第一篇:数字电子线路教案18
6.4 异步计数器
本次重点内容:
1、异步时序电路的分析方法。
2、异步时序电路的时序图。 教学过程
一、异步二进制计数器
1.异步二进制加法计数
根据学生的程度,有时也可以从设计的角度,讨论异步二进制加法计数器的设计思想。
复习(提问):1 怎样由JK F/F、D F/F实现T′F/F? 2 二进制加法的进位规则?
[必须满足二进制加法原则:逢二进一(1+1=10,即Q由1加1→0时有进位); 各触发器应满足两个条件:
每当CP有效触发沿到来时,触发器翻转一次,即用T′触发器。
控制触发器的CP端,只有当低位触发器Q由1→0(下降沿)时,应向高位CP端输出一个进位信号(有效触发沿),高位触发器翻转,计数加1。] 由JK触发器组成4位异步二进制加法计数器 ① 逻辑电路
JK触发器都接成T′触发器,下降沿触发。
② 工作原理
异步置0端上加负脉冲,各触发器都为0状态,即Q3Q2Q1Q0=0000状态。在计数过程中,为高电平。
只要低位触发器由1状态翻到0状态,相邻高位触发器接收到有效CP触发沿,T′的状态便翻转。
③ 状态转换顺序表7.3.1所示。电路为十六进制计数器。
④ 工作波形(又称时序图或时序波形)
输入的计数脉冲每经一级触发器,其周期增加一倍,即频率降低一半。一位二进制计数器就是一个2分频器,16进制计数器即是一个16分频器。
四位二进制加法计数器 状态转换顺序表如下。
由D触发器组成的4位异步二进制加法计数器的逻辑图如下。
由于D触发器用输入脉冲的上升沿触发,因此,每个触发器的进位信号由 端输出。
其工作原理类似,让学生课后自行分析。
2.异步二进制减法计数器 根据学生的程度,有时也可以从设计的角度,讨论异步二进制减法计数器的设计思想。
[二进制数的减法运算规则:1-1=0,0—1不够,向相邻高位借位,10-1=1; 各触发器应满足两个条件:
每当CP有效触发沿到来时,触发器翻转一次,即用T′触发器。
控制触发器的CP端,只有当低位触发器Q由0→1(上升沿)时,应向高位CP端输出一个借位信号(有效触发沿),高位触发器翻转,计数减1。] 由JK触发器组成的4位二进制减法计数器 ① 逻辑图。
FF3~FF0都为T′触发器,下降沿触发。
低位触发器由0→ 1(上升沿)时,应向高位CP端输出一个借位信号(有效触发沿),而触发器为下降沿触发,低位触发器应从 端输出借位信号。② 工作原理
四位二进制减法计数器计数状态顺序表如下
二、异步十进制加法计数器
学习要点:十进制计数器的逻辑功能,即计数状态顺序表、工作波形。具体电路不要求掌握其电路形式,了解其电路工作原理(较复杂)。异步十进制加法计数器是在4位异步二进制加法计数器的基础上经过适当修改获得的。它跳过了1010~1111六个状态,利用自然二进制数的前十个状态0000~1001实现十进制计数。
4个JK触发器组成的8421BCD码异步十进制计数器 1.计数状态顺序表
十进制计数器状态顺序表如下
2.逻辑电路图
3.工作原理 FF0和FF2为T′触发器。
设计数器从Q3Q2Q1Q0=0000状态开始计数。这时J1==1,FF1也为T′触发器。
因此,输入前8个计数脉冲时,计数器按异步二进制加法计数规律计数。在输入第7个计数脉冲时,计数器的状态为Q3Q2Q1Q0=0111。这时,J3=Q2Q1=
1、K3=1。
输入第8个计数脉冲时,FF0由1状态翻到0状态,Q0输出的负跃变。一方面使FF3由0状态翻到1状态;与此同时,Q0输出的负跃变也使FF1由1状态翻到0状态,FF2也随之翻到0状态。这时计数器的状态为Q3Q2Q1Q0=1000,=0使J1==0。因此,在Q3=1时,FF1只能保持在0状态,不可能再次翻转。
输入第9个计数脉冲时,计数器的状态为Q3Q2Q1Q0=1001。这时,J3=0、K3=1。输入第10个计数脉冲时,计数器从1001状态返回到初始的0000状态,电路从而跳过了1010~1111六个状态,实现了十进制计数,同时Q3端输出一个负跃变的进位信号。
4.工作波形。
讨论:若考虑延迟时间,异步计数器的状态从1111→0000的过程?
可见,异步计数器存在过渡过程,若将状态直接输出到译码器,将会产生错误的译码,造成误动作。
第二篇:《数字电子线路》课程教案6
3.3 TTL反相器的输入输出特性
本次重点内容: TTL反相器的电压传输特性 教学过程
一.工作原理
TTL反相器的电路如图1所示,当输入端为高电平时,的BE结都不导通,而BE结相当于一个正向导通的二极管,给 提供基极电流,使 导通,进而 导通,和 截止,输出低电平。~ 各极电位如下表所示。
图2-1 TTL反相器的电路图
当输入端为低电平(0.3V)时,中的BE结导通,的基极电位为 V+0.7V=1V,它不能使 的BC结和 的BE结正向导通,因此 和 截止, 和 导通,输出高电平。~ 各极电位如下表所示。
根据表1和表2可列出该电路输入、输出电平关系,因此它是一个非门。
二、TTL反相器的外特性及主要电器参数
了解门电路的外特性,进而理解电路的主要电气参数是正确使用数字集成电路的基础。现仍以TTL反相器为例来讨论门电路的各种外特性以及有关的电气参数。
1.电压传输特性
电压传输特性描述了输出电压与输入电压的函数关系,即。对于图2-1所示的典型反相器,其电压传输性如图2-2所示,其中 是加在多射极晶体管 某个发射极的输入电压,是输入电压。
图2-2 TTL反相器的电压传输特性 电压传输特性分为以下几部分: ① 段(截止区)当 <0.6V时,、截止,输出高电平。
② 段(线性区)当0.6V≤ <1.3V时,此时 导通,随 升高而下降,经过、两级射随器使 下降。仍截止。
③ 段(转折区)当 ≥1.3V时,随着输入电压略微升高,输出电压急剧下降。这是由于此时 开始导通,尚未饱和,、、和 均处于放大状态,故 稍有提高,均可使 很快下降。所以 的斜率比 段要大的多。通常把电压传输特性曲线上转折区中点所对应的输入电压称为门槛电压(或阈值电压),以 表示。对于典型的TTL反相器,=1.3~1.4V,可以粗略地认为,当 < 时,反相器将截止,输出高电平。
④ de段(转折区)当 ≥1.4V时,2.1V,此时 和 饱和,截止,输出低电平,=3V,且输出电平基本不随 的增大而变化。
由电压传输特性可得反相器的几个重要参数:输出的高电平,输出低电平、关门电平、开门电平、下限抗干扰电压容限、上限抗干电压扰容限 等。
① 和
电压传输特性曲线截止区所对应的输出电压为,饱和区所对应的输出电压为。
② 和 和 是两个很重要的参数。首先引入额定高电平和额定低电平的概念。由于各器件的 和 总存在差异(离散性),通常要规定一个额定值。TTL反相器的额定高电平为3V,额定低电平为0.35V。任何一个实际的反相器只要 ≥3V,≤0.35V,它的这两个参数就是合格的。开门电平是指输出电平达到额定低电平(0.35V)时,所允许的输入高电平的最小值。通常认为,只有当 ≥ 时,输出才是低电平; < 时,输出将不是低电平。在特性曲线上,是输出电压为0.35V时所对应的输入电压。的典型值为1.4V,一般要求小于1.8V。
关门电平是在保证输出电压为额定高电平的90%(即2.7V)时,所允许的输入低电平的最大值。通常认为,只有,输出才是高电平,否则将不是高电平。的典型值为1.0V,一般要求大于0.8V。
③ 抗干扰能力 和
一般用噪声容限的数值来表明电路的抗干扰能力。在输入为低电平时,输出应为高电平,如果这时输入端引入了一个正向干扰,当它叠加到输入低电平上,使总和超过 时,就不能保证输出为高电平。输入为低电平时,在保证输出仍为高电平的条件下,所允许的最大正向干扰幅度即为该电路的底电平噪声容限(下限抗干扰电压容限)以 表示。显然有 其中 为输入低电平的上限。
同理,当输入为高电平的下限值 时,在保证输出为低电平的前提下,输入端所允许的最大负向干扰幅度即为该电路的高电平噪声容限(上限抗干扰电压容限),以 表示,从而。
2.输入特性
TTL反相器的输入特性是指输入电流 与输入电压 间的函数关系
。假定电流 由信号源流入 的发射极时方向为正,反之为负。典型TTL反相器的输入特性如下图所示。
图2-3 TTL反相器的输入特性
由输入特性可得参数: ① 输入短路电流 当 时,对应特性曲线上的M点,该电流称为输入短路电流,记作。若该门的输入端由前级TTL驱动,这个电流将是前级门的灌电流负载之一,它将流入前级门的 管。
② 反向漏电流
当 时,流入 管,且,该电流称为反向漏电流,记作。它是输入端为高电平时从该输入端流入 的电流,由前级门的输出级供给。
必须注意的是,当 V时,管的CE结将会被击穿,使 猛增。另外,当 ≤-1V时,的BE结也可能被烧坏。这两种情况下,都会使反相器损坏。因此在使用时,尤其在混合使用电源电压不同的集成电路时,应采取相应措施,将输入电平钳制在安全工作区域内。
3.输入负载特性
称为输入负载特性,其中 是外接于反相器输入端(即 发射极)的电阻,是由 基极电流流过 时产生的压降,它不是外加电压。TTL反相器输入负载特性及测试方法如图2-18所示。
图2-4 TTL反相器的的输入负载特性
2-18左图可以看出,当 增加时 也增高。当 由时,此时反相器输入电平为关门电平,将此时的 记作(关门电阻)。由此,可以粗略地认为,当 时,输入电平为低电平,反相器截止,输出高电平;当 时,将因输入电平高于 而使输出电平降低。愈大,输出电平将愈低,直至。因此,当TTL电路的输入端开路时,认为该输入端接逻辑高电平。通常,TTL电路的多余输入端一般不宜开路,以免引入干扰信号。对多余输入端有三种处理方法:与信号端并接使用;对于要求保持高电平的多余端经一个 的电阻接电源正极;对于要求保持低电平的多余端接地。
图2-6 TTL反相器的低电平输出特性 图2-7 TTL反相器的高电平输出特性 4.输出特性
TTL反相器的输出特性反映了输出电压 与输出电流 的关系,如图2-
6、2-7。图中的电流方向是拉电流为负,灌电流为正。由典型的TTL反相器可知,在输出 为低电平时,随着灌入 的负载电流的增大,的饱和程度将减轻,从而 将略有增大,如图2-19中的CA段所示。此时的输出等效电路如图2-20(a)所示,输出阻抗。当灌入电流达到(约为40mA)后,可能脱离饱和进入放大状态,将增大很多。此时,理应为逻辑0的低电平可能会被抬高到同代表逻辑1的高电平差不多大小,从而引起逻辑上的失效。所以不允许反相器工作在AB段。
图2-8 TTL反相器的的等效输出电路
当反相器截止时,输出为高电平,此时负载电流为拉式电流,输出阻抗
。等效电路如图2-20(b)所示。显然拉电流增大时,将压下降,当
= 时输出电平为。通常不允许 >。5.扇出系数
输入特性和输出特性反映了驱动门与负载门之间的相互影响,当门电路级联使用时,必须注意这个问题。通常用扇出系数 来描述门电路驱动同类电路的个数。
由于 <<,故通常有 >,即把反相器输出低电平时的管电流负载能力当作反相器的扇出系数。
6.空载功耗
当输出端空载,反相器输出低电平时,电路的功耗称为空载导通功耗,其测试电路如图2-21(a)所示。,为空载导通时的电源电流。
当输出端空载,反相器输出高电平时,电路的功耗称为空载截止功耗,其测试电路如图2-21(b)所示。,为空载截止时的电源电流。
图2-9 TTL反相器的TTL反相器空载功耗
由于
比 大,因此一般用 表示门电路的功耗。7.平均传输延迟时间
在实际逻辑电路中,一级门的输出往往就是下级门的输入。由于晶体管的接通时间 和关闭时间 均不为0,也就是说它们的导通、截止过程都需要一定的时间,所以当TTL反相器的输入信号发生变化时,它的输出不能立即变化,而存在一定的延迟时间,如图2-22所示。图中,输出波形下降沿的50%处(点)与输入波形上沿的50%处(A电)的时间间隔称为导通延迟时间 输出波形上升沿的50%处(点)与输入波形下沿的50%处(B点)的时间间隔称为截止延迟时间。与 的平均值称为平均传输延迟时间(简称传输延迟),即
它是衡量门电路开关速度的一个重要指标。典型TTL反相器的 约为10ns。
图2-10 TTL反相器的TTL反相器平均传输延迟时间
第三篇:《数字电子线路》课程教案5
本次重点内容:
1、二极管门电路的工作原理。
2、门电路的延迟时间。 教学过程
第3章 逻辑门电路
3.1 概述
门电路——用以实现各种基本逻辑关系的电子电路
正逻辑——用1表示高电平、用0表示低电平的情况; 负逻辑——用0表示高电平、用1表示低电子的情况。(此处用数字电路网络课程或PowerPoint)
二、动态开关特性(PowerPoint)
在高速开关电路中,需要了解二极管导通与截止间的快速转换过程。
当输入电压UI 由正值UF 跃变为负值UR 的瞬间,VD 并不能立刻截止,而是在外加反向电压 UR作用下,产生了很大的反向电流IR,这时 iD= IR≈-UR/R,经一段时间 trr后二极管VD 才进人截止状态,如图3.2.3(c)所示。通常将trr 称作反向恢复时间。
产生 trr的主要原因是由于二极管在正向导通时,P区的多数载流子空穴大量流入N区,N区的多数载流子电子大量流入P区,在P区和N区中分别存储了大量的电子和空穴,统称为存储电荷。当UI 由UF 跃变为负值 UR时,上述存储电荷不会立刻消失,在反向电压的作用下形成了较大的反向电流 IR,随着存储电荷的不断消散,反向电流 也随之减少,最终二极管VD 转为截止。当二极管VD 由截止转为导通时,在P区和N区中积累电荷所需的时间远比trr 小得多,故可以忽略。
3.2.2 三极管的开关特性
一、静态开关特性及开关等效电路
3.2.3 二极管门电路 一、二极管与门电路 二、二极管或门电路
表3.2.3 或门输入和输出的逻辑电平表
表3.2.5 非门的真值表
表3.2.4 或门的真值
二、或非门电路 列出其真值表
第四篇:《数字电子线路》课程教案4
2.6 逻辑函数与逻辑图
本次重点内容:
1、用与非门实现逻辑函数
2、用或非门实现函数。
3、工程最简与数学最简。
教学过程
1、用与非门实现函数
例:用与非门实现函数 YABBCU?A
。YABBCABBC74F04U?A74LS00U?A74LS00YABBCU?AS0074L。A
&1AB&BCBY&BC。用与非门实现函数的一般方法
⑴、将函数化为最简与或式。
。⑵、对最简与或式两次求非,变换为最简与非-与非式。
2、用或非门实现函数
Y(AB)(AC)(BC)Y(AB)(AC)(BC)
Y(AB)(AC)(BC)
用或非门实现函数的一般方法 ⑴、将函数的非函数化为最简与或式。
⑵、对最简与或式求非(用摩根定理),求得函数的最简或与式.⑶、对最简或与式两次求非,变换为最简或非-或非式。
3、用与-或-非门实现函数 用与-或-非门实现函数的一般方法 ⑴、将函数非函数化为最简与或式。
⑵、对最简与或式求非,得到其原函数的最简与-或-非式,即可用与-或-非门实现之。
4、本章小结
(1)几种常用的数制:二进制、八进制、十六进制和十进制以及相互间的转换(2)码制部分:自然二进制码、格雷码、和常用的BCD码(3)分析和设计逻辑电路的重要数学工具:逻辑代数(布尔代数)(4)逻辑问题的描述可用真值表、函数式、逻辑图、卡诺图和时序图
5、几个典型例题
第五篇:《数字电子线路》课程教案9
第四章 组合逻辑电路
本次重点内容:
1、组合电路的分析与设计方法。
2、逻辑函数的变换。 教学过程
一、概述
组合逻辑电路:在任何时刻的输出状态只取决于这一时刻的输入状态,而与电路的原来状态无关的电路。
生活中组合电路的实例(电子密码锁,银行取款机等)电路结构:由逻辑门电路组成。
电路特点:没有记忆单元,没有从输出反馈到输入的回路。说明:本节讨论的是SSI电路的分析和设计方法。
二、组合逻辑电路的分析方法
提问:1.描述组合逻辑电路逻辑功能的方法主要有?(逻辑表达式、真值表、卡诺图和逻辑图等。)2.各种表示法之间的相互转换?
组合逻辑电路的分析与设计相当于是各种表示法之间的相互转换。基本分析方法
分析:给定逻辑电路,求逻辑功能。步骤:
1.给定逻辑电路→输出逻辑函数式
一般从输入端向输出端逐级写出各个门输出对其输入的逻辑表达式,从而写出整个逻辑电路的输出对输入变量的逻辑函数式。必要时,可进行化简,求出最简输出逻辑函数式。2.列真值表
将输入变量的状态以自然二进制数顺序的各种取值组合代入输出逻辑函数式,求出相应的输出状态,并填入表中,即得真值表。3.分析逻辑功能
通常通过分析真值表的特点来说明电路的逻辑功能。
二、分析举例
[例3.1] 分析图3.1所示逻辑电路的功能。解:分析步骤
输出逻辑函数表达式(逐级写,并且变成便于写真值表的形式)
(2)列真值表。将A、B、C各种取值组合代入式中,可列出真值表。
(3)逻辑功能分析。
由真值表可看出:在输入A、B、C三个变量中,有奇数个1时,输出Y为1,否则Y为0,因此,图6.2.1所示电路为三位判奇电路,又称为奇校验电路。
[例3.2]分析图3.2所示电路的逻辑功能,并指出该电路设计是否合理。
解:分析步骤
(l)输出逻辑函数表达式
(2)真值表。
(3)逻辑功能分析。由表3.2可看出,图3.2所示电路的A、B、C三个输入中有偶数个1时,输出Y为1,否则Y为0。因此,图6.2.2所示电路为三位判偶电路,又称偶校验电路。
(4)改进:这个电路使用门的数量太多,设计并不合理,可用较少的门电路来实现。变换表达式
可用异或门和同或门实现,电路如图3.3所示。归纳总结:1 各步骤间不一定每步都要,如: 省略化简(本已经成为最简)
由表达式直接概述功能,不一定列真值表。不是每个电路均可用简炼的文字来描述其功能。如Y=AB+CD
三、组合逻辑电路的设计方法
一、基本设计方法
设计:设计要求→逻辑图。步骤(与分析相反): 1.分析设计要求→列真值表
根据题意设输入变量和输出函数并逻辑赋值,确定它们相互间的关系,然后将输入变量以自然二进制数顺序的各种取值组合排列,列出真值表。2.根据真值表→写出输出逻辑函数表达式 3.对输出逻辑函数进行化简 代数法或卡诺图法
4.根据最简输出逻辑函数式→画逻辑图。
最简与一或表达式、与非表达式、或非表达式、与或非表达式、其它表达式
二、设计举例
1.单输出组合逻辑电路的设计
[例3.3] 设计一个A、B、C三人表决电路。当表决某个提案时,多数人同意,提案通过,同时A具有否决权。用与非门实现。解:设计步骤(1)真值表
设A、B、C三个人,表决同意用1表示,不同意时用0表示; Y为表决结果,提案通过用1表示,通不过用0表示,同时还应考虑A具有否决权。
(3)画逻辑图,如图3.5所示 2.多输出组合逻辑电路的设计
[例3.4] 设计一个将余3码变换为8421BCD码的组合逻辑电路。解:设计步骤(1)真值表
输入:余3码,用A3、A2、A1 和A0 表示,输出:8421BCD码,用Y3、Y2、Y1 和Y0 表示。余3码有六个状态不用,不会出现,作任意项处理。(2)卡诺图化简。见教材中图
应画四张卡诺图分别求出Y3、Y2、Y1 和Y0 的最简输出逻辑函数。含有最小项的方格填1,没有最小项的方格填0,任意项的方格填×。由卡诺图可写出 Y0、Y1、Y2 和Y3 的最简逻辑函数
(3)画逻辑图。
将余3码变换为8421BCD码的真值表