步骤自己画图,体会如何画正弦函数的图象。根据终边相同的同名三角函数值相等,所以函数y=sinx,x∈[2k∏,2(k+1)∏,k∈Z且k≠0的图象,与函数y=sinx,x∈[0,2∏)的图象的形状完全一致。于是我们只要将y=sinx,x∈[0,2∏)的图象沿着x轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx,x∈R的图象.【设计意图】由三角函数值的关系,得出正弦函数的整体图象。

把角x(xR)的正弦线平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点的轨迹就是正弦函数y=sinx的图象.(2)余弦函数y=cosx的图象

探究1:你能根据诱导公式,以正弦函数图象为基础,通过适当的图形变得到余弦函数的图象?

根据诱导公式cosxsin(x),可以把正弦函数y=sinx的图象向左平移

单位即得余弦函数y=cosx的图象.y1-6-5-4-3-2-o-1y1-6-5-4-3-2--123456xy=sinxy=cosx23456x 正弦函数y=sinx的图象和余弦函数y=cosx的图象分别叫做正弦曲线和余弦曲线.

【设计意图】通过正弦函数与余弦函数的相互关系,在类比的过程中画出余弦函数的图象,体会数学知识间的联系,以及类比的数学思想。思考:在作正弦函数的图象时,应抓住哪些关键点? 【设计意图】通过问题,为下面五点法绘图方法介绍做铺垫 2.用五点法作正弦函数和余弦函数的简图(描点法): 正弦函数y=sinx,x∈[0,2π]的图象中,五个关键点是:(0,0)((3,-1)(2,0)2,1)(,0)2余弦函数y=cosx x[0,2]的五个点关键是哪几个?(0,1)((3,0)(2,1)2,0)(,-1)2只要这五个点描出后,图象的形状就基本确定了.因此在精确度不太高时,常采用五点法作正弦函数和余弦函数的简图.

3、讲解范例

例1 作下列函数的简图

(1)y=1+sinx,x∈[0,2π],(2)y=-COSx 【设计意图】通过两道例题检验学生对五点画图法的掌握情况,巩固画法步骤。

探究1. 如何利用y=sinx,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到

(1)y=1+sinx ,x∈〔0,2π〕的图象;(2)y=sin(x-π/3)的图象?

小结:函数值加减,图像上下移动;自变量加减,图像左右移动。探究2.

如何利用y=cos x,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y=-cosx,x∈〔0,2π〕的图象? 小结:这两个图像关于X轴对称。探究3. 如何利用y=cos x,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y=2-cosx,x∈〔0,2π〕的图象?

小结:先作 y=cos x图象关于x轴对称的图形,得到 y=-cosx的图象,再将y=-cosx的图象向上平移2个单位,得到 y=2-cosx 的图象。探究4.

不用作图,你能判断函数y=sin(x3π/2)= sin[(x-3π/2)+2 π] =sin(x+π/2)=cosx 这两个函数相等,图象重合。

【设计意图】通过四个探究问题,对画图法以及正弦余弦函数及其图象的性质有更深刻的认识。

4、小结作业

对本节课所学内容进行小结

【设计意图】在梳理本节课所学的知识点归纳的过程中进一步加深对正弦函数、余弦函数图象认知。培养学生归纳总结的能力,自主构建知识体系。布置分层作业

基础题A题,提高题B题

【设计意图】将课堂延伸,使学生将所学知识与方法再认识和升华,进一步促进学生认知结构内化。注重学生的个体发展,是每个层次的学生都有所进步。

第四篇:正弦函数余弦函数图像教学反思

正弦函数余弦函数图像教学反思

由于学生已具备初等函数、三角函数线知识,为研究正弦函数图象提供了知识上的积累;因此本教学设计理念是:通过问题的提出,引起学生的好奇,用操作性活动激发学生求知欲,为发现新知识创设一个最佳的心理和认识环境,引导学生关注正弦函数的图象及其作法;并借助电脑多媒体使教师的设计问题与活动的引导密切结合,强调学生“活动”的内化,以此达到使学生有效地对当前所学知识的意义建构的目的,感觉效果很好。课后反思: 比较成功的地方:

1.教学思路清晰,各个环节过渡比较自然,课堂教学设计得比较紧凑.

2.教学设计对于正弦曲线、余弦曲线首先从实验入手形成直观印象,然后探究画法,列表,描点、连线——“描点法”作图,对于函数y=sinx,当x取值时,y的值大都是近似值,加之作图上的误差,很难认识新函数y=sinx的图象的真实面貌.因为在前面已经学习过三角函数线,这就为用几何法作图提供了基础.这样设计比较自然,合理,符合学生认知的基本规律.

3.利用正弦线作出y=sinx在[0, 2]内的图象,再得到正弦曲线,这里借助角周而复始的变化,体会后面性质“周期”,这样的设计由局部到整体,符合探究的一般方法.

4.对于“五点法”老师让学生通过观察、学生讨论、进一步合作交流得到“五点法”作图,也是本节课中一大的亮点,充分体现以学生为主的教学思路.

5.通过展示课件,生动形象地再现三角函数线的平移和曲线形成过程.使原本枯燥地知识变得生动有趣,激发学生的兴趣. 6.在得到正弦函数的图象后,通过一个探究,引导学生利用诱导公式,结合图象变换研究余弦函数的图象,体现了新课改中倡导的“自主探究、合作交流”的教学理念,有利于培养学生主动探究的意识. 需要改进的地方:

1.时间的把握要恰当,否则会影响课堂后面内容的安排. 2.在由正弦函数的图象得到余弦函数的图象的探究过程中,设计了让学生“自主探究、合作交流”的教学思路,但学生对“合作—交流”的热情不够,不太主动——在调动学生积极参与课堂活动方面做得不够好.

3.由于导入的过程时间稍长,加之本节课的容量过大,尽管在例题的教学过程中及时的改变了教学策略,把例1中的第(2)小题交由学生练习,还是导致了学生练习时间较少.

正弦函数余弦函数图像教学反思

阿城一中

肖正楷

第五篇:《两角和与差的正弦余弦和正切公式》教学设计(范文)

三角函数式的化简

化简要求:

1)能求出值应求值?

2)使三角函数种类最少

3)项数尽量少

4)尽量使分母中不含三角函数

5)尽量不带有根号

常用化简方法:

线切互化,异名化同名,异角化同角,角的变换,通分,逆用三角公式,正用三角公式。

1、三角函数式给值求值:

给值求值是三角函数式求值的重点题型,解决给值求值问题关键:找已知式与所求式之间的角、运算以及函数的差异,角的变换是常用技巧,给值求值问题往往带有隐含条件,即角的范围,解答时要特别注意对隐含条件的讨论。

2、三角函数给值求角

此类问题是三角函数式求值中的难点,一是确定角的范围,二是选择适当的三角函数。

解决此类题的一般步骤是:

1)求角的某一三角函数值

2)确定角的范围

3)求角的值

例3.总结:

解决三角函数式求值化简问题,要遵循“三看”原则:

①看角,通过角之间的差别与联系,把角进行合理拆分,尽量向特殊? 角和可计算角转化,从而正确使用公式。

②看函数名,找出函数名称之间的差异,把不同名称的等式尽量化成 同名或相近名称的等式,常用方法有切化弦、弦化切。

③看式子结构特征,分析式子的结构特征,看是否满足三角函数公式,若有分式,应通分,可部分项通分,也可全部项通分。

“一看角,二看名,三是根据结构特征去变形”

下载两角和与差的余弦函数、正弦函数教学设计(5篇材料)word格式文档
下载两角和与差的余弦函数、正弦函数教学设计(5篇材料).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《正弦函数余弦函数的性质》教学设计[5篇材料]

    《正弦函数、余弦函数的性质》教学设计 一、教材分析 教材的内容和地位 《正弦函数、余弦函数的性质》是人教A版数学必修4的第一章三角函数的内容,是学习了正弦函数、余弦函......

    《正弦函数、余弦函数的性质-周期性》教学设计

    《正弦函数、余弦函数的性质-周期性》教学设计 教学目标: 一、知识与技能: 1.理解周期函数的概念及正弦、余弦函数的周期性.2.会求一些简单三角函数的周期. 二、过程与方法: 从学......

    正弦余弦函数的定义教学反思

    《任意角正弦、余弦函数的定义》公开课后的教学反思 2017年4月12日,在数学组备课组长、教研组长及所有组内同事的共同指导与帮助下,我有幸在高一1605班上了一节《任意角正弦、......

    两角和与差的正弦余弦正切公式的教学反思

    1、本节课的教学目标是通过复习,进一步理解两角和与差的正弦、余弦正切公式;利用两角和与差的正弦、余弦和正切公式进行三角函数式的化简、求值;通过复习两角和与差的正弦、......

    两角和与差的正弦、余弦、正切公式教案

    两角和与差的余弦、正弦、正切 教学目标 知识目标:两角和的正切公式;两角差的正切公式 能力目标:掌握T(α+β),T(α-β)的推导及特征;能用它们进行有关求值、化简 情感态度:提高学生简......

    正弦函数、余弦函数的图象教学设计5则范文

    正弦函数、余弦函数的图象 一、教材分析: 本节课是高中新教材《数学》第一册(下)§4.8《正弦函数、余弦函数的图象和性质》 的第一节,是学生在已掌握了一些基本函数的图象及其......

    案例《两角和与差的余弦》

    浅谈数学概念教学中的“核心问题” ——从《两角和与差的余弦》教学说起运用问题组织课堂教学是教师经常使用的方式,优秀的教师都很善于运用问题去激发和聚合学生的学习活动......

    两角和与差的余弦教学设计(共五则)

    昌邑一中数学教学参考书配套教学软件_教学设计 3.1.1 两角和与差的余弦教学设计 昌邑市第一中学徐保国 教学目标: 1. 经历向量的数量积的推导两角差的余弦公式过程,体验和感......