第一篇:工厂供电课设总结
经过这学期对工厂供电的学习以及经过一周的课程设计,我学到了很多,因此,我做了一些总结。
我认为要做好以下步骤:了解任务要求、计算原始数据、计算无功功率补偿、选择高低压供配电系统、选择变压器、根据选择做出主接线图、计算短路电流、高压设备器件的选择与校验、设计的心得与体会。下面我将一一说明这些步骤的具体做法。第一步 了解任务要求
此步骤只要读懂以及领会课程设计说明书的要求就行了 第二步 计算原始数据
该数据包括课程设计说明书给出的原始数据以及负荷的计算,而负荷的计算包括有功计算负荷、无功计算负荷、视在计算负荷,负荷的计算要根据说明书给出的要求和数据采用哪一种公式,下面将要说一下负荷计算的两种方法。
第一种 按需要系数法确定工厂计算负荷(常用)
1、单组用电设备计算负荷的计算公式: a)有功计算负荷(单位为KW)
P30KdPe=,Kd为系数 Pe为车间设备的总容量
b)无功计算负荷(单位为kvar)
Q30= P30tan
c)视在计算负荷(单位为kvA)
P30S30cos=
d)计算电流(单位为A)S30I30=3UN, UN为用电设备的额定电压(单位为KV)
2、多组用电设备计算负荷的计算公式: a)有功计算负荷(单位为KW)
P30=KpP30i
式中P30i是所有设备组有功计算负荷P30之和,Kp是有功负荷同时系数,可取0.85~0.95 b)无功计算负荷(单位为kvar)
Q30=KqQ30i,Q30i是所有设备无功Q30之和;Kq是无功负荷同时系数,可取0.9~0.97 c)视在计算负荷(单位为kvA)
d)计算电流(单位为A)I30=
S303UN
22Q30S30=P30
第二种按二项式法确定计算负荷(不常用)
1、单组用电设备计算负荷的计算公式:
P30=bPe+cPx Pe=用电设备组总容量;Px=X台最大容量的设备总容量;b、c为二项式系数(见附表1)
2、多组用电设备计算负荷的计算公式:
考虑各组用电设备的最大负荷不同时出现的因素在各组用电设备中取其中一组最大的附加负荷(cPx)max,再加各组的平均负荷bPe。
P30(bPe)i(cPx)max
Q30(bPetan)i(cPX)maxtanmax 第三步 计算无功功率补偿
无功功率的人工补偿装置:主要有同步补偿机和并联电抗器两种。由于并联电抗器具有安装简单、运行维护方便、有功损耗小以及组装灵活、扩容方便等优点,因此并联电抗器在供电系统中应用最为普遍。
《供电营业规则》规定:100KVA及以上高压供电的用户其功率因数应达到0.9以上,其它电力用户的功率因数应达到0.85以上。工厂的功率因数:瞬时功率因数:平均功率因数:cosWP2WpWq2cosP3UI;
;
30/cos30 最大负荷功率因数:cosP30''QQQP(tantan)'PC303030无功补偿容量:;cos=
S'30
确定电抗器个数:
nQC/qC;
'Q无功补偿后的工厂计算负荷:30Q30QC
'S3022P30(Q30QC)
I'30'S303UN
电力变压器的功率损耗按照下式近似计算:
PS30QT0.06S30 T0.015根据变压器低压侧补偿后的计算负荷和变压器的功率损耗求出变压器高压侧的计算负荷,这样就可以根据容量来选择主变压器。第四步
选择高低压供配电系统
为了保证供电的安全、可靠、优质、经济,选择导线和电缆时应满足下列条件:发热条件、电压损耗条件、经济电流密度、机械强度。
根据设计经验:一般10KV及以下的高压线路和低压动力线路,通常先按发热条件选择导线和电缆截面,再校验其电压损耗和机械强度。对于低压照明线路,因对电压水平要求较高,通常先按允许电压损耗进行选择,再校验其发热条件和机械强度。对长距离大电流线路和35kV及以上的高压线路,则可先按经济电流密度确定经济截面,再校验其他条件。
高压线路导线的选择:根据上面的设计经验以及课程设计说明书的要求并参考课本给出的电缆型号来选择导线。
低压线路导线的选择:通常先按允许电压损耗进行选择,再校验其发热条件和机械强度。
下面说一下选择导线和电缆截面的条件(发热条件、电压损耗条件、经济电流密度、机械强度)的计算
一、按发热条件选择导线和电缆截面
导线和电缆在通过正常最大负荷电流即计算电流时产生的发热温度,不应超过其正常运行时的最高允许温度。
1、三相系统相线截面的选择
其允许载流量不小于通过相线的计算电流,即:IalI30 如果环境温度偏差较大时,考虑温度校正系数:导线允许载流量可查课本附表16、17、18
2、中性线(N线)截面的选择
K'al0al0
A0.5AAA;三相四线制中性线:0两相三线及单相线路:0
3、保护线(PE线)截面的选择
;
保护线要考虑三相系统发生单相短路故障时单相短路电流通过时的短路热稳定度,截面不同要求不同。当A16mm2时:APEA;
当16mm2A35mm2时:APE16mm2;
2A35mm当时:APE0.5A;
4、保护中性线(PEN线)截面的选择
保护中性线兼有保护线和中性线的双重功能,因此PEN线截面选择应同时满足上述PE线和N线的要求,取其中的最大截面。
二、按经济电流密度选择截面
导线或电缆的截面越大,电能损耗越小,但是线路投资、维修管理费用和有色金属消耗量都要增加。
AecI30jec经济电流密度可查课本表格 经济截面:35kV及以上的高压线路及35kV以下的长距离、大电流线路例如较长的电源进线和电弧炉的短网等线路,其截面宜按经济电流密度选择。
三、线路电压损耗的计算(根据损耗选择截面)
导线和电缆在通过正常最大负荷电流时产生的电压损耗,不应超过其正常运行时允许的电压损耗。一般线路允许损耗不超过5%。
1、集中负荷三相线电压损耗计算 电压损耗:U(PrQx)UN
U(pL)AUN对于无感线路:cos1
2、均匀分布负荷的三相线路电压损耗的计算
U3IR0(L1L2)2
四、按机械强度选择截面
导线和电缆截面不应小于其最小允许截面,可按附录表14和表15来选择。第五步 选择变压器
1、主变压器台数的选择
满足用电负荷对供电可靠性的要求;对季节性负荷或昼夜负荷变动较大,采用经济运行方式;一般车间变电所采用一台;应考虑欠负荷的发展,有一定余地。
变压器台数应根据负荷特点和经济运行进行选择。当符合下列条件之一时,宜装设两台及以上变压器:有大量一级或二级负荷;季节性负荷变化较大;集中负荷较大。
2、变电所主变压器容量的选择
装设一台主变压器:SN.TS30
SN.T(0.6~0.7)S30 装设两台主变压器:SN.TS30(12)
装设两台及以上变压器时,每台变压器的容量SNT应同时满足以下两个条件:
(1)暗备用条件:任一台变压器单独运行时,宜满足:SNT(0.6~0.7)S30;
(2)明备用条件:任一台变压器单独运行时,应满足:SNTS30(III),即满足全部一、二级负荷需求。
车间变电所单台变压器容量上限:1000KVA或1250KVA 电力变压器并列运行条件:变压器的一、二次额定电压必须对应相等;变压器的阻抗电压(短路电压)必须相等;变压器的连接组别必须相同;变压器的容量尽量相同或相近,最大容量与最小容量之比不超过3:1。
3、型号的选择
根据所选变压器的容量、台数和计算负荷的要求来选择变压器的型号,当然要选择课本所给出以及在网上可以查出来的变压器的型号。
第六步 做出主接线图
工厂变配电所主接线的基本要求:安全、可靠、灵活、经济。主接线图绘制形式:系统式主接线图、装置式主接线图。
要想画出课程设计中的接线图还需要根据课本来画,要弄明白课本第四章第七节的主接线图,画图时要注意课本以及课设中画主接线图的要求。
要弄明白高压配电所的主接线图,车间和小型工厂变电所的主接线图以及工厂总降压变电所的主接线图(重要)是哪一种绘图形式,画图时要明白各种高压设备和各种低压设备的应用位置,不能瞎用,当然,画图需要用AutoCAD来画主接线图,需要熟练的掌握AutoCAD画图技巧。
第七步 计算短路电流
短路的形式有三相短路、两相短路、单相短路、两相接地短路。一般来说,我们所求的短路电流是无限大容量电力系统中的短路电流,一般求得是三相短路电流,下面将要说一下短路电流的计算过程以及计算方法。
短路电流计算过程:绘出计算电路图、元件编号、绘等效电路、计算阻抗和总阻抗、计算短路电流和短路容量。
短路电流的计算方法: 欧姆法、标幺制法,这两种方法要根据课程设计说明给出的要求以及数据来确定用哪一种方法。下面说一下这两种方法具体的计算过程。
一、采用欧姆法进行三相短路计算
(3)IKUC3RX22计算公式:
(3)(3)SK3UCIK
X/3≥R时,可忽略R;R/3 ≥ X时,可忽略X
计算高压短路时电阻较小,一般可忽略。
1、电力系统的阻抗计算
XS2UCSOC
电力系统的电阻相对于电抗很小,不予考虑。
2、电力变压器的阻抗计算
PK(SN2UC2)RTRTP()KUNSN;电阻: 短路损耗: 电抗:XT2UK%UC100SN
3、电力线路的阻抗计算
RWLR0lXWLX0l
R0和Xo为电力线路每相的单位长度电阻和电抗平均值,其值可根据课本中给出的表格来对应。
4、阻抗换算(有变压器时)
电路内各元件的阻抗都必须按照短路点的短路计算电压统一换算,换算的条件是元件功率损耗不变。
''UU'C2RR()X'X(C)2UCUC
二、标幺制法进行三相短路电流计算
基准容量: Sd100MVA(可以任意选取,一般取100MVA)基准电压: UdUc(通常取短路计算电压)基准电流:基准电抗:IdSd3UdSd3UC
Xd2UdUCSd 3IDX元件标幺值:电力系统电抗标幺值:
TS2XSUC/SOCSd2XdUC/SdSOC;
22XTUK%UCUCU%SdX/KXd100SNSd100SN电力变压器电抗标幺值:
XWL;
XWLXOlSdXlO22XdUC/SdUC; 电力线路电抗标幺值:
短路电流标幺值及短路电流计算:
2(3)U/3XUI1(3)IKKCCIdSd/3UCSdXX(3)(3)*IKIKIdId*X''(3)
(3)(3)(3)IishIsh(3)IK根据可以计算出I三相短路容量:
(3)SK(3)3IKUC3IdUcSd**XX
两相短路电流的计算:
(2)IKUC(2)(3)2ZIK/IK3/20.866
单相短路电流的计算:大接地电流系统、三相四线制系统发生单相短路时(1)IKZ13UZ2Z3(1)IK(要考虑正序、负序、零序阻抗)
UZ0工程中简单计算 :
单相短路回路的阻抗:
Z0(RTR0)2(XTX0)2
在无限大容工程中简单计算 量系统中,两相短路电流和单相短路电流均比三相短路电流小,电气设备的选择与校验应采用三相短路电流,相间短路保护及灵敏度校验应采用两相短路电流,单相短路电流主要用于单相短路保护的整定热稳定度的校验。第八步 高压设备器件的选择与校验
根据电压、电流、断流能力和短路电流校验动稳定度与热稳定度来选择型号以及判断高压高压设备器件是否符合要求,高压设备器件与低压设备器件要根据课本第四章第三、四节给出的表格来选择与校验器件。
第九步 课程设计的心得与体会 我相信经过一学期以及一周的课程设计,每个人对这门课都有着不同的心得与体会,每个人都学到了知识和对这门课程有着自己独特的见解,当然,我们也可以写这门课程在我们今后的生活与学习中的作用,到了这一步,每个人都可以畅所欲言。
第二篇:模电课设范文
模拟电子技术课程设计——小型模拟电子系统设计与制作,参考题目如下:
1.多路输出直流稳压电源的设计与制作
要求设计制作一个多路输出直流稳压电源,可将220V/50HZ交流电转换为多路直流稳压输出:+12V/1A,-12V/1A,+5V/1A,-5V/1A,+5V/3A及一组可调正电压。
2.高保真音频功率放大器的设计与制作
要求设计制作一个高保真音频功率放大器,输出功率10W/8Ω,频率响应20~20KHZ,效率>60﹪,失真小。
3.函数发生器的设计与制作
要求设计制作一个方波-三角波-正选波发生器,频率范围 10~100 Hz,100 Hz~1 KHz,1KHz~10 KHz;正弦波Upp≈3v,三角波Upp≈5v,方波Upp≈14v,幅度连续可调,线性失真小。
4.水温控制系统的设计与制作
要求设计制作一个可以测量和控制温度的温度控制器,测量和控制温度范围:室温~80 °C,控制精度 ± 1 °C,控制通道输出为双向晶闸管或继电器,一组转换接点为市电220v,10A。
5.双工对讲机的设计与制作
采用集成运放和集成功放及阻容元件等构成对讲机电路,实现甲、乙双方异地有线通话对讲;用扬声器兼作话筒和喇叭,双向对讲,互不影响;电源电压+9v,功率≤0.5W,工作可靠,效果良好。
第三篇:数电课设
课程设计(论文)
课程名称: 数字电电子技术基础 题 目: 设计任意模值计数器 院(系): 信息与控制工程系 专业班级:电子信息科学与技术1202班 姓 名: *** 学 号: 201206030226 指导教师: ***
2015年 1月 9日
摘 要
计数器作为一种工具出现在我们生活中的各种场合。这次课程设计中我们利用两块74LS160与一些门电路异步级联构成一个模100 的计数器,再用清零法实现60进制的计数器 通过对60进制计数器的设计使我将以前所学的理论知识运用到实际中去,使用Multisim11.0软件进行仿真,使我找到了很多以前没有完全理解的知识,通过多次查找资料,了解了大量的关于计数器的知识。通过导教师指导下完成60进制计数器设计任务,编写符合要求的设计说明书,并正确绘制相关图表。在课程设计中,应综合运用多种学科的理论知识与技能,分析并解决课程设计上的问题。通过这次课程设计了解到了74LS160芯片功能以及其连接方式。用其做出的计数器满足我们初始要求的条件。
关键词:计数器,74LS160,仿真
目 录
1设计任务………………………………………第1页 3电路设计………………………………………第4页 4整体电路图仿真测试及性能检测……………第4页 5收获与心得……………………………………第6页 6参考书目………………………………………第8页
设计任意模值的计数器
1.设计任务
用74LS160实现六十进制计数器,并用逻辑分析仪观测输出、进位输出和时钟脉冲。设计目的
熟悉同步计数器的工作原理
掌握同步计数器的应用
2.设计方案
2.1 设计论证
2.1.1 计数器
计数器不仅能用于对时钟脉冲的技术,还可以用于分额、定时、产生节拍脉冲和脉冲序列以及进行数字运算等。
计数器种类非常繁多。按计数器中的触发器是否同时翻转分类,可以讲计数器分为同步式和异步式两种。在同步计数器中,当时钟脉冲输入时触发器的翻转是同时发生的。而在异步计数器中,触发器的翻转有先有后,不是同时发生的。
按计数过程中计数器的数字增减分类,又可以将计数器分为加法计数器、减法计数器和可逆计数器。随着计数器脉冲的不断输入而作递增计数的称为加法计数器,作为递减计数的称为减法计数器,可增可减的成为可逆计数器。
按计数器的编码方式分类,还可以分成二进制计数器、二-
十进制计数器、格雷码计数器等 2.1.2 异步时序电路
电路特点是所有触发器的CP端不使用同一时钟脉冲信号源,即各触发器状态是异步完成的由于各触发器没有使用相同的时钟信号,因此,每次电路状态发生转换时并不是所有触发器状态都发生变化,只有那些有时钟信号到达的触发器才会发生状态变化,因此,在分析脉冲异步时序电路时,需要找出每次电路状态转化是那些触发器有时钟信号,那些触发器没用时钟信号 2.1.3 74LS160 74LS160是一个具有异步清零、同步置数、可以保持状态不变的四位十进制上升沿计数器。
这种同步可预置十进计数器是由四个D型触发器和若干个门电路构成,使得当计数使输入和内部门发出指令时输出变化彼此协调一致而实现同步工作。这种工作方式消除了非同步(脉冲时钟)计数器中常有的输出计数尖峰。缓冲时钟输入将在时钟输出上升沿触发四个触发器。这种计数器是可全编程的,即输出可预置到任何电平。当预置是同步时,在置数输入上将建立一低电平,禁止计数,并在下一个时钟之后不管使能输入是何电平,输出都与建立数据一致。清除是异步的(直接清零),不管时钟输入、置数输入、使能输入为何电平,清除输入端的低电平把所有四个触发器的输出直接置为低电平。
2.2 设计思路
1)每隔1s,计数器增1;能以数字形式显示时间。
2)当定时器递增到59时,定时器会自动返回到0显示,然后继续计时。
3)本设计主要设备是两个74LS160异步十进制计数器,并且由300HZ,5V电源供给。
2.3 设计方案
本电路采用两块74LS160通过异步级联构成模100计数器,然后用清0法实现60进制计数器。74LS160是一个具有异步清零、同步置数、可以保持状态不变的十进制上升沿计数器。
使用300HZ,5V电源作为计数器的输入信号。根据设计基理可知,计数器初值为00,按递增方式计数,增到59时,再自动返回到00。此电路可以作为简易数字时钟的分钟显示。
在60进制的10位部分我们用一个74LS160做6进制计数器因为六进制计数器的有效状态有六个,而十进制计数器的有效状态有十个所以用十进制计数器构成六进制计数器时,我们只需保留十进制计数器的六个状态即可。74LS160的十个有效状态是BCD编码的,即0000、0001、0010、0011、0100、0101、0110、0111、1000、1001因为74LS160从1001变化到0000时,将在进位输出端产生一个进位脉冲,所以我们保留了0000和1001这两个状态后,我们就可以利用74LS160的进位输出端作为六进制计数器的进位输出端了。于是,六进制计数器的状态循环可以是0000、0001、0010、0011、0100和1001,也可以是0000、0101、0110、0111、1000和1001。我们不妨采用0000、0001、0010、0011、0100和1001这六个状态用一个混合逻辑与非门构成一个译码器74LS160的状态为0100时,与非门输出低平,这个低电平使74LS160工作在预置数状态,当下一个时钟脉冲到来时,由于等于1001,74LS160就会预置成1001,从而我们实现了状态跳跃。
3.电路设计
用两块74LS160、与非门、5V 300HZ 电源、指示器连接构成电路图如图1
图1设计60进制电路图
4.整体电路图的仿真测试及性能检测
1仿真电路元件放置
1)进入Multisim11.0界面(图2)
图2 Multisim11.0界面
2)右键点击空白处,选择放置零件,进入元件放置界面,选择合适的零件放置
3)依次放置元件 得到下面电路(图3)
图3 电路图仿真
4)确认没有错误,后点击仿真按钮,实现对电路的仿真 5)观察结果与理论分析的预测结果是否一致
图4 仿真结果最大值
图4 仿真结果最小值
2性能指标测量及记录
图5 逻辑分析仪结果图
5.收获与心得体会
这两个星期的课程设计,在设计中我们运用课程所学知识,查阅资料 找寻论证在老师的帮助下完成了这次课程设计 本设计具有直观的图形界面。整个操作界面就像一个电子实验工作台,绘制电路所需的元器件和仿真所需的测试仪器均可直接拖放到屏幕上,轻点鼠标可用导线将它们连接起来,软件仪器的控制面板和操作方式都与实物相似,测量数据、波形和特性曲线如同在真实仪器上看到的。它们利用仿真产生的数据执行分析,分析范围很广,并可以将一个分析作为另一个分析的一部分的自动执行。兼容性好的信息转换,提供了转换原理图和仿真数据到其他程序的方法,本设计原理简单,结构清晰,较为容易仿真成功。
从本次课程设计中使我获益匪浅,首先使我们对数电这门课程有了更深的体会,通过这次课程设计使我了解到我们学的只是最简单的数字电路。通过对60进制计数器的设计使我们将以前所学的理论知识运用到实际中去,使用Multisim11.0软件进行仿真,使我们找到了很多以前没有完全理解的知识,通过再次查找资料,我们又学会了很多。在实际的操作过程中,能把理论中所学的知识灵活地运用起来,并在调试中会遇到各种各样的问题,电路的调试提高了我们解决问题的能力,学会了在设计中独立解决问题,也包括怎样去查找问题。
通过这次课程设计我学习到对问题的处理 解决问题的方式 提高了我们对电路的认识,使我们在以后的设计中有一种严谨的态度,遇到问题时不慌不乱,查阅资料解决问题。认识到电路的深奥 参考书目:
1.杨颂华,冯毛官等.数字电子技术基础[M].西安电子科技大学出版社,2009.2.尹勇,李林凌.Multisim电路仿真入门与进阶[M].北京:清华大学出版社,2005.3.黄智伟,李传琪等.基于Multisim 2001的电子电路计算机仿真设计与分析 [M].北京:电子工业出版社,2004.4.王泽保,赵博.数字电路典型实验范例剖析[M].北京:人民邮电出版社,2004.5.阎石,数字电子技术基础,高等教育出版社,2004.
第四篇:数电课设报告
数电计数报警器课设报告
摘要:利用数字电子技术基础知识设计一个计数报警器,该计数报警器的设计采用的元件主要有译码器74LS247、十进制计数器74LS192、555组成的单稳态触发器。该计数报警器计数最大值是99,当计数溢出时放出声光报警,报警时间为10秒,计数脉冲由按钮和555组成的单稳态触发器产生。
关键词:555定时器; 计数器; 触发器; 译码器; 数码管
1、课题设计背景
1.1 了解数字电路系统的定义及组成
数字电路系统一般包括输入电路、控制电路、输出电路、时钟电路和电源等。输入电路主要作用是将被控信号转换成数字信号,其形式包括各种输入接口电路。比如数字频率计中,通过输入电路对微弱信号进行放大、整形,得到数字电路可以处理的数字信号。模拟信号则需要通过模数转换电路转换成数字信号再进行处理。在设计输入电路时,必须首先了解输入信号的性质,接口的条件,以设计合适的输入接口电路。
1.2 掌握时钟电路的作用及基本构成
时钟电路是数字电路系统中的灵魂,它属于一种控制电路,整个系统都在它的控制下按一定的规律工作。时钟电路包括主时钟振荡电路及经分频后形成各种时钟脉冲的电路。比如多路可编程控制器中的 555 多谐振荡电路,数字频率计中的基准时间形成电路等都属于时钟电路。设计时钟电路,应根据系统的要求首先确定主时钟的频率,并注意与其他控制信号结合产生系统所需的各种时钟脉冲。
2、设计任务目的和要求
2.1 设计任务:
设计一个到计数达99时报警的计数报警器
2.2 设计要求:
A、设计一个计数报警器; B、计数最大值为99;
C、计数达到最大时发出声光报警信号,报警时间长度为10秒,报警信号用红色 1 LED表示;
D、计数脉冲用按钮产生。
3、设计方案选取
经过任务分析可得,本设计用到两片74LS192组成100进制计数,用两片74LS47来驱动两个七段共阳极数码管,需要一个电平开关作为手动脉冲控制,计数的次数由数码管显示。需要一片555定时器若干电阻、电容,构成多谐振荡器,然后用555定时器组成多谐振荡器电路产生10秒脉冲驱动扬声器和LED,以此来产生报警信号。
用两片74LS192级联实现100进制计数,其中第一片74LS192的进位溢出接到第二片74LS192的计数端,把第二片的进位溢出接到由555定时器构成的多谐振荡器的输入端,当计数达到99后由于第二片进位溢出从而触发由多谐振荡器构成的电路,由其输出10秒的脉冲来驱动扬声器和LED产生报警,其中报警时间10秒有RC决定,经过计算要选择合适的电阻和电容。其中数码管的驱动电流大概为10mA左右,选择合适的限流电阻。电路结构框图如图1所示。
图1 电路结构框图
4、方案论证
4.1 74ls192和74ls247的引脚和功能
(1)首先介绍74LS192的引脚和功能,如图2所示
①管脚1、9、10、15分别对应输入D0、D1、D2、D3,可以给这四个引脚接高电平或者低电平来实现置数;
②管脚2、3、6、7分别对应芯片的输出端,可以直接接7端数码管译码器;
③管脚4为减计数时钟输入端; ④管脚5为加计数时钟输入端; ⑤管脚8为接地端;
⑥管脚11为预置数输入端,并且为异步预置,接0时置数,用做加计数或减计 数时,必须接1;
⑦管脚12为进位输出,1001状态后负脉冲输出;
⑧管脚13为借为输出,0000状态后负脉冲输出;
⑨管脚14为异步清零端,高电平有效; ⑩管脚16接电源。
表1 74LS192的逻辑功能表
图2 74LS192的管脚图
根据对电路分析可得,需要实现100进制计数,而74LS192计数器是十进制计数器,所以要用两片级联构成100进制。因此,需要第一片的第12管脚进位输出端接到时钟电路的第2管脚低触发端;第一片的借位输出端悬空;第一片第14管脚异步清零端接到第二片的异步清零端;将第二片的第12管脚进位输出端接到第一片的第5管脚加计数时钟输入端;第二片的第13管脚借位输出端接到第二片的第11管脚异步预置数输入端。从而实现两片74LS192的级联。(2)显示电路主要由两个74LS247译码器和两个七段共阳极数码管组成,用来显示计数电路的输出。数码管分别接到两个译码器的输出端;每当按下按钮后,就会产生一个脉冲,经过译码器到达数码管后,数码管就能显示出相应的数字,能从0显示到99,到达99后,再来一个脉冲数码管就会变为0,红色LED开始报警,报警时间持续10秒。
74LS247是一种BCD代码输入的四线-七段译码器,下面先介绍74LS47的引脚及功能。它的管脚排列如图3所示。
①管脚1、2、6、7表示显示译码器BCD代码的电平输入端;
②管脚9、10、11、12、13、14、15表示输出的7位二进制代码,可以直接接7端数码管,并规定用1表示数码管中线段的点亮状态,用0表示线段的熄灭状 态;
③管脚3表示灯测试输入端,当它为0时,便可使被驱动数码管的七段同时点亮,显示8字,以检查该数码管各段能否正常发光。平时应置/LT为高电平。
④管脚4为灭灯输入/ 灭零输出端,这是一个双功能的输入/输出端,当它用作输入端使用时,称为灭灯输入控制端。只要加入灭灯控制信号/BI=0,无论管脚1、2、6、7的状态是什么,定可将被驱动数码管的各段同时熄灭,当/BI=1时,显示器各段才根据输入译码输出;当它作为输出端使用时,成为灭零输出端,为相邻位提供灭零输入信号。
⑤管脚5表示灭零输入,可以把不希望显示的零熄灭,当/RBI=0时,若输入DCBA=0000,则输出不显示0,若输入为其他代码,则照常显示。将灭零输入端和灭零输出端配合使用,即可实现多位数码显示系统的灭零控制。
⑥管脚8为接地端;
⑦管脚16接电源。
表2 74LS247七段显示译码器的真值表
图3 74LS247管脚图
分别将两片74LS247译码器的输出端接到两片七段共阳极数码管的输入端,74LS47输入端接74LS192的输出端。两片74LS247译码器与两片七段共阳极数码管之间各接一个阻值为330Ὡ的电阻,起到保护数码管的作用。4.2 发光二极管的连接 LED产品的种类繁多,有共阴极电路,还有共阳极电路。本次设计采用共阳极电路。如图4所示
图4 数码管共阳极接法
4.3 555定时器的连接
报警电路主要由555定时器、红色发光二极管、蜂鸣器和若干电阻、电容构成,555定时器是一种多用途的数字-模拟混合集成电路,利用它能很方便地构成施密特触发器、单稳态触发器和多谐振荡器。双极性CB555由比较器C1和C2、SR锁存器和集电极开路的放电三极管TD组成。555定时器能在很宽的电源电压范围内工作,并可以承受较大的负载电流。双极性555定时器的电源电压范围为5-16ν,最大的负载电流达200mA。
555定时器的管脚排列图如图5所示。①管脚1表示接地端; ②管脚2表示低触发端;
③管脚3表示输出端;
④管脚4表示是直接清零端,当接低电平,则电路不工作,此时不论TR、TH是高电平还是低电平,电路输出为“0”,该端不用时应接高电平;
⑤管脚5表示电压控制端,若此端外接电压,则可改变芯片内部两个比较器的基准电压,当该端不用时,应将该端串入一只0.01μF电容接地,以防引入干扰;
⑥管脚6表示高触发端;
⑦管脚7表示放电端,该端子与放电管的集电极连接在一起,可以作为定时器电容的放电。
⑧管脚8表示接电源。
图5 555定时器的管脚图 图6 时钟电路原理图
如图6所示电路中,电路的振荡周期为T=T1+T2=(R1+2R2)C ln2,振荡频率为f=1/T=1/(R1+2R2)Cln2,Vcc=5v可以满足对输出脉冲幅度的要求,,由式T=(R1+2R2)Cln2=1,ln2=0.69,取电容C=100uF代入上式得,R18、R17分别90kΩ和330Ω,经过计算在占空比符合要求的同时,算得的数据也在误差允许的范围内。
当电路进行仿真时,当计数器达到99时,这时LED开始发光报警,这个过程维持10秒左右。
5、电路设计
首先根据前面所述74LS192的功能,将两片74LS192连成一百进制计数器,使输出能显示从0到99,并且具有清零功能; 其次根据计算分析的结果为各个电阻和电容选取适当值,为各个开关设置好适当的键盘打开数值连接; 再次根据74LS247的功能,分别将两片74LS247连接到两片74LS192的相应端口,然后将两个七段共阳极数码管分别于两片74LS247相连,按照总体电路图在仿真软件proteus上一一选择芯片并进行连接,通过按钮产生脉冲,计数达到最大99时,电路开始报警,报警时间为10秒,同时伴随着二极管发光。
6、电路仿真
进入仿真状态后,当按动脉冲开关时,数码管可以显示00至99之间的所有数值,当数码管显示99时,LED灯发光,并且持续亮10秒,所以电路的设计是 正确的。如图7所示是电路仿真图。
图7 电路仿真图
7、制作及调试过程
在安装器件之前,首先要按照清单检查有无缺少器件,然后按照图开始安装器件,特别要注意不能把芯片装反然后开始焊接,要搞清楚各个芯片的引脚,再根据芯片内部引脚图接线焊接,焊的时候要非常小心,因为有的地方线非常细,一不注意线就容易断,还应尽量避免虚焊。焊好之后,按照电路图逐一检查电路有没有漏焊的问题,接下来用万用表逐一检查有没有虚焊或线路断路或线路短路。在线路没有问题的情况下连接电源调试,之后用电源逐个模块进行检查。加入电压后,电路不能正常工作,然后就开始检查,最后发现有几根线在焊接的时候被焊断了,经过一上午的调试终于可以正常工作了。
8、结论
电路进行仿真后,能够满足设计的要求,利用两片74LS192级联构成计数电 7 路,用两片74LS47和两个七段共阳极数码管构成显示电路,用555定时器和红色LED构成报警电路。经过仿真,我们得到计数能从0到99,将计数电路的输出与显示电路的输入相连,数码管就能显示出输出的数字;利用555定时器、电阻、电容来设计报警电路。经过仿真,并利用示波器观察波形,得到了一个多谐振荡器,其频率是1Hz;计数达到最大99后,红色二极管开始发光报警,时间为十秒,电路可以正常工作。同时通过本次实验,让我掌握了proteus软件,用其仿真电路原理。
9、致谢
在这1周的学习与实验中,我感觉有了很大的收获:首先,通过实验及查阅相关资料使自己对课本上的知识有了更深的掌握,更好的理解,使自己的理论知识与实际相结合,同时实验也增强了我个人的动手能力。对我们学生来说,理论与实际同样重要,这是我们以后在工作中说明自己能力的一个重要标准。另外,针对设计中出现的问题,通过查资料和请教老师,得到解决后,更增加了自己设计的信心。实际与理论同样重要,这次课程设计对我无论是以后的工作还是学习都有莫大的帮助。在将原理图导入到万能板中,进行一项比较复杂的工作,就是布线了。在我一个新手看来布线是这次设计中比较复杂的,因为布线好像没有规律可寻,全部靠自己的经验,但是经过这次的实践,我深信将会为以后的课设研究打下一定的基础。
致谢指导老师们:在实习中,我感受到了老师对学生的那种诲人不倦的精神,固定时间和课余时间,老师给我们指导,使我们少走弯路,顺利完成实习任务,在这里我真诚地感谢我的指导老师!最后再说一句:老师们,你们辛苦啦!
10、参考文献
[1]童诗白.模拟电子技术基础[M].北京:高等教育出版社,2005.[2]臧春华.电子线路设计与应用[M].北京:高等教育出版社,2005.[3]邱关源 罗先觉.电路(第五版)[M].北京:高等教育出版社,2006.[4]阎 石.数字电子技术(第五版)[M].北京:高等教育出版社,2005.[5]张阳天 韩异凡Proteus电路设计[M].北京:高等教育出版社,2005.
第五篇:数电课设报告
课程设计任务书
学生姓名:姓名专业班级:电信1204
指导教师:曾 刚工作单位:信息工程学院
题目:加减法运算电路
初始条件:
具备电子电路的基础知识和设计能力;具备查阅资料的基本方法;熟悉常用的电子器件;熟悉电子设计常用软件的使用;
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)
1、设计并行加减运算电路;
2、led灯显示结果,按键控制运算模式;
3、内部具有两个寄存器;
4、掌握数字电路的设计及调试方法;
5、撰写符合学校要求的课程设计说明书。
时间安排:
时间一周,其中2天原理设计,3天电路调试
指导教师签名:年月日
系主任(或责任教师)签名:年月日
摘要(黑体小二号字)
叙述部分宋体小四号字
关键词:2到3个,用分号隔开
目录(黑体小二)
(ps:下边的题目是我的,你们把你们的每部分题目更换进去就行了)
1.概述···························································2
2.设计原理
2.1.设计原理框图············································3
2.2.设计原理说明············································3
3.电路设计
3.1.寄存器电路设计·········································4
3.2.加法电路设计············································4
3.3.减法电路设计············································7
3.4.译码显示电路设计·······································8
4.电路仿真及调试
4.1.电路仿真总图···········································10
4.2.加法仿真结果图········································10
4.3.减法仿真结果图········································10
5.心得体会····················································12 参考文献