第一篇:ESD-20.20-2014静电放电防护培训总结
ESD-静电放电防护培训总结
本次ESD培训主要学习了ESD的国际标准介绍以及ESD标准技术和测试要求简介。初步了解了ESD国际标准S20.20的一些标准要求和程序编制的基本要求。
一、ESD基础知识
ESD是Electro Static Discharge的简称,也即静电放电。静电就是物体表面过剩或不足的相对静止电荷,它是电能的一种表现形式。静电是正负电荷在局部范围内失去平衡的结果,是通过电子转移而形成的。这些不平衡的电荷就产生一个静电场。静电放电(ESD),就是两个带不同静电电位的物件相互接近到某程度或接触时,静电从一个物件突然流放到另一物件上,发生电荷转移的现象。
静电产生的来源和途径。静电的产生主要有以下几种方式:摩擦、接触(传导)、分离、感应、冲流、辐射、压电、温差、电解等常见途径。摩擦产生静电的材料序列为摩擦静电序列 +(正极): 空气→人手→石棉→兔毛→玻璃→云母→人发→尼龙→羊毛→铅→丝绸→铝→纸→棉花→钢铁→木→琥珀→蜡→硬橡胶→镍、铜→黄铜、银→金、铂→硫黄→人造丝→聚酯→赛璐珞→奥轮→聚氨酯→聚乙稀→聚丙稀→聚氯乙稀(PVC)→二氧化硅→聚四氟乙稀 : -(负极)摩擦起电的产生机理是:上述任意两种介质摩擦后前者带正电,后者带负电,且相距较远的两种介质通常比相距较近的两种介质所产生的摩擦电量大。由于摩擦材料不同,摩擦程度不同,材料表面均匀度不同,接触力,摩擦力,分离速度不同最终产生的电荷量也不同。感应起电的产生机理是:不带电的物体接近带点的物体时,由于静电场电力线的存在,而是不带电的物体在静电场的作用下,在接近带电体的一侧产生于带电体电荷异性的电荷。分离起电是相互密切结合的物体剥离时,而引起电荷分离,最终引起分离物体双方带异性电荷。而其中摩擦、接触分离、感应是最常见,而且对电子行业危害最大的静电产生途径。
产生静电量大小的主要因素有材料种类、接触面积、材料表面均匀性、表面粗糙情况、接触分离力的大小、分离速度、环境温湿度等。
生产现场的典型静电源及来源:油漆, 腊面, 塑胶和乙烯树脂,塑料,抛光木材工作表面;油漆, 腊面,塑料,抛光木材,毛毯,砖地板地面;玻璃纤维, 塑胶, 表面处理木料等材料椅子;操作人员的普通衣物, 头发, 鞋子, 手套等;塑胶袋, 气泡包装, 海绵, 盒子等包装;塑胶袋, 气泡包装, 海绵, 盒子,刷子等工具物品;显示器,电吹风或热吹风枪,复印机,打印机,电脑,喷雾清洗剂,压缩气气枪,水枪等设备工具。以及人体在地板地毯上的走动,物品的取放,以及没有接地措施的人体运动等也会产生静电。
静电的危害有
1、ESA模式。即静电(力)吸附灰尘,降低元件绝缘电阻。
2、ESD模式。静电放电破坏,造成电子元件损坏。
3、EMI模式。静电放电产生电磁场幅度很大,频谱极宽,对电子元件产生干扰。静电放电的失效机理有热二次击穿,金属喷镀烧熔,介质击穿,气体电弧放电,表面击穿,体积击穿等。
静电放电模型。
1、人体模型(HBM)。静电损伤最普遍的原因之一是通过从人体或带电材料到静电放电敏感(ESDS)器件之间的一系列有效电阻(1~1.5KΩ)发生静电电荷的直接转移。手指与ESDS器件或组件表面的简单接触就可使人体放电,可能造成器件损坏。用以模拟这类事件的模型就叫人体模型(HBM)。HBM模式是带电人体对电子元件的损害。
2、机器模型(MM)。与HBM事件类似
4-1 的放电还可发自导电物体,例如金属做的工具或设备。机器模型源自日本,是试图建立一个最恶劣的HBM事件的结果。这个ESD模型包含一个200pF的电容,它向未串联阻抗的一个元件直接放电。与最恶劣的人体模型相比,机器模型也许过于严格。然而,现实世界确实有该模型所代表的情况存在。例如,来自充电板组件或自动测试器电缆的快速放电。MM模式是带电或放电设备对电子元件的损害模型。
3、带电器件模型(CDM)。来自ESDS器件的电荷转移也是ESD事件。例如,一个器件可能在顺着送料器滑入自动装配机时被充电。如果它随后接触到插头或其它导电表面,从该器件到金属物体的快速放电就可能发生。这个事件就是带电器件模型(CDM)事件,对某些器件而言可能比HBM更具破坏性。尽管放电持续时间非常短暂(通常小于1纳秒),但电流峰值可达几十安培,甚至数百安培。CDM模式是带电器件对导体或其他器件的损害模型。
二、ESD防护设计及控制
ESD STM5.1,ESD STM5.2,ESD STM5.3从HBM,MM,CDM三种模式对ESDS器件进行了敏感度分级。通常依据人体模型按下列标准来划分器件的静电敏感度:
I 级 0~1999V II 级 2000~3999V III 级 4000~15999V 非静电敏感 ≥16000V 静电控制防护的基本方法
对静电的控制主要从三个原理:
1、对所有导体进行接地处理。
2、对所有易产生静电的绝缘物进行隔离或控制。
3、进行EPA区划分,在运输和存储过程中使用ESD防护包装。具体控制项从人机、物、料、环五方面分析区别。
1、ESD控制的基本原则
做好ESD防护设计:器件选型、合理布线、设计保护电路等
消除和减少静电的产生:减少或消除静电产生的过程、维持过程和材料处于等电势等
使静电荷泻放与中和:使用静电导体、接地、电离器来泻放与中和静电
保护产品免遭ESD伤害:使用防静电材料包装和储运
2、防静电区设计原则
划分EPA(ESD Protected Area)区域。抑制静电荷的积累和静电压的产生。如设备、仪器、工装不使用塑料、有机玻璃、普通塑料袋。
安全、迅速、有效地消除已产生的静电荷,使 用有绳防静电腕带、防静电椅、防静电周转车、防静电周转箱。保证静电压小于100V。
3、防静电系统要素
(1)、地面
防静电地面(防静电水磨石,防静电地板)体电阻10 5 ~10 9 Ω,敷设地线
4-2 网。
(2)、工位
使用防静电工作台,防静电椅。使用防静电台垫。(3)、接地
a、防静电工作区必须有安全可靠的防静电接地装置,地电阻小于4 Ω。防静电地线不得与电源零线相接,不得与防雷地线共用,使用三相五线制供电时,其地线可以作防静电地线。
b、工作台面、地垫、坐椅和其它导静电的ESD保护设施均应通过限流电阻接入地线,腕带等应通过工作台顶面接地点与地线连接,工作台不可相互串联接地。
c、防静电工作区接地系统,包括限流电阻和连接端子应连接可靠并具有一定载流能力,限流电阻阻值选择应保证漏泄电流不超过5mA,下限值取为1M Ω。
(4)、温湿度
20~30℃,相对湿度30~70%。
(5)、增湿
增湿器使空气潮湿,防止静电荷积累,此法不适于增湿后会产生有害影响的场地。
(6)、电离器
不能有效地泄放静电荷的场合,可采用电离器通过空气中的正负离子来防止和中和元器件和其它物体上电荷 积累,电离能力大于 250V/s。
(7)、人体
穿防静电工作服、工作鞋,戴有绳防静电腕带、手套、指套等。
(为什么我们要禁止使用无绳防静电腕带?)(8)、包装
静电敏感器件应采取防静电保护性包装,如防静电袋、防静电盒等。
(9)、贮存、运输
静电敏感器件必须存放在防静电容器(箱、袋)内,并用防静电运输工具(箱、车)周转。贮运中要远离静电场、电磁场或放射场,如电脑显示器顶部。
4、操作注意事项
1)2)3)4)尽量减少手工操作和接触ESDS件
让ESDS器件保持在原包装中,直到组装或使用。在接触ESDS件之前接地放电
将所有工作范围内的物件,包括桌面、盒子、推车、工具等进行接地,然后才开始工作
5)使用专用ESD屏蔽材料。
6)运送ESDS件时使用有足够静电保护的包装及运输工具。7)在从包装中取出ESDS件前先触摸包装本身 8)将所有的电子器件以 ESDS 件看待
9)在只有设置防静电保护措施的工作台处理ESDS件。10)避免使 ESDS 件在任何表面上推动摩擦。
11)工作中任何时候都保持人员的接地措施(如带好腕带等)。12)如果没有使用防静电工作服,一般衣物必须有足够的距离。13)拿取非导体部分,而不是引脚或导体部分。
4-3 14)放置ESDS器件时引脚面向耗散物
三、ESD国际标准
在国际静电放电(ESD)协会制定的最新标准ANSI/ESD-S20.20-2007标准中提出来对静电控制方案的行政和技术要求,以及建立,实施和维护静电放电的控制方案。这个标准适用于建立对电气和电子零件,装置和设备(不包括电动引爆装置)的静电保护。标准适用的领域包括:制造、处理、组装、安装、包装、标签、服务、测试、检验、运输以及其他除此之外,在处理电气,电子零件,装置和设备中,对静电损害的敏感度超过或等于人体模型的100V的情况。
标准规定ESD静电放电控制方案的程序文件要求包括控制计划、培训计划、验证计划等三个计划,以及测试方法、防静电物品识别认定、设备人员接地管理、防静电区域管理、防静电搬运标示包装规定以及删减申明等六个方面的内容。S20.20及补充标准明确了一些主要的技术和测试标准,同时标准中讲述了测试类型、测试方法、部分测试仪器要求但并没有规定使用什么测试仪器。
4-4
第二篇:加油站静电危害及其防护
加油站静电危害及其防护
[摘要]对静电的危害进行简要的论述,对加油站产生静电的条件进行分析,并从四个方面给出加油站预防静电的措施。
[关键词]加油站 静电 防护
中图分类号:O59 文献标识码:A 文章编号:1671-7597(2009)0120020-01
20世纪中期以后,随着电阻率很高的高分子材料如塑料、橡胶等制品的广泛应用和现代,生产过程的高速化,使静电可以积聚到很高的程度。同时,静电敏感材料如轻质油品、火药、固态电子器件等生产和使用,使静电造成的危害越来越突出。我国近年来在石化企业曾发生30多起较大的静电事故,其中有数起损失达百万元以上,如上海某石化公司的甲苯罐、山东某石化公司的胶渣罐及抚顺某石化公司的航煤罐都因静电造成严重的火灾爆炸事故。
一、静电的危害
1.爆炸和火灾爆炸和火灾是静电最大的危害。静电能量虽然不大,但因其电压很高而容易发生放电,出现静电火花。在有可燃液体的作业场所(如油料运装等),可能由静电火花引起火灾。在有气体、蒸气爆炸性混合物或有粉尘纤维爆炸性混合物的场所(如氧、乙炔、煤粉、铝粉、面粉等),可能由静电火花引起爆炸。
2.电击由于静电造成的电击,可能发生在人体接近带电物体的时候,也可能发生在带静电电荷的人体接近接地体的时候。电击程度与所储存的静电能量有关,能量愈大,电击愈严重。其关系式如下:W=1/2CV2。
式中:W-静电场的能量,J;C-电容,F;V-电压,V。
但由于一般情况下,静电的能量较小,所以生产过程中产生的静电所引起的电击不会直接使人致命,但人体可能因电击引起坠落、摔倒等二次事故。电击还可能使工作人员精神紧张,妨碍工作。
3.妨碍生产在某些生产过程中,如不消除静电,将会妨碍生产或降低产品质量,例如,静电使粉体吸附于设备,会影响粉体的过滤和输送。
如在聚乙烯的物料输送管道和储罐中,常发生物料结块、熔化成团,以致造成管路堵塞。经分析发现是对静电消除不力造成的。
静电还可能引起电子元件误动作,使某些电子计算机类设备工作失常。
二、加油站形成静电危害的条件
静电虽然随时随地都会产生,但却不一定构成危害,因为静电危害的形成必须具备一定的条件。静电引发火灾、爆炸事故应具备以下条件,缺一不可。
(一)存在引发火灾、爆炸事故的危险物资
静电引发火灾、爆炸事故的必要条件,就是要有对静电敏感的物资,且静电放电的能量与火花足以将其引燃或引爆。
油料及酒精、二甲苯等挥发性物资容易散发蒸气,这些蒸气在空气中的浓度达到一定比例范围时,遇到火源就会爆炸,此种混合物称爆炸混合物,此种浓度范围界限称为爆炸极限。当爆炸性混合物的浓度处于爆炸极限范围内,一旦产生静电火花,则可能引发爆炸事故。爆炸混合物的爆炸极限并非为定值,而是会随混合物的温度、压力及空气中含氧量的变化而变化,同时,与测试条件也有一定关系。表1为常见几种易挥发物资的爆炸极限。
(二)有静电产生的条件
在仓储活动的各个环节中,静电的产生是不可避免的。比如,物资在装卸、输送过程中容易因摩擦而产生静电,油品在收、发、输送过程中也要产生静电,粉体、灰尘飞扬可产生静电,人员在作业中的操作、行走也会产生静电。
(三)有静电积聚的条件
对于任何材料,静电的积聚和泄漏是同时进行的,只有静电起电率大于静电泄漏率,并又一定量的积累,才能使带电体形成高电位,产生火花放电而构成危害。
(四)静电放电的火花能量大于最小静电点火能
虽然仓储活动极易产生静电,但是,只有当产生的静电积聚起来,在一次放电中所释放的能量大于或等于危险物资最小静电点火能,才会引发火灾、爆炸事故。
三、加油站防静电措施
(一)工艺控制
1.控制油罐车卸油方式。加油站在接卸罐车油品时必须采用密闭卸油方式,卸油管距罐底不大于0.2m。且底部形如伞柄状或切成一定角度,以减少产生的静电荷的数量。
2.采用密闭油气收集系统。
(二)静电接地
静电接地是将储存容器、管道及其设备,通过金属导线和接地体与大地连通而形成等电位。跨接是指将金属设备以及各管道之间用金属导线相连形成等电位体。加油站静电接地应符合以下要求:
1.地上或管沟铺设的输油管道的始端、末端,应设防静电接地装置。接地电阻值不大于30Ω。
2.加油站中汽车罐车卸油场地,应设罐车卸油时用的防静电接地装置。为卸油设施跨接而设置的静电接地装置,宜采用能检测跨接是否良好及有报警功能的静电接地装置。
3.在爆炸危险区域内的输油管道的弯头、阀门、法兰盘等连接处应用金属线跨接。不少于五根螺栓连接的法兰,在非腐点蚀环境中,可不跨接。
4.防静电接地装置的接地电阻值不大于100Ω。
5.接地体不应少于两根,可用角钢、钢管垂直铺设,埋地深度不应小于2.5m,两根接触地体之间的距离不应少于2.5m,铺设在地下的接地体不应刷漆。接地体的最小尺寸:圆钢直径为8mm;角钢厚度4.5mm;扁钢截面为4×12mm2,厚度4mm。接地线必须连接有效,不得把几个应与接地的干线连接在一起,防止损伤,并应铺设在便于检查的地方。
(三)限制作业条件
为了避免开油面最大静电电位,防止静电事故的发生,对刚接卸的油罐和运输后的油罐车进行人工检测时,油品需要静置一段时间,以保证容器内静电荷的消散。《加油站管理规范》中规定罐车需静置15min后方可进行计量检测。
(四)人体的防静电
加油站员工在爆炸危险场所频繁作业及接触设备,可能由于带电从而引发事故。人体由于自身活动与带电体接触而产生静电。人体穿戴衣物,由于材质不同,在穿戴、脱下时所产生的静电有差异。因此,加油员不允许穿戴化纤衣物,应穿戴棉织品的衣物。在加油站不能用化纤和丝绸类纱点擦拭加油机、油罐口、量油口等部分。在爆炸危险场所设置座椅,也不要用人造鬲或化纤材料做靠垫的座椅。
第三篇:粉体工业静电防护技术
粉体工业静电防护技术研究进展 引言
随着全球工业化进程的加快,生产粉尘、粉末和颗粒状物质的粉体工业迅猛发展。改革开放二十多年来,我国粉体工业生产规模迅速扩大,发展速度前所未有。以石油化工行业聚烯烃粉体生产为例,1982 年全国年产量不足100 万吨,1989 年则突破了200 万吨大关,1996 年年产量达到320 万吨;近年来,我国合成树脂和塑料年产量仍然保持20 %的增长速度。如煤炭、冶金、纺织、粮食等其他行业涉及粉体工业的生产规模亦以年产量增长速度超过15 %的态势呈规模化发展趋势。与此同时,粉体工业生产中引起的爆炸和燃烧事故也迅速增多。如哈尔滨亚麻厂粉尘爆炸事故,广东新港粮食储仓粉体爆炸事故均发生在20 世纪80 年代初期.据统计资料分析,随着我国经济发展速度的加快,粉体爆炸与燃烧事故越来越频繁。以粉尘爆炸统计数据资料为例,我国自1960 年至1989 年30 年间,发生粉尘爆炸次数按年代百分比的分布为: 1960年至1969 年占总数的9。37 %,1970 年至1979 年占总数的3。13 %,1980 年至1989 年占总数的87.50 %,此数据充分表明,粉体事故与国民经济发展规模之间有着密切的联系,同时说明了粉体防灾技术研究的意义与作用。上述粉体灾害事故和其发展态势引起了人们的极大关注,对我国经济发展和社会稳定造成了较大的影响,我国政府和有关行业主管部门及相关的研究单位对此类灾害事故高度重视[1,3 ]。这些因素对促进和加强我国粉体工业防灾技术研究工作,对防粉体灾害技术的应用推广和进一步落实企业的专项整改与治理措施等方面都起到了积极的推动作用.统计资料显示,粉体工业灾害事故与粉体静电密切相关[1 —4]。从一组引起粉体灾害事故(粉尘爆炸)的点火源数据统计百分比分析可知: 由热表面引爆的占38。71 %,由明火引爆的占32。26 %,静电与电气火花引爆的占16。13 %,其他因素引爆的占12。90 %。由可见,在粉体工业生产过程中,由于静电与电气火花引起粉尘爆炸事故的比例是比较大的,其中静电的危害已到了必须引起人们高度重视的程度。事实上,在人类现代生产和生活活动中,静电存在的范围很广。静电在给我们带来极大便利的同时(如静电复印、静电除尘、静电喷涂、静电成像、静电生物效应和纳米材料制备等),也给人类社会带来了各种各样的麻烦甚至引发灾难性事故。正因为静电事故遍及矿业、冶金、石油化工、纺织、医药、粮食加工与储运、交通运输、航天航空、通讯与军工等行业,所以对静电灾害与防护技术的研究一直是现代社会关注的热点课题之一 在众多的静电研究课题中,由于粉体静电灾害问题涉及专业面广,致灾过程复杂,模拟实验难度大,费用高等原因,所以相对于现代静电研究的其他领域而言,粉体静电灾害的研究在其起电机理、致灾条件和防范对策等方面相对滞后。虽粉体静电防灾领域需要研究解决的问题很多,但自20 世纪50 年代以来,这方面的研究进展一直不大,其研究水平远远落后于液体防静电灾害等技术研究,与实际要求存在较大的差距。然而从Maurer(1979 年)报道了粉体大料仓堆表面放电现象之后,以瑞士Ci2ba 公司和英国南开普敦大学为中心,在国际上迅速形成了一个以粉体工业生产实际尺度的粉体静电放电问题为研究对象的研究热点,并进一步提出了一些与生产过程密切相关的防静电规范或建议。与此同时,德国、瑞士、挪威、波兰及前苏联等欧洲防爆委员会成员国,以及我国、日本、美国等国的相关部门和研究单位,也相继开展了超细粉尘和非标准条件下的燃烧与爆炸实验,静电场分析计算及体起电、放电等理论与实验研究工作。这些研究工作极大地丰富了人们对粉体静电 危险性的认识,特别是与工业控制和安全评价有关的粉体静电研究结果,对粉体工业安全生产具有十分重要的意义和指导作用 2 粉体静电灾害概况 现代工业生产过程中的粉体是粉尘、粉末及颗粒状物质的总称。一般而言,我们将粒径d > 0.5mm的物质称作颗粒;将粒径d 在100μm和0。5mm之间的物质称作粉末;将粒径d < 100μm的物质称作粉尘,此类物质基本上具有正常状态下在空气中飘扬的特征。统计与实验资料表明,可燃性粉尘大多数属易燃易爆物质,其燃爆事故占粉体灾害事故的60 %以上,粉尘本身的静电放电火花即可成为其点火源。可燃性粉末与颗粒虽然能燃烧,但是一般难以形成爆炸性混合物,然而其静电放电或热表面等危险因素可能成为可燃气、可燃粉尘及其杂混合物等易燃易爆物质的点火源。对于非可燃性粉体而言,其静电危险性主要表现在这类物质的静电放电火花可能成为生产过程中其他易燃易爆物质的点火源[2,4]。粉末与颗粒粉体粒径较大,在生产过程中单个粒子的带电量也大。在一定的条件下,聚合物粉体大料仓中可能发生堆表面放电和传播型刷形放电,此类静电放电的放电能量大,足可以点燃一般的可燃粉尘。大多数粉尘中固体物质的粒径约为1 —100μm,含分子数为104 —106,因此小而轻且比表面积大。带静电的粉尘可漂浮于空气中,也极易吸附在物体表面上。漂浮的带电粉尘的灾害可以产生闪电状静电放电,如火山喷发时可经常看到的火山灰粉尘闪电;大气中悬浮的尘埃使大气能见度大为降低,容易引起各类交通事故。带电粉尘的吸附性亦有较大的危害,粉尘吸附在植物的叶面和干上会影响其生长,给人类的农业、林果业生产等造成损失;金属表面的粉尘可促使其加速腐蚀;粉尘的沉降或吸附使各种建筑物遭受污染、腐蚀加速,使许多传感器中毒、失效,使诸如集成电路等高精细材料、器件无法制造和使用,可以导致机器停运、电路短路等事故。如此种种,关于粉体静电的危害不胜枚举,而其中最具破坏性和灾难性的就是粉尘爆炸,它会造成突发的、一次性损失严重的人身伤亡和财产损失等事故.德国自1940 年起的50 年间,与静电相关的重大粉体爆炸事故有斗式提升机滑槽中燕麦糠爆炸,碾碎机内的制粉半成品爆炸,斗式提升机滑槽中高粱(含粉尘多)爆炸,斗式提升机中高粱粒爆炸和粉体料仓中高分子聚合物爆炸。据日本劳动省产业安全技术研究所对1952 年至1975 年期间日本所发生的177 起损失较为严重的粉尘爆炸事故点火源的调查分析可知,最多的点火原因是机件或装置中的金属异物摩擦撞击而引起的热表面和撞击火花(37起),其次就是静电引起的放电火花(29 起)。因此,引起粉体爆炸的原因与静电放电有一定的联系.料仓燃爆事故统计资料可知,这40 起粉体料仓燃爆事故的点火源,基本可以认定是粉体自身的静电放电火花。事实上有关高分子聚合粉体的静电危险性研究,尤其是粉体气力输送和粉体大料仓的防静电危害问题是近二十年来国际范围内静电防灾研究领域中的热门课题之一。聚合物粉体绝缘程度很高,生产过程中粉体的起电量可达104 C/ kg,静电泄漏缓慢,生产过程中的粉体往往会积聚很高的电荷。这种静电的积聚会给粉体生产带来两类危害:一类是带电粉体粒子之间,粒子与管壁、容器之间的静电力作用,给生产带来各种障碍与危害;另一类是电荷的积累能够产生很强的静电场,从而导致各种类型的静电放电发生,或引起火灾和爆炸事故,或引起人体电击事故而导致二次事故发生.粉体静电危险性评价方法研究发展
概况
通过对静电放电火花实际点燃危险性量化分析研究,近年来已经取得了可用于对粉体实际生产过程中的静电危险性进行定量评价的研究结果。建立在静电点燃现实危险性基础上的静电放电火花点燃危险性的量化分析理论,相关的静电参数测试方法,生产工艺过程现场数据取样和评价技术,促使粉体善,有关研究和管理部门已经将相关研究结果应用于具体的生产实际
3.1 粉体起电机理研究
粉体是特殊状态下的固体物质,其静电起电过程遵循固体的接触起电规律。目前,人们对金属-金属、金属-半导体的接触起电机理研究结果已经达到实用化水平的要求。然而对于高分子聚合物材料的起电机理研究而言,由于聚合物内部结构的复杂性以及起电机理性实验结果的重复性不好等原因,对其起电机理性的研究方法尚在不断的完善之中[8]。然而,对于粉体工业生产中粉体气力输送的粉体静电起电问题,人们结合两相流动力学理论、电介质物理学、粒子介质之间的相互作用等理论研究,年来已经分析总结出了一些可用于实际分析的有关粉体起电的半经验公式[9,10]。
3.2 粉体静电参数测试技术
有关粉体状物质的静电参数(电阻率ρ、介电常数ε、电位U、电场强度E 及电荷密度q 等)的实验室测量,从理论分析到测试方法都比较成熟,有些测试方法和具备防爆条件的测量仪表也已经直接应用于实际生产场所的粉体静电参数的数据测试[11,12]。近年来,人们可以在工尺度的大型粉体模拟装置上设置粉体静电试验,方便、高效地测试粉体静电参数,便利开发、试用防粉体静电灾害的技术和产品,这为进一步深入研究与解决粉体静电问题提供了实验手段上的保证。相关科研单位研究开发的非接触式管道粉体静电电荷密度测量仪,在完善防爆设计后即可应用于粉体工业输送与储运系统的粉体静电监测[13]。粉体、聚合物电荷空间分布的测量方法研究也有了较好的研究结果。几十年来,人们已经积累了大量的有关粉体方面的静电参数,从相关的基本静电参数到实际生产中不同性质的粉体起电参数都比较全面.3.3 粉体起电、放电特性(包括辐射场)研究
人们在小、中、大型粉体静电模拟实验装置上,尤其是工业尺度的粉体模拟试验装置上成功地模拟了电晕放电、刷形放电、火花放电、堆表面放电及传播型刷形放电等典型的粉体生产中存在的静电放电现象,使有关粉体的静电危险性研究水平上了一个大的台阶[14,15]。在这些极为有效的试验设备上,人们成功地测定了粉体的起电量,研究了粉体的起电特性,综合研究了粉体料仓的粉体电荷密度、荷质比、放电电荷转移量、料仓内的电势分布与电场强度的分布特点、粉体放电间隔特点、放电信号频率等对于粉体静电危险性评估有重要价值的相关物理量[7,16,17]。通过大量的静电放电测试试验,统计、研究、探讨和总结了粉体工业生产中可能发生的不同类型静电放电的辐射场特性,其试验研究数据为粉体工业生产现场检测与监测仪表的电磁兼容性设计提供了有价值的数据;同时结合气体等介质的击穿理论,建立了典型的静电放电理论模型
3.4 可燃物质的燃爆特性研究
自20 世纪80 年代中、后期起,标准条件下(标准实验样品、标准测试条件)可燃粉体、可燃气仪器,已经基本上达到了国际标准化。所以有关可燃物在标准状态下的最小点火能、爆炸极限、最小点燃温度、最大实验安全间隙、自燃温度、闪点、极限氧浓度等数据,基本上都可以从标准出版物上引用。近年来,有关非标准状态和非标准条件下的可燃物质燃爆参数研究,人们从实验和理论分析两方面作了不少的工作[19,24,33]。非标准粒径粉尘最小点火能与粉尘中位粒径的关系,杂混合物最小点火能与可燃气体浓度的关系,粉尘最小点火能与温度的关系,负压条件下可燃物爆炸极限的变化,高压条件下可燃物自燃温度的变化等对实际安全评价有重要意义的燃爆参数数据库,也在积极完善之中.结合气力两相流动理论和燃烧反应动力学理论,借鉴比较完善的可燃气体燃烧理论,初步建立了粉尘、杂混合物(粉尘,可燃气)燃烧理论分析模型
3.5 粉体静电放电点燃特性研究
粉体静电放电火花的火花时间特性和空间分布特征、形成放电的初始条件和放电电荷转移量等点火源因素,可燃物质的燃爆特性参数都对粉体静电放电的实际点燃能力有影响。近年来,人们将研究重点放在粉体料仓内粉体静电放电的点燃能力研究上,但由于研究手段上的原因,只能将料仓内的放电通过环形收集电极引出,在放电区以外的极隙内做点燃实验。这样由实验所得到的放电相当能量Eeq,在一定程度上反映了粉体放电的点燃能力。实验与实际静电点燃事例统计表明,粉体生产过程中可能产生静电灾害的静电放电形态和有效点燃能量Eef大致如下:(1)电晕放电的有效点燃能量不大于01025mJ;(2)普通的刷形放电单次放电的有效点燃能量可达3mJ;(3)料仓粉体堆表面放电单次放电的有效点燃能量可达10mJ;(4)人体放电单次电的有效点燃能量可达30mJ;(5)火花放电单次放电的有效点燃能量可达1J;(6)传播型刷形放电单次放电的有效点燃能量可达10J。有关粉体静电放
电实际点燃可燃物的过程研究,对于了解和研究放电火花的现实点燃能力是有重要意义的。结合介质击穿过程的放电物理学和燃烧学理论,关于气体、粉尘的静电放电火花点火模型理论和气体、粉尘的点燃过程研究近年来也取得了一些较好的研究结果
3.6 粉体静电放电危险性评估与仿真模拟
有关粉体静电放电危险性研究主要侧重于引发火灾、爆炸事故的危险性方面。对于规模一般都比较大的粉体生产而言,这种危险性主要反映在火灾、爆炸事故的敏感性参数上,也就是可燃物被静电放电火花引燃的特性上。这样,由带电粉体物质的基本静电参数、粉体量大小及边界条件所确定的带电粉体空间可能产生的静电放电类型、静电放电火花的点燃能力,结合产生静电放电场所的可燃物燃爆特性,即可以定量评价粉体静电放电的实际危险性.通过研究典型静电放电火花的实际点燃能力,对实际生产工艺过程中的静电放电火花的点燃危险性进行定量评价。静电放电火花的放电相当能量、放电火花空间分布范围和放电火花持续时间,决定了静电放电火花实际点燃可燃物的可能性大小,因此不同类型的静电放电火花点燃可燃物的差异性很大.根据数据序列理论分析,引入静电放电火花点火源序列和可燃物危险性序列之间存在的关联性,反映了静电放
电火花点燃可燃物的危险程度,可用于对静电放电火花的实际点燃危险性进行量化评价。有关粉体的电荷弛豫理论和粉体静电场分析模型研究以及电场仿真和计算分析,一直是静电防灾研究的前沿热点课题。近年来由于粉体静电检测技术的发展,大力促进和支持了粉体静电仿真技术的研究,使得粉体静电仿真技术研究成果离实用阶段越来越近[7,24,25]。同时,有关粉体静电模拟仿真的研究结果也弥补了实际粉体静电测量技术的不足和现场测量场所的限制(如引入测量仪器对原静电场的影响等),可以帮助人们更详细地了解带电粉体空间的电场变化等情况.粉体防静电灾害技术发展概况
粉体防静电灾害技术的要点在于经济实用,根据危险性定量评估的结果选用相应的防护技术是防灾减灾工作的根本内容和努力方向。我们知道,粉体工业生产中可能产生静电灾害的典型静电放电类型有6 种:(1)电晕放电;(2)普通刷形放电;(3)料仓堆表面放电;(4)人体放电;(5)火花放电;(6)传播型刷形放电。理论分析与实验结果表明,这些不同形态的放电形式点燃可燃物的能力大不相同。另一方面,可能存在于粉体工业实际生产中的可燃物大多为可燃粉体(颗粒、粉末、粉尘)、可燃气以及它们的杂混合物,这些可燃物的被点燃性能差异也很大。所以,我们在研究开发防粉体静电灾害技术的具体工作中,应在粉体静电危险性合理分级的基础上,遵从既科学合理、又经济实用的防灾减灾原则
4.1 粉体静电危险性分级方法
有关粉体静电危险性分级,有别于静电危险场所的分级。粉体危险性分级的目的在于结合安全经济学原理,为存在粉体静电危险性场所选用既经济实用又科学合理的防静电灾害措施提供科学依据.这方面的工作可参照相关的静电危险场所分级方法[24,26,41,44],以粉体静电实际危险性为基础,结合粉体静电可能造成的灾害程度作为分级依据来进行
4.2 防粉体静电灾害技术
粉体静电防灾的应用技术研究,目前从相关物体的静电泄漏技术、粉体静电消电技术、泄爆技术、阻爆与隔爆技术,到可燃物质的惰化与抑爆技术等,基本上能够满足实际生产的需要。但有时候由于片面追求经济效益等方面的原因,有些成熟的粉体静电防灾技术并不能被粉体生产厂家所接受;或由于维护方面的原因,有些已选用的粉体静电防灾设施,并未在实际生产中发挥其应有的作用;所以粉体静电防灾技术的研究与开发任重道远,新技术的开发与已有技术的优化,尚有很多工作要做。概括地说,有关粉体生产防静电灾害应用技术的研究开发,从控制危害源因素和防灾减灾作用的角度考虑,已经形成了以下两大类以降低粉体静电危险性为目的的工程应用技术[27 —33]:一类是以控制粉体静电起电量(改变接触起电介质的材料特性,采用粉体消电措施,采取防静电涂层与合理接地加速静电泄放等)、控制放电类型(如防止形成击穿场强较大的绝缘层,避免产生能量大的传播型刷形放电等)为目的所采用的技术;另一类是以控制可燃物点燃特性(如加强通风,可燃气置换,控制切粒所形成的细微粉尘,注入惰性物质等)为目标而采取的技术措施。目前我国有关部门正在计划制定有关的粉体防静电灾害操作规程[34 —37]。值得注意的是,在特定条件下,由于粉体生产过程的工艺条件或环境条件的限制,粉体静电放电火花有可能点燃、引爆可燃物质,为了减缓灾害的破坏性,防止灾害的进一步扩大,应采取防灾减灾措施。主要的应用技术有阻爆、隔爆、泄爆和抑爆技术等,以及与之配套的可燃气、可燃粉尘的温度和压力等监测监控技术。目前,静电源监测相结合的粉体静电防爆减灾控制体系正在完善之中结束语
综上所述,有关粉体静电危险性与防静电灾害技术方面的研究工作涉及面广、任务繁杂,难度较大。本文仅就其中的有关方面,结合作者近年来所做的有关具体研究工作,进行了相关专题的调查研究与统计分析,介绍了粉体工业生产中的静电危险性分析方法与防静电灾害技术的最新研究成果,有关研究结果近年来已经陆续应用于粉体工业的具体生产实际,解决了企业安全生产中的有关技术难题,取得了良好的社会效益与经济效益。作者希望有关粉体静电测试研究方法、粉体静电起电与放电研究方法、粉体静电危险性评价方法、粉体静电危险性分级理论与粉体防静电灾害技术措施等重要研究结果,在今后的研究与具体应用实践工作中得到进一步的完善、补充和检验。
参考文献
[ 1 ] Wang Dong-yan.Hazards and control countermeasures in China.In : Proceedings of the 6th international colloquium on dust explo2 sions.Shenyang : Northeastern University Press , 1994.1
[ 2 ] 刘尚合, 刘直承, 魏光辉等.静电理论与防护.北京: 兵器工业出版社, 1999.10 [Liu S H, Liu Z C , Wei G H etal.Electrostatic theory and protection.Beijing : Publishing company of weapon industry , 1999.10(in Chinese)] [ 3 ] 中国科协学会工作部.工业粉尘防爆与治理.北京: 科学出版社, 1990.7 [ Standing Department of CSCA.Explosion protection and prevention for industrial dusts.Beijing :SciencePress , 1990.7(in Chinese)]
[ 4 ] 刘尚合, 谭伟.物理, 2000 , 29(5): 304 [Liu S H, TanW.Wuli(Physics), 2000 , 29(5): 304(in Chinense)]
[ 5 ] 孙可平.物理, 2000 , 29(6): 364 [ Sun K P.Wuli(Physics), 2000 , 29(6): 364(in Chinese)] [ 6 ] 谭凤贵, 周本谋.对瑞士等国粉体静电爆炸与防护研究的考察.见: 马峰编.现代静电技术.西安: 西安出版社,1999.142 [ Tan F G, Zhou B M.Investigation of the powder
electrostatic hazards and protection in Europe.In : Ma F ed.Modern technology of electrostatics.Xian : Xi′an Press , 1999.142(in Chinese)]
[ 7 ] 周本谋.中国粉体技术, 2002(8): 138 [ Zhou B M.Chi2nese powder science and technology , 2002(8): 138(in Chinese)]
[ 8 ] Watson P K.Journal of Electrostatics , 1997(43): 67 [ 9 ] Bailey A G.Journal of Electrostatics , 1993(30): 168 [10 ] Jones T B et al.Journal of Electrostatics , 1999(22): 231
[11 ]Juliusz B G.Journal of Electrostatics , 1994(32): 297 [12 ]Juliusz B G.Journal of Electrostatics , 1997(42): 231 [13 ]Bassani L et al.Journal of Electrostatics , 1997(41): 401
[14 ]Schwenzfeuer K.Journal of Electrostatics , 1997(40&41): 383 [15 ] Maurer B et al.Journal of Electrostatics , 1989(23): 25 [16 ]Glor M et al.Journal of Electrostatics , 1989(23): 35 [17 ]Glor M.Journal of Electrostatics , 1997(40): 511
[18 ] 谭伟.静电放电辐射场的研究进展.见: 马峰编.现代静电技术.西安: 西安出版社, 1999.30 [ Tan W.Research developments in ESD radiation field.In : Ma F ed.Modern technology of electrostatics.Xi′an : Xi′an Press , 1999.30(in
Chinese)] [19 ] 黄九生.军械工程学院学报, 2000(增刊), 12 : 260
[ Huang J S.Journal of ordnance engineering college , 2000(Supp.Aug.2000), 12 : 260(in Chinese)]
[20 ]Siwek R et al.Safety Progress , 1995 , 14 : 107
[21 ] Zhou B M et al.A new type of movable electrode electrostatic ignition energy apparatus.In : Proceedings of the 6th international colloquium on dust explosions.Shenyang : Northeastern University Press , 1994.257 [22 ] Piotr Wolanski et al.Minimum explosive concentration of dust air mixtures.In : Proceedings of the 6th international colloquium on dust explosions.Shenyang : Northeastern University Press , 1994.206
[23 ]Glor M.Journal of Electrostatics , 1996(30): 123
[24 ]Glor M et al.Loss prevention and safety promotion in the process industries , 1996 , 11 : 44 [25 ] Jones T B , Chan S.Journal of Electrostatics , 1993(22): 199
[26 ] GJB2527295.弹药防静电要求.国防科技委.[ GJB2527295.Electrostatic protection measures for ammunition.STC of national defence.(in Chinese)]
[27 ] ISSA Prevention Series No.2017(E).Static Electricity(Ignition hazards and protection
measures).D269115 Heidelberg , Germany , 1996 [28 ]Siwek R.Journal of Loss Prevention , 1996 , 9 : 81 [29 ] Moore P E.Journal of Loss Prevention , 1996 , 9 : 3 [30 ] Moore P E.Journal of Loss Prevention , 1997 , 9 : 13
[31 ]Crowhurst D et al.Journal of Loss Prevention , 1997 , 9 : 113 [32 ]Vogl A.Journal of Loss Prevention , 1996 , 3 : 17
Siwek R.Latest development in explosion protection technology.In : Proceedings of the 6th international colloquium on dust explo2sions.Shenyang : Northeastern University Press , 1994.35 [34 ] VDI Guideline 2263 : Dust fires and dust explosions.Hazards Assessment Protection measures ,Beuth , Berlin and Koln , May 199
[35 ] ISO/ DIS 6184 : Explosion protection system2Part1 : Determination of explosion indices of combustible dusts in air.International Organization for Standardization , 1985
[36 ] ISO/DIS 6184 : Explosion protection system2Part2 : Determination of explosion indices of combustible gases in air.International Organization for Standardization , 1985
[37 ] ISO/ DIS 6184 : Explosion protection system2Part3 : Determination of explosion indices of combustible feul/ air mixtures other than dust/ air and gas/ air mixtures.International Organization for Standardization , 1985
[38 ] Guideline VDI 3673 , Part 1 : Pressure release of dust explosions.Beuth , berlin , July 1995 [39 ] NFPA 68 : Venting of deflagrations.1978 and 1988 edition , National Fire Protection Association , Quincy , Massachusetts , USA
网址:http://
第四篇:油品静电产生机理及其防护技术
油品静电产生机理及其防护技术
上海海事大学,电磁场与微波技术专业
摘要:本文综合国内外有关石油静电的研究成果,论述了油品在生产、储存、运输过程中静电的起电机理,给出油品注入各类容器时静电起电方程,指出气相间放电现象及类型,最后讨论了油品静电隐患的一些防护措施。
关键词:油品静电起电机理;静电起电方程;气相间放电;防护措施
The Electrostatic Generation Mechanism and Protection Technology of Oil Abstract: This article comprehensive domestic and foreign oil electrostatic research results, discusses the generation mechanism of oil in the the progress of production, storage and transport.An equation of static electrification is presented for the oil injected into various types of containers, pointe out that the phenomenon and type of discharge phenomena and finally discusses some of the oil electrostatic hazard precautions.Key word: Electrostatic electrification mechanism;static electricity equation;gas phase discharge;preventive measure
0.引言
石油产品中,汽油、煤油、柴油属于易燃油品,系非导电性物质,其体积电阻通常在10111015m范围之内。具有这样高绝缘性的易燃油品,在其生产、贮运、加注、使
用的诸工序中,极易产生静电荷。由于静电荷的释放速度相当慢,当静电荷积聚到一定程度时,便会产生静电火花,点燃爆炸性混合气,酿成重大的灾害事故。由于石油静电问题,国际上油轮、油库,汽车、油槽车等爆炸事故很多。我国石油系统,自1968年一1986年近20年间发生的静电灾害事故就有18起之多[1]。本文将主要针对石油制品,探讨其静电产生机理以及防护措施。1.油品静电起电机理
两种物质的相互摩擦是产生静电的一种特殊方式,但不是唯一方式。除摩擦外,当两种不同物质紧密接触后再分离、物质受热或受压、物质发生电解或其他带电体的感应等,均可产生电荷。固—液相间、液—气相间、互不相容液相之间由于流动、搅拌、沉降、过滤、冲刷、喷射、飞溅、剧烈晃动以及发泡等接触分离的相对运动,均会在介质中产生静电[2]。
带电油品进入油罐后,油品静电通过静电感应将在油罐内外两壁产生感应电荷,如图1所示。如果油品带正电,则在油罐内壁产生大小与油品电荷相同、性质相反的负电荷,油罐外壁产生正电荷,大小则根据油罐外壁绝缘性质确定,若罐外壁与大地完全绝缘,则与油品内电荷相等。油罐内油品电荷和油罐内壁电荷相互吸引束缚,若遇火花促发物,则会发生火灾爆炸事故,油罐外壁为自由电荷,可以通过静电接地直接导入大地。
图1 油品进罐后电荷分布
2.油品注入容器时静电起电方程
油品属非导电性液体.它的起电方式主要是摩擦分离起电.液体在起电的同时还伴有电荷的泄漏,其起电方程为[3]:
dQ(QsQ)Q
dt
(1)
式中Qs为不计泄漏时的饱和带电量,为起电系数,为泄漏系数。在油品注入金属容器时,存在三种泄漏途径,可令泄漏系数;
123,其中,1为通过接地导线导向大地的2为通过跨接导线导向周围不等电位物体(比加输油管)的泄漏系数;3为通过空气的泄漏系数,当空气击穿时,泄漏表现为气体放电形式。
351010 金属容器是导体。人的阻抗在欧姆之间。对静电而言,也相当于导体(静电导体),其起电方式主要是感应起电,应满足高斯定理:
QsDds
(2)
D其中为电位移矢量,J为体电流密度。以上(1)(2)两式即为油品注入容器时的静电起电方程。
对(1)式积分可得油品中电荷聚散规律为:
Q(t)
Qs(1e()t)Qm(1et/)
(3)
Qm式中Qs为油品最大带电量,1 称为弛豫时间。
QQ0且
考虑起电停止后未发生气体放电时油品中电荷的泄漏过程,即
30。在容器内作包围油品任一闭合面,泄漏电流:
因为
其中方程:
dQIjdsdts
(4)
D0rE
JE
0和r分别为真空和相对介电系数,为油品电导率。与(2)式联立可得电荷泄漏
QQ0et/
(5)
由于不同油品的12(6)
r值相差不大,而即使是同一种油品,由于杂质含量不同,电导率会有明显差异,因此,值几乎完全由决定。如对石油类制品,815油品,电导率由10S/m至10S/m。
r2.0,从原油至精制3.油罐中气相间的放电现象
当储罐内的油品带电时,就会对油品内或储罐内的气相空间产生电气作用。这种电气作用就是电场,其大小称为电场强度。这种电场和磁铁周围的磁场作用相类似,能吸引较轻的物体,引起放电现象。通常气相空间发生放电,会比油品内放电更容易引起灾害。
研究表明,储罐内油品发生的放电,按放电的发光形式来分类,大致可分为电晕放电、刷形放电和火花放电三种[4]:
(1)电晕放电是在曲率半径小的突起部份或棱角的地方发生的伴有微弱发光的放电,此种放电能量比较小,如图2所示。(2)刷形放电是在形状比较园滑的对置电极与带电油面间发生的,并伴有兰白色发光和破坏声响的树枝状放电。此种放电不够集中,所以在单位空间内释放的能量也较小,如图3所示。(3)火花放电是在平滑形状的对置电极和带电油面之间的距离接近时发生的,伴有线状强烈发光和破坏声响的放电。此种放电在瞬间内能量集中释放,因而危险性最大,如图4所示。
图2.电晕放电
图3 刷形放电
图4 火花放电
99%以上的能量在产生放电的气相空间会变成为热能而消耗掉。因此,气相空间达到爆炸混合浓度时,由于热能而使温度上升,结果引起燃烧反应,并发展到点火、爆炸,如果带电油品的放电能量超过可燃性混合气体的点火能量时,这种放电就会成为点火源,从而引起爆炸火灾。
4.油品静电隐患的防护措施
减少静电的产生,主要有以下几方面措施:(1)控制流速
已知油品在管道流动所产生的电流和电荷密度的饱和值与油品流速的二次方成正比,可见控制流速是减少静电产生的一种有效方法。可燃和易燃油品的电阻率各不相同,而其允许流速与电阻率有十分密切的关系。因此,有的国家根据油品的电阻率限制允许流速,其推荐值如下[5]:电阻率 105m时,允许流速10m/ s;电阻率105109m时,允许流速 5m/ s;电阻率109m时,允许流速1.2m/ s 总之在确定流速时,不仅要考虑管道的直径,还要考虑油品的性质 所含杂质的数量和成分,管道的材质等各种因素的影响。
(2)控制加油方式
油罐从顶部喷溅装油时,油品必然要冲击罐内油品,使静电量急剧增加。如某厂对500m油罐试验时,将柴油以2.6m/ s的速度从顶部喷溅,5分钟后,罐内油面电位从190V升到7000V。若改用从罐底(流速相同)注油,油面电位下降到2000V。另外,顶部注油还会使油面电荷较为集中,容易发生静电放电[6]。(3)防止不同的油品相混合及防止油品含水和空气
油品中含水5% 10%时,会使起电效应增大10倍50倍。另一类危险是混油现象,当向汽油或其他轻油容器底注入重油,由此引起的事故在油库和炼油厂多有发生。原因是轻
质油为低蒸汽压油品,其闪点都在38C 以上,在正常情况下,在低于其闪点温度下输送3不会有火灾危险。但是,如果将这种油品注入装有低闪点油品的容器中,重油会吸收轻质油的蒸汽而减少容器内气体空间混合气中油蒸汽的浓度,使得未充满液体的空间由原来充满轻质油气体(超过爆炸上限)转变成合乎爆炸浓度的油蒸汽和空气的混合气体,所以为安全和保证油品质量,必须防止不同油品相混合[7]。(4)进行有效的防静电接地
油罐管道、过滤器鹤管、装卸平台等防静电设备的有效接地,电阻值应满足要求:接地导线30m以下着不大于10,超过30m者不大于5,单独导出静电装置的接地回路电阻不大于100。
5.结束语
静电的存在非常隐蔽和抽象,事故前不易发觉,一旦发生静电事故,后果十分严重。我们必须充分根据静电产生的机理,采取行之有效的防护措施,以减少和控制静电事故的发生。同时,由于静电研究涉及的问题很多,机理复杂,特别是各种突然干扰的因素较多,其理论认识和实际措施都远非准确完善,大量的研究工作还有待于进一步去做。参考文献:
[1] 甘建坤.石油产品的静电性能及其预防措施[J].天然气与石油,1994 [2] 胡灯明.加油站静电事故的机理分析及控制措施[J].储运安全,2007,7 [3] 游佩林.轻质油品安全静止电导率的研究[J].长沙铁道学院学报,1991,6 [4] 孟庆金.石油产品运输中静电的起因与预防[J].技术论文,[5] Keping Sun,Geifei Yu.Sminulation test research on incenntion ESD in tanker cargo[J],2005,6 [6] 孙可平,宋广成. 工业静电[M]. 北京: 中国石化出版社,1994 [7] 王军. 油库、加油站静电引燃爆炸危险及防范[J]. 电气防爆,2003(2): 1-7.
第五篇:油库、加油站场所的雷电及静电安全防护
油库、加油站场所的雷电及静电安全防护
雷电和静电极易引起易燃易爆场所气体的燃烧和爆炸,黄岛油库因雷击引发的灾害,至今历历在目。众所周知,油库、加油站历来都是防十四大防静电的重点。但是从近几年的检测情况看,油库、加油站场所雷电静电的安全防护设施并不完善检测也不规范,还存在着较多隐患。为确保油库、加油站的安全,应该从设计、安装、验收、使用、检测等环节加强防雷防静电工作。
油库、加油站防雷防静电装置存在的常见问题
1.1 新、改、扩建工程项目防雷装置设计未经防雷主管部门审核,竣工未经防雷主客部门验收。
1.2未按规范设计或没有进行防雷防静电设计,施工时现场临时指挥施工队伍施工,没有防雷防静电装置竣工图纸,给以后的维护工作留下严重隐患。
1.3 装置存在的问题。近年来,销售企业收购、租赁、控股了大量油库和加油站,这些油库和加油站中大部分的防雷防静电装置隐患多、设置不规范,还有部分老库、老站由于不能满足新规范要求而且是出现新的隐患。主要表现在:
a)部分油罐、罩棚、电气设备、建(构)筑物等设备设施没有接地,或只有一组接地,不符合《汽车加油加气站设计与施工规范》GB50156-2002、《石油与石油设施雷电安全规范》GB15599-1995和《建筑物防雷设计规范》GB50057-1994等标准,存在遭受直击雷的隐患。
b)接地引下线无断接卡,接地极与引下线焊接,不能对接地电阻进行检测;接地断接卡采用螺栓连接,不加装防松垫片,接地螺帽松动,连接不牢固;有的接地装置长期不维护,断接卡螺栓锈蚀严重,造成接触不良;有的接地引下线断裂,有的接地引下线长达几米水平敷设在地面上,有的用一根接地线串接几个需要接地装置,错误采用串联接法。
c)进出油泵房、污水处理间等生产装置无线接地设施,不能防止感应雷和杂散电流的侵入。
d)油罐接地体距罐体不足3m,没有达到规范的要求的安全距离;油泵房、油罐梯子入口等处没有人体静电释放装置;有的油罐呼吸阀没有设置阻火器,又无避雷针对呼吸阀进行保护。
e)油库、加油站地上或管沟敷设输油管道的始、末端和分支处、拐弯处设置防雷防静电的接地装置不全,接地引下线线径不够,少于5根螺栓连接的输油管道法兰、阀门未用金属跨接线实行等电位连接,跨接接触电阻值大于0.03Ω,跨接线径不够,材质不统一,不能有效消除法兰间和阀门处的放电现象。未对加油站卸油胶管及加油枪胶管的接地泄漏电阻进行测量。
f)加油站未按规范要求安装专为油罐车卸车跨接的静电接地报警仪。仍使用静电夹,接触不良情况大量存在,存在安全隐患。
g)没有采取防雷击电磁脉冲侵入的措施。电源和信息线路未采取屏蔽接地保护,未安装电涌保护器,造成加油机、IC卡系统、液位控制系统等容易遭受雷击电磁脉冲的袭击,使系统损坏失灵。特别是近几年来,油库、加油站大量使用微电子设备,部分油库、加油站防雷功能比较脆弱,在每年的4至9月雷雨季节,总要遭受雷击,导致油库、加油站无法正常生产。
h)未采用共用接地。不符合“加油加气站的防雷接地、防静电接地、电气设备的工作接地、保护接地及信息系统的接地等,宜共用接地装置”的要求。有的加油站卸车接地就在油罐区旁边却单独埋设接地体,而不是与油罐共用一个接地网,实行等电位连接。
1.4 接地电阻测试不规范。接地电阻测试时,不打开接地装置所有断接卡或者只打开部分断接卡进行测试,也没有逐个对接地极进行测试,这种测试接地电阻的方法不正确,测试的接地电阻值是不准确的,有的只进行了一次测量,未进行复测,也未对断接卡的接触电阻进行测量。在实际检测中,检测人员因嫌断开所有断接卡麻烦,不打开或只部分打开断接卡,测试结果数值很低,以为接地很好,但实际是对整个接地装置状况掌握不清,后果是严重的。
1.5 测试记录不规范。只对一个断接卡的接地电阻进行记录,而不是对所有接地极的测量结果进行记录。测试人、复核人、负责人签字不全。解决油库、加油站防雷防静电装置常见问题的措施
2.1 加强油库、加油站建设前期的防雷设计审核工作,从源头上消除雷击隐患。按照有关规定,新、改、扩建工程项目防雷装置设计实行审核制度,经防雷主管部门审核合格后方可进行施工,防雷装置与主体工程同进设计、同时施工、同时投入使用,装置竣工后实行验收制度,未取得验收合格证书不能投入使用。
2.2 防雷防静电工程大部分为隐蔽工程,竣工后应及时绘制防雷防静电接地分布图,详细记录接地点位置、接地体形状、材质、数量和埋设情况。竣工资料存档备查。
2.3 金属油罐必须做环型防雷防静电接地,接地点不应少于两处,其间弧形距离不应大于30m,接地体距罐体的距离应大于3m,油罐的呼吸阀、阻火器、量油孔、人孔、光孔等金属附件必须保持等电位连接。加油站每个埋地卧式油罐的两组接地必须将接地断接卡露出地面,以便进行检测。加油站罩棚及站房一般使用避雷带进行保护,站房房顶的广告牌等金属物应与避雷带相连,金属顶罩棚其金属构件应通过柱筋或敷设扁钢与接地装置相连,为使雷电流分多路引导泄入大地,降低雷电在附近导体或电线、电缆上的感应电势或电流,每个柱子都应作为引下线,但至少不少于两根引下线,距地面合适位置(0.3~0.8m之间)留出断接卡,其外部包裹塑钢板应可靠接地,以防积聚静电。
2.4 所有防雷防静电接地引下线须设断接卡,接地断接卡须暴露在明处,不应埋入水泥、沙子中或地下,断接卡须用2个M10(室内)或2个M12(室外)的螺栓连接并加防松垫片固定。接地应采用并联方式,即每一设备应用单独的接地线与接地体端子或接地干线连接。断接卡与接地线不应水平放置在地面上,断接卡距地面高度为0.3~0.8m之间,断接卡的接触电阻值不大于0.03Ω.2.5 地上或管沟敷设输油管道的始、末端和分支处、拐弯处均应设置防雷防静电的接地装置,接地引下线可采用圆钢、扁钢、多股铜铰线等材料,线径截面积不少于48mm2,少于5根螺栓连接的输油管道法兰、阀门应该用金属跨接线实行等电位连接,跨接线径不小于16mm2,材质可选用多股铜铰线、镀锌扁钢等,在一个区域内应该使用统一材质、规格不小一致。当法兰用5根以上螺栓连接时,法兰可不用金属线跨接,但必须构成电气通路,其法兰之间的电阻值不大于0.03Ω。测试加油站防雷防静电接地电阻时,应对卸油胶管及加油枪胶管的接地泄漏电阻进行测量,以保证胶管两端导通良好。
2.6 加油站油罐车卸车时使用接地装置是否可靠十分重要,卸车时发生静电起火,引起燃烧、爆炸事故时有发生,应该是加油站安全监控重点。目前,国内厂家生产的静电接地仪,能够满足检测跨接线及监视接地装置的要求,投入费用不高,但对保证加油站的安全起到了重要作用,加油站都应该安装卸车静电接地报警仪。
2.7 供配电系统要有重复接地,采用NT-C-S系统。与电柜(箱、盘)、发电机机座、加油机等设备都要实行保护接地,与接地装置可靠相连。
2.8 油库、加油站的供电、IC卡、液位控制等系统应采用铠装电缆或导线穿钢管配线。配线电缆金属外皮两端、保护钢管两端均应可靠与接地装置相连,实现人户前感应雷电流得到释放。
2.9 信息系统的配电线路首、末端与电子器件连接时,应装设与电子器件耐压水平相适应的过电压(电涌)保护器(SPD),供配电系统的电源端应安装与设备耐压水平相适应的过电压(电涌)保护器(SPD),电涌保护器必须有良好的接地,接地装置应和电气设备装置、电源地连在一起形成等电位,接地电阻小于4Ω。目前,有可靠的定型产品供选择。新、改、扩建工程应该在设计阶段充分考虑在电源和信息等系统安装电涌保护等。
2.10 加油站的防雷防静电接地、电气设备工作接地、保护接地、电子系统接地、SPD接地等,宜共用接地装置,其接地电阻不应大于4Ω。
2.11 测量接地电阻的基本步聚:
a)检查、校验仪器。
b)用可燃气体报警仪检查测试场所是否存在可燃气体,确定现场没有其他危险爆炸物品;
c)确认被测设备处于静置状态;
d)测量各断接卡的接触电阻;
e)用防爆工具打开所有断接卡,用ZC-18接地电阻测试仪进行接地电阻测量,在不同方向至少测量2次,取其算术平均值为该点的接地电阻值;
f)所有各点测试完毕后,恢复断接卡,测试恢复后断接卡的接触电阻值,如果大于0.03Ω.需进行处理(使用导电膏等),使断接卡接触电阻小于0.03Ω;
g)记录测试情况及数据。
结束语
从当前销售企业油库、加油站防雷静电装置的设计、施工、安装、检测、维护等环节看,还存在较多不规范的地方,亟待加大工作力度,提高防雷防静电减灾工作认识,规范防雷防静电工作,以确保油库、加油站的安全。