第一篇:线性代数的学习
线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难。
在这门课的学习过程中,你是否也遇到了上课听不懂,一上课就想睡觉,公式定理理解不了,知道了知识但不会做题,记不住等问题。不要怕,线性代数的学习是有章可循的,只要有正确的方法,再加上自己的努力,任何学科都不会“打倒”你。
线性代数是一门对理工科学生极其重要数学学科。线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。”你是不是觉得这好像是在吹,的确,我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用。我只上大二,对线性代数的应用了解的也不多。但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。
没有应用到的内容很容易忘,我现在高数还基本记得,但线代已忘了大半。因为高数在很多课程中都有广泛的应用,尤其第二学期开设的大学物理课。所以,如果有时间的话,要尽可能地到网上或图书馆了解线性代数在各方面的应用。如:《线性代数》(居余马等编,清华大学出版社)上就有线性代数在“人口模型”、“马尔可夫链”、“投入产出数学模型”、“图的邻接矩阵”等方面的应用。也可以试着用线性代数的方法和知识证明以前学过的定理或高数中的定理,如老的高中解析几何课本上的转轴公式,它就可以用线性代数中的过渡矩阵来证明。觉得线性代数难懂和琐碎也跟教学中没有涉及线代的应用有很大关系。
线代是一门比较费脑子的课,所以如果前一天晚上睡得太晚第二天早上的线代课就会变成“催眠课”。那么,请在第二天有线代课时晚上睡得早一点,“卧谈会”开得短一点。如果你觉得上课跟不上老师的思路那么请预习。这个预习也有学问,预习时要“把更多的麻烦留给自己”,即遇到公式、定理、结论马上把证明部分盖住,自己试着证一下,可以不用写详细的过程,想一下思路即可;还要多猜猜预习的部分会有什么公式、定理、结论;还要想一想预习的内容能应用到什么领域。当然,这对一些同学有困难,可以根据个人的实际情况适当调整,但要尽量多地自己思考。
一定要重视上课听讲,不能使线代的学习退化为自学。上课时干别的会受到老师讲课的影响,那为什么不利用好这一小时四十分钟呢?上课时,老师的一句话就可能使你豁然开朗,就可能改变你的学习方法甚至改变你的一生。上课时一定要“虚心”,即使老师讲的某个题自己会做也要听一下老师的思路。
上完课后不少同学喜欢把上课的内容看一遍再做作业。实际上应该先试着做作业,不会时看书,做完作业后再看书。这样,作业可以帮你回忆老师讲的内容,重要的是这些内容是自己回忆起来的,这样能记得更牢,而且可以通过作业发现自己哪些部分还没掌握好。作业尽量在上课的当天或第二天做,这样能减少遗忘给做作业造成的困难。做作业时遇到不会的题可以问别人或参考同学的解答,但一定要真正理解别人的思路,绝对不能不弄清楚别人怎么做就照抄。大学生学习线性代数时留给做题的时间比较少,应该适当多做些题。
线性代数的许多公式定理难理解,但一定要理解这些东西才能记得牢,理解不需要知道它的证明过程的每一步,只要能从生活实际想到甚至朦朦胧胧地想到它的“所以然”就行了。
学习线代及其它任何学科时都要静下心来,如果你学习前“心潮澎湃”就请用一两分钟时间平静下来再开始学习。遇到不会做的题时不要去想“这道题我怎么又不会做”等与这道题无关的东西,一心想题,这样解出来的可能性会大很多。
关于解题思路的问题不是一下子能讲清楚的,《道乐吉学习方法(大学生版)》这本书讲解题思路讲得非常好,而且上面讲的解题方法对各门理科课都适用。我在此只想说做完题后要想想答案上的方法和自己的方法是怎么想出来的,尤其对于自己不会做的题或某个题答案给出的解法非常好且较难想到,然后将这种思路“存档”,即“做完题后要总结”。线性代数作为一门数学,体现了数学的思想。
人们总是在扩展数的范围,复数就是实数的扩展。矩阵是数的扩展,如一个电阻的阻值可以用一个实数来表示,而一个二端口电阻的“阻值”可以用一个2*2矩阵来表示。
数学上的方法是相通的。比如,考虑特殊情况这种思路。线性代数中行列式按行或列展开公式的证明就是从更简单的特殊情况开始证起;解线性方程组时先解对应的齐次方程组,这些都是先考虑特殊情况。高数上解二阶常系数线性微分方程时先解其对应的齐次方程,这用的也是这种思路。
数学讲究和谐。规定0!=1是为了和谐。行列式的计算法和矩阵乘法也是和谐的,线性代数以后的内容中就会体现出这种和谐。
通过思想方法上的联系和内容上的联系,线性代数中的内容以及线性代数与高数甚至其它学科可以联系起来。只要建立了这种联系,线代就不会像原来那样琐碎。
方法真的很难讲,因为篇幅实在有限,而方法包含许多细节的内容很难讲出来甚至我都意识不到,而它们会对学习起很大的作用,要把这些细节都写出来几十万字绝对不够。所以细节上的优化是需要自己来完成的。在此我推荐两本学习方法的书,一本是《道乐吉学习方法(大学生版)》,我理科方面的解题思路就是套这本书的模式,对付较难的题非常管用。另一本是《孙维刚谈全班55%怎样考上北大考上清华》,我所在的中学几乎所有老师的办公室都有这本书。我的“做完题要总结”,“上课想到老师前面”,“注重知识之间的联系”等等方法都来自这本书。看学习方法书一定要将上面的方法应用于实际,把学习方法书当小说看或书上的适合自己的方法应用得不充分,那还不如把学习方法书扔了。
还有,学习方法与现在很畅销的成功学类书上讲的方法是相通的,要掌握好的学习方法也要多看企业战略管理、领导艺术、时间管理、励志等方面的书。
学习效果是效率与时间的乘积,好方法能带来高效率,但如果不下工夫照样学不好。要记住:好成绩是学出来的!说谁不学都考得好那是在胡扯(暂不考虑造成学习不太努力的人学习好的其它细节因素,这些因素不是大部分人现在都具有的)。
以上是我的一些不成熟的观点,不能算介绍经验,只能说是与大家讨论。我关注的东西主要是我没有做到或做好的地方,我能没有意识地做到的地方我就不容易想到也就不容易写出来,但这些没有写出的地方可能对你很重要,所以你可能觉得这篇文章对你作用不大,这也是我这篇文章的问题之一。所以希望大家能尽可能地“找我的麻烦”,即找到我上面所说内容中不完善甚至完全错误或没有涉及到的地方,这样也能帮助我改进我的学习方法。
第二篇:浅谈线性代数学习感想
从线性代数知识内容感想浅谈当代应用
一、前言感想
从大学大一下半学期开始,学校就开设了这门课程,经过一个学期的学习,对其中的一些知识要点也有了深刻的认识与体会。在我的身边,线性代数被不少同学排斥,足见这门课给同学们造成的困难。在这门课的学习过程中,很多同学上课听不懂,一上课就想睡觉{包括我自己},公式定理理解不了,知道了知识但不会做题,记不住等问题。慢慢的,我发现,只要有正确的方法,再加上自己的努力,就可以学好它。一定要重视上课听讲,不能使线代的学习退化为自学。上课时,老师的一句话就可能使你豁然开朗,就可能改变你的学习方法甚至改变你的生。上课时一定要“虚心”,即使老师讲的某个题自己会做也要听一下老师的思路。
当然,说句实话,线性代数给我个人的感觉是要比高数《微积分》要难许多。首先,它涉及到的知识内容有很多,很多都是前后关联的;其次,它其中的定义概念很多,重点知识也要熟记才能够得心应手的应用;第三,概念抽象,很难去理解,只能是通过做题来理解加深印象;最后,计算繁琐,一步错,步步错,需要耐心仔细等等。这些都是个人的一些感受。而我课余为了多加强练习,也从网上找了很多试题来练习等等方法。下面就说说一些个人感觉线性代数的基本应用。
二、当代应用
矩阵。应该说矩阵是一种非常常见的数学现象。从学校的课表、工厂里的生产进度表、价目表、数据分析表等等都可以看到它的影子,它是表述或处理大量的生活、生产与科研问题的有力的工具。矩阵的重要作用主要是它能把头绪纷繁的十五按一定的规则清晰地展现出来,并通过矩阵的运算或变各种换来揭示事物之间的内在联系。
矩阵的初等变化,矩阵的秩,初等矩阵,线性方程组的解。向量组的线性相关,向量空间,向量组的秩等,这些都是线性代数的核心概念。如我们土木老师所说的,通过计算机并广泛应用于解决桥梁设计,交通规划,石油勘探,经济管理等科学领域。
当然,线性代数也应用于自然科学和社会科学中。线性代数在数学、物理学和技术学科中也有各种重要应用,因而它在各种代数分支中占居首要地位;线性代数方法是指使用线性观点看待问题,并用线性代数的语言描述它、解决它(必要时可使用矩阵运算)的方法。这是数学与工程学中最主要的应用之一。
三、结束语
随着学习的深入,我终于渐渐体会到了线性代数的高深。在计算机、工程等各个领域的关联又是如此密切。当然,也不得不佩服老师能把这样一门学科学的精妙,同时又能够传授给学生。老师也已经尽心尽力做了他应该做的事了,尽管我不能把这门学科很好的掌握,但也只能上课用心的去听课,平时多花时间去练习吧。但愿自己期末考试能不挂科,而是稳稳的过吧。还是感谢线代,给我带来了刻骨铭心的心灵启蒙盛宴。
第三篇:线性代数学习总结
线性代数学习总结
----------应化11 王阳(2110904024)
时间真快,一转眼看似漫长的大一就这样在不知不觉中接近尾声。纵观一年大学的学习和生活,特别是在线代的学习过程中,实在是感慨颇多。在此,我就从老师教学和自身学习方面,谈谈自己的一点体会。
老师在教学中,也应该以一些具体的实例入手来教学,如果脱离了实际应用,只是讲抽象的概念和式子,是很难明白的,并且有实例的对照,可以加深记忆理论知识。然后要注重易混淆概念的区别,必要时应该拿出来单独讲讲,比如矩阵和行列式的区别,矩阵只是为了计算线性方程而列的一个数据单而已,并无实际意义。而行列式和矩阵有本质的区别,行列式是一个具体的数值,并且行列式的行数和列数必须是相等的。其实老师在教学过程中,应该学会轻松一点,我不希望看到老师在讲台上讲得满头大汗,而学生坐在下面听得云里雾里的场面,这就需要老师能够精选一些内容讲解,不需要都讲,而其他相关的内容让学生自己通过举一反三就得到就可以了。老师可以自己选一些经典的例子来讲,而不一定要讲书上的例子。然后对于例子中的计算,老师就可以不用算了,多叫学生动动手,增加我们的积极性,并且这样也更能发现问题。再就是线性代数的课时少,这是一个客观存在的原因,所以更要精讲。而不需全部包揽。当然,若果能通过改革,增加课时是最好不过了。这也算一点小小的建议吧。
再者,在自身学习过程中,我想说明的是,大学里的学习是不能靠其他任何人的,只能靠自己,老师只是起到一个引导作用。所以教材是我们最重要的学习资源,如果没有书本,就是天才也不可能学好。总体看来,我们使用的课本题型简单易懂,非常适合初学者学习。但它也有许多的不足之处,就个人在看这本教材时,觉得它举得实例太少了,并且例子不太全面,本来线性代数是一门比较抽象的学科,加上计算量大,学时少,所以要学好它,就只有靠自己在课余时间多加练习,慢慢领悟那些概念性的东西。然后对于教材内容的侧重点,我觉得应该放在线性方程组这一块,因为它是其他问题的引出点,不管是矩阵,行列式,还是矩阵的秩和向量空间,都是为线性方程组服务的。我们对向量组的线性相关性的讨论,还有对矩阵的秩,向量组的秩的计算,都是为了了解线性方程组的解的情况。在线性方程组的求解过程中,我们运用了矩阵的行变换来求基础解系,当然这就相当于求极大无关组。还有对线性相关和线性无关的讨论,这也关系到线性方程组的解。所以在改革中,应该拿线性方程组为应用的实例,来一步一步的解剖概念和定理。当然一些好的、典型的解题方法,也应该用具体的例子来讲解,这是一本教材必须具备的。
当然在学习过程中,我们应该具备能够整体把握老师所讲重点的能力,注意各个章节的联系。数学中的概念往往不是孤立的,理解概念间的联系既能促进新概念的引入,也有助于接近已学过概念的本质及整个概念体系的建立。如矩阵的秩与向量组的秩的联系:矩阵的秩等于它的行向量组的秩,也等于它的列向量组的秩;矩阵行(列)满秩,与向量组的线性相关和线性无关也有一定的联系。知识体系是一环扣一环,环环相连的。前面的知识是后面学习的基础,如用初等变换求矩阵的秩熟练与否,直接影响求向量组的秩及极大无关组,进一步影响到求由向量组生成的向量空间的基与维数;又如求解线性方程组的通解熟练与否,会影响到后面特征向量的求解,以及利用正交变换将二次型化为标准型等。因此,学习线性代数,一定要坚持温故而知新的学习方法,及时复习巩固,为此,老师课前的知识回顾以及学生提前预习是十分必要的。对于后来学的,应该多翻翻书看看前面是怎么说的,往往前面学习的内容是为后面做铺垫的,所以在学了后面的知识后,再看前面的知识,会对前面的知识有一个新的认识,会更好的加深对它的理解和记忆。这一点上老师您做的很好。
然后对于书上花了很大的篇幅写的matlab实验,我觉得这是好事,但是在教学中老师是不会教我们的,因为课时有限,这是情理当中的,但是作为学生,我觉得应该好好地利用书上的资源,单靠做练习的笔头功夫是难以解决实际问题的。
总的来说,在线代的学习过程中,老师你总是能够调节课堂的气氛,让大家在开心的笑声中学习,并穿插着一些为人处事的道理,这都将让我们在以后的生活和工作中受益匪浅。很高兴能在你的班上学习这门课,我想我会永远记住您那一个个宁人忍俊不禁的冷笑话。
第四篇:学习线性代数心得体会
学习线性代数心得体会
线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易.一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。
代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。
二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。
线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。
线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,学习时要注重串联、衔接与转换。
三、注重逻辑性与叙述表述
线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
第五篇:线性代数学习总结
数学四
线 性 代 数 总 结
一、行列式
1.n阶行列式的概念
a11 a12 …… a1n(1)n阶行列式的递归定义a21 a22 …… a2n 有n ^ 2个数组成的n阶列式是一个算式,当……………… n=1时an1 an2 …… ann
la11l=a11。当n≥2时
n
D=a11A11 + a12A12 + … + a1A1n=∑a1j A1j
j=1
其中A1j=(-1)^ 1+ jM1j,为a1j的代数余子式。
a21… a2j-1 a2j+1… a2na31… a3j-1 a3j+1… a3n 为a1j的余子式。……………………an1… anj-2 an j+1… ann
(2)n阶行列式的逆序定义
a11 a12 …… a1n
a21 a22 …… a2n
∑(-1)^σ(i1,i2…in)a1i1 a2i2…anin………………
an1 an2……ann(i1,i2…in)
2.行列式的性质
性质一行列式的行和列互换后,行列式的值不变。
性质二行列式的两行(或两列)互换,行列式改变符号。
推论如果行列式中有两行(或列)的对应元素相同,则此行列式为零。性质三用数k乘以行列式的一行(列),等于以数k乘以此行列式。
推论如果行列式某行(列)的所有元素的公因子,则公因子可以提到行列式外面。
推论如果行列式有两行(或两列)的对应元素成比列,则行列式等于零。推论如果行列式中以行(或一列)全为零,则行列式的值必为零。
性质四如果行列式中的某行(或某列)均为两项之和,则行列式等于两个行列式之和。
推论如果将行列式某一行(或某一列)的每一个元素都写成M(M≥2)个元素的和,则此行列式可以写成M个行列式的和。
性质五将行列式的某一行(列)的每一个元素同乘以数k后加于另一行(列)对应位置的元素上,行列式的值不变。
性质六如果行列式中某行(或列)中各元素是其余各行(或各列)分别乘一常数后各对应元素之和,则行列式的值为零。
性质七行列式的任何一行(或列)的元素于另一行(或列)的对应元素的代数余子式的乘积之和必为零。
ai1Aj1 + ai2Aj2 + … +a1nAjn = 0(i≠j)
3.拉普拉斯展开式
行列式按k行(或列)展开,则c
D = ∑ MiAi(Mi为k阶子式,Ai为k阶代数余子式)
i=1
4. 利用拉普拉斯展开式的两种特殊情况
a11 … a1n0… 0………………………… a11 … a1n an1 … ann0… 0…………c11 … c1nb11 … b1n an1 … ann…………………………
cm1 …cmnbm1 …bmn
0…0a11 … a1n……………………………ann=(-1)^(mn)0…0a n1
c11 … c1nb11 … b1n…………………………cm1…cmnbm1 …bmn
5. 重要公式及结论
b11 … b1n …………… bm1 …bmn
a11 … a1n……………an1 … ann b11 … b1n …………… bm1 …bmn
(1)如果A,B均为n阶矩阵,则lABl = lAllBl,但AB≠BA。(2)如果A,B均为n阶矩阵,则lA±Bl ≠ lAl±lBl。(3)如果A为n阶矩阵,则lkAl = k^n lAl。(4)如果A为n阶矩阵,则lAl = lA´l
(5)如果A为n阶可逆矩阵,则lA¯;¯l =k^n / lAl。(6)如果A*为A的伴随矩阵,则lA*l = lAl^(n-1)
lAl(i = j)
(7)如果A为n阶矩阵,则ai1Aj1 + ai2Aj2 + … +a
0(i≠j)
A C A O O A
(8)O B= lAl lBl ;(-1)^(mn)lAl C B B O
O A
B C
=(-1)^(mn)lAl lBl。
(9)a11X a11Oa22a22
==Oann Xann
=a11 a22 … ann。
Oa1n Oa1n2n-1=a 2n-1=aan1O an1X
a11Oa2
2Oann
Xa1na2n-1
an1O
=(-1)^ [n(n+1)/ 2] a1n a2n-1 … an1。(10)范德蒙行列式
111…1
a1a2a3…an
a1^2a2^2a3^2…an^2=∏(aj – ai)其中(ai≠aj)(i≠j)……………………………1≤i≤j≤n
a1^n-1a2^n-1a3^n-1 … an^n-1
6. 行列式的求值方法
(1)一般行列式的求值方法
将行列式化为上、下三角行列式;
将行列式中一列的其余元素化为零,在按该列展开,不断降阶计算;(2)n阶行列式的求值方法
行列式中较多元素是零时,利用行列式的定义计算;
当各行(或列)诸元素之和相等时,可将各行(或列)加到同一行(或列)中去; 各行(或列)加减同一行(或列)的倍数,适用于可变为三角形式或提取公因子的; 观察一次因式法; 升阶法; 降阶法; 拆项法;
递归法(归纳法);