高等数学教学总结

时间:2019-05-12 08:23:40下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高等数学教学总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高等数学教学总结》。

第一篇:高等数学教学总结

高等数学教学工作总结

本学期我担任本科金融专业的高等数学教学工作,一学期来,我自始至终以认真、严谨的治学态度,勤恳、坚持不懈的精神从事教学工作。作为任课教师,我能认真制定计划,注重教学理论,认真备课和教学,积极参加教研组活动和学校教研活动,上好每一节课,并能经常听各位优秀老师的课,从中吸取教学经验,取长补短,提高自己的教学的业务水平。还注意多方面、多角度去培养学生的分析能力。

现将本学期的教育教学工作总结如下:

(一)主要工作:

一、加强师德修养,提高道德素质 过去的一个学期中,我认真加强师德修养,提高道德素质。认真学习教育法律法规,严格按照有事业心、有责任心、有上进心、爱校、爱岗、爱生、团结协作、乐于奉献、勇于探索、积极进取的要求去规范自己的行为。对待学生做到:民主平等,公正合理,严格要求,耐心教导;对待同事做到:团结协作、互相尊重、友好相处;对待自己做到:严于律已、以身作则、为人师表。

二、加强教育教学理论学习

能积极投入到课改的实践探索中,认真学习,加快教育、教学方法的研究,更新教育观念,掌握教学改革的方式方法,提高了驾驭课程的能力。

三、教学工作

在教学中,我大胆探索适合于学生发展的教学方法。为了教学质量,我做了下面的工作:

1、认真备好课。

①认真学习钻研教材。了解教材的基本思想、基本概念、结构、重点与难点,掌握知识的逻辑。多方参阅各种资料,力求深入理解教材,准确把握难重点。

②了解学生原有的知识技能的质量,他们的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的措施。

2、坚持坚持学生为主体,向50分钟课堂教学要质量。精心组织好课堂教学,关注全体学生,坚持学生为主体,注意信息反馈,调动学生的注意力,使其保持相对稳定性。同时,激发学生的情感,针对大一学生特点,以愉快式教学为主,不搞满堂灌,坚持学生为主体,注重讲练结合。在教学中注意抓住重点,突破难点。

3、认真批改作业。

在作业批改上,做到认真及时,重在订正,及时反馈。

(二)存在问题

由于我是一名年轻教师,对教材的熟悉程度以及在教学经验上还很欠缺。因此在教学过程中有时会出现一些问题。除此之外,现在注重考察的是学生应用知识的能力,但由于以前的教学模式,学生的这种能力培养还很弱,以后还需加强这方面的培养。

(三)今后努力的方向

1、加强学习,学习新的教学思想。

2、挖掘教材,进一步把握知识点和考点。

3、多听课,学习同科目教师先进的教学方法的教学理念。

4、加强转差培优力度。

5、让学生具有良好的数学思维。

一份耕耘,一份收获,教学工作苦乐相伴。在以后的教学工作中,我要不断总结经验,力求提高自己的教学水平,还要多下功夫加强对个别差生的辅导,相信一切问题都会迎刃而解,我也相信有耕耘总会有收获!

第二篇:高等数学总结

FROM BODY TO SOUL

高等数学

第一讲 函数、极限和连续

一、函数 1.函数的概念

几种常见函数 绝对值函数: 符号函数: 取整函数: 分段函数:

最大值最小值函数:

2.函数的特性

有界性: 单调性: 奇偶性: 周期性:

3.反函数与复合函数

反函数:

复合函数:

第三篇:高等数学难点总结

高等数学难点总结 上册:

函数(高等数学的主要研究对象)

极限:数列的极限(特殊)——函数的极限(一般)极限的本质是通过已知某一个量(自变量)的变化趋势,去研究和探索另外一个量(因变量)的变化趋势

由极限可以推得的一些性质:局部有界性、局部保号性……应当注意到,由极限所得到的性质通常都是只在局部范围内成立

在提出极限概念的时候并未涉及到函数在该点的具体情况,所以函数在某点的极限与函数在该点的取值并无必然联系

连续:函数在某点的极限 等于 函数在该点的取值 连续的本质:自变量无限接近,因变量无限接近

导数的概念

本质是函数增量与自变量增量的比值在自变量增量趋近于零时的极限,更简单的说法是变化率

微分的概念:函数增量的线性主要部分,这个说法有两层意思,一、微分是一个线性近似,二、这个线性近似带来的误差是足够小的,实际上任何函数的增量我们都可以线性关系去近似它,但是当误差不够小时,近似的程度就不够好,这时就不能说该函数可微分了

不定积分:导数的逆运算 什么样的函数有不定积分

定积分:由具体例子引出,本质是先分割、再综合,其中分割的作用是把不规则的整体划作规则的许多个小的部分,然后再综合,最后求极限,当极限存在时,近似成为精确 什么样的函数有定积分

求不定积分(定积分)的若干典型方法:换元、分部,分部积分中考虑放到积分号后面的部分,不同类型的函数有不同的优先级别,按反对幂三指的顺序来记忆

定积分的几何应用和物理应用

高等数学里最重要的数学思想方法:微元法

微分和导数的应用:判断函数的单调性和凹凸性

微分中值定理,可从几何意义去加深理解

泰勒定理:本质是用多项式来逼近连续函数。要学好这部分内容,需要考虑两个问题:

一、这些多项式的系数如何求?

二、即使求出了这些多项式的系数,如何去评估这个多项式逼近连续函数的精确程度,即还需要求出误差(余项),当余项随着项数的增多趋向于零时,这种近似的精确度就是足够好的。下册

(一):

多元函数的微积分:将上册的一元函数微积分的概念拓展到多元函数

最典型的是二元函数

极限:二元函数与一元函数要注意的区别,二元函数中两点无限接近的方式有无限多种(一元函数只能沿直线接近),所以二元函数存在的要求更高,即自变量无论以任何方式接近于一定点,函数值都要有确定的变化趋势

连续:二元函数和一元函数一样,同样是考虑在某点的极限和在某点的函数值是否相等

导数:上册中已经说过,导数反映的是函数在某点处的变化率(变化情况),在二元函数中,一点处函数的变化情况与从该点出发所选择的方向有关,有可能沿不同方向会有不同的变化率,这样引出方向导数的概念

沿坐标轴方向的导数若存在,称之为偏导数

通过研究发现,方向导数与偏导数存在一定关系,可用偏导数和所选定的方向来表示,即二元函数的两个偏导数已经足够表示清楚该函数在一点沿任意方向的变化情况

高阶偏导数若连续,则求导次序可交换

微分:微分是函数增量的线性主要部分,这一本质对一元函数或多元函数来说都一样。只不过若是二元函数,所选取的线性近似部分应该是两个方向自变量增量的线性组合,然后再考虑误差是否是自变量增量的高阶无穷小,若是,则微分存在

仅仅有偏导数存在,不能推出用线性关系近似表示函数增量后带来的误差足够小,即偏导数存在不一定有微分存在

若偏导数存在,且连续,则微分一定存在

极限、连续、偏导数和可微的关系在多元函数情形里比一元函数更为复杂

极值:若函数在一点取极值,且在该点导数(偏导数)存在,则此导数(偏导数)必为零

所以,函数在某点的极值情况,即函数在该点附近的函数增量的符号,由二阶微分的符号判断。对一元函数来说,二阶微分的符号就是二阶导数的符号,对二元函数来说,二阶微分的符号可由相应的二次型的正定或负定性判断。

级数敛散性的判别思路:首先看通项是否趋于零,若不趋于零则发散。若通项趋于零,看是否正项级数。若是正项级数,首先看能否利用比较判别法,注意等比级数和调和级数是常用来作比较的级数,若通项是连乘形式,考虑用比值判别法,若通项是乘方形式,考虑用根值判别法。若不是正项级数,取绝对值,考虑其是否绝对收敛,绝对收敛则必收敛。若绝对值不收敛,考察一般项,看是否交错级数,用莱布尼兹准则判断。若不是交错级数,只能通过最根本的方法判断,即看其前n项和是否有极限,具体问题具体分析。

比较判别法是充分必要条件,比值和根值法只是充分条件,不是必要条件。

函数项级数情况复杂,一般只研究幂级数。阿贝尔定理揭示了幂级数的重要性质:收敛区域存在一个收敛半径。所以对幂级数,关键在于求出收敛半径,而这可利用根值判别法解决。

逐项求导和逐项积分不改变幂级数除端点外的区域的敛散性,端点情况复杂,需具体分析。

一个函数能展开成幂级数的条件是:存在任意阶导数。展开后的幂级数能收敛于原来函数的条件是:余项(误差)要随着项数的增加趋于零。这与泰勒展开中的结论一致。

微分方程:不同种类的方程有不同的常见解法,但理解上并无难处。

第四篇:高等数学难点总结

高等数学难点总结

函数(高等数学的主要研究对象)

极限:数列的极限(特殊)——函数的极限(一般)

极限的本质是通过已知某一个量(自变量)的变化趋势,去研究和探索另外一个量(因变量)的变化趋势

由极限可以推得的一些性质:局部有界性、局部保号性……应当注意到,由极限所得到的性质通常都是只在局部范围内成立

在提出极限概念的时候并未涉及到函数在该点的具体情况,所以函数在某点的极限与函数在该点的取值并无必然联系

连续:函数在某点的极限 等于 函数在该点的取值 连续的本质:自变量无限接近,因变量无限接近

导数的概念

本质是函数增量与自变量增量的比值在自变量增量趋近于零时的极限,更简单的说法是变化率

微分的概念:函数增量的线性主要部分,这个说法有两层意思,一、微分是一个线性近似,二、这个线性近似带来的误差是足够小的,实际上任何函数的增量我们都可以线性关系去近似它,但是当误差不够小时,近似的程度就不够好,这时就不能说该函数可微分了

不定积分:导数的逆运算 什么样的函数有不定积分

定积分:由具体例子引出,本质是先分割、再综合,其中分割的作用是把不规则的整体划作规则的许多个小的部分,然后再综合,最后求极限,当极限存在时,近似成为精确 什么样的函数有定积分

求不定积分(定积分)的若干典型方法:换元、分部,分部积分中考虑放到积分号后面的部分,不同类型的函数有不同的优先级别,按反对幂三指的顺序来记忆

定积分的几何应用和物理应用

高等数学里最重要的数学思想方法:微元法

微分和导数的应用:判断函数的单调性和凹凸性

微分中值定理,可从几何意义去加深理解

泰勒定理:本质是用多项式来逼近连续函数。要学好这部分内容,需要考虑两个问题:

一、这些多项式的系数如何求?

二、即使求出了这些多项式的系数,如何去评估这个多项式逼近连续函数的精确程度,即还需要求出误差(余项),当余项随着项数的增多趋向于零时,这种近似的精确度就是足够好的 下册

(一):

多元函数的微积分:将上册的一元函数微积分的概念拓展到多元函数

最典型的是二元函数

极限:二元函数与一元函数要注意的区别,二元函数中两点无限接近的方式有无限多种(一元函数只能沿直线接近),所以二元函数存在的要求更高,即自变量无论以任何方式接近于一定点,函数值都要有确定的变化趋势

连续:二元函数和一元函数一样,同样是考虑在某点的极限和在某点的函数值是否相等

导数:上册中已经说过,导数反映的是函数在某点处的变化率(变化情况),在二元函数中,一点处函数的变化情况与从该点出发所选择的方向有关,有可能沿不同方向会有不同的变化率,这样引出方向导数的概念

沿坐标轴方向的导数若存在,称之为偏导数

通过研究发现,方向导数与偏导数存在一定关系,可用偏导数和所选定的方向来表示,即二元函数的两个偏导数已经足够表示清楚该函数在一点沿任意方向的变化情况

高阶偏导数若连续,则求导次序可交换

微分:微分是函数增量的线性主要部分,这一本质对一元函数或多元函数来说都一样。只不过若是二元函数,所选取的线性近似部分应该是两个方向自变量增量的线性组合,然后再考虑误差是否是自变量增量的高阶无穷小,若是,则微分存在

仅仅有偏导数存在,不能推出用线性关系近似表示函数增量后带来的误差足够小,即偏导数存在不一定有微分存在

若偏导数存在,且连续,则微分一定存在

极限、连续、偏导数和可微的关系在多元函数情形里比一元函数更为复杂

极值:若函数在一点取极值,且在该点导数(偏导数)存在,则此导数(偏导数)必为零

所以,函数在某点的极值情况,即函数在该点附近的函数增量的符号,由二阶微分的符号判断。对一元函数来说,二阶微分的符号就是二阶导数的符号,对二元函数来说,二阶微分的符号可由相应的二次型的正定或负定性判断。

级数敛散性的判别思路:首先看通项是否趋于零,若不趋于零则发散。若通项趋于零,看是否正项级数。若是正项级数,首先看能否利用比较判别法,注意等比级数和调和级数是常用来作比较的级数,若通项是连乘形式,考虑用比值判别法,若通项是乘方形式,考虑用根值判别法。若不是正项级数,取绝对值,考虑其是否绝对收敛,绝对收敛则必收敛。若绝对值不收敛,考察一般项,看是否交错级数,用莱布尼兹准则判断。若不是交错级数,只能通过最根本的方法判断,即看其前n项和是否有极限,具体问题具体分析。

比较判别法是充分必要条件,比值和根值法只是充分条件,不是必要条件。

函数项级数情况复杂,一般只研究幂级数。阿贝尔定理揭示了幂级数的重要性质:收敛区域存在一个收敛半径。所以对幂级数,关键在于求出收敛半径,而这可利用根值判别法解决。

逐项求导和逐项积分不改变幂级数除端点外的区域的敛散性,端点情况复杂,需具体分析。

一个函数能展开成幂级数的条件是:存在任意阶导数。展开后的幂级数能收敛于原来函数的条件是:余项(误差)要随着项数的增加趋于零。这与泰勒展开中的结论一致。

微分方程:不同种类的方程有不同的常见解法,但理解上并无难处。下册

(二)定积分、二重积分、三重积分、第一类曲线积分、第一类曲面积分都可以概率为一种类型的积分,从物理意义上来理解是某个空间区域(直线段、平面区域、立体区域、曲线段、曲面区域)的质量,其中被积元可看作区域的微小单元,被积函数则是该微小单元的密度

这些积分最终都是转化成定积分来计算

第二类曲线积分的物理意义是变力做功(或速度环量),第二类曲面积分的物理意义是流量

在研究上述七类积分的过程中,发现其实被积函数都是空间位置点的函数,于是把这种以空间位置作为自变量的函数称为场函数

场函数有标量场和向量场,一个向量场相当于三个标量场

场函数在一点的变化情况由方向导数给出,而方向导数最大的方向,称为梯度方向。梯度是一个向量,任何方向的方向导数,都是梯度在这个方向上的投影,所以梯度的模是方向导数的最大值

梯度方向是函数变化最快的方向,等位面方向是函数无变化的方向,这两者垂直

梯度实际上一个场函数不均匀性的量度

梯度运算把一个标量场变成向量场

一条空间曲线在某点的切向量,便是该点处的曲线微元向量,有三个分量,它建立了第一类曲线积分与第二类曲线积分的联系

一张空间曲面在某点的法向量,便是该点处的曲面微元向量,有三个分量,它建立了第一类曲面积分和第二类曲面积分的联系

物体在一点处的相对体积变化率由该点处的速度场决定,其值为速度场的散度 散度运算把向量场变成标量场

散度为零的场称为无源场

高斯定理的物理意义:对散度在空间区域进行体积分,结果应该是这个空间区域的体积变化率,同时这种体积变化也可看成是在边界上的流量造成的,故两者应该相等。即高斯定理把一个速度场在边界上的积分与速度场的散度在该边界所围的闭区域上的体积分联系起来

无源场的体积变化为零,这是容易理解的,相当于既无损失又无补充

物体在一点处的旋转情况由该点处的速度场决定,其值为速度场的旋度

旋度运算把向量场变成向量场

旋度为零的场称为无旋场

斯托克斯定理的物理意义:对旋度在空间曲面进行第二类曲面积分,结果应该表示的是这个曲面的旋转快慢程度,同时这种旋转也可看成是边界上的速度环量造成的,故两者应该相等。即斯托克斯定理把一个速度场在边界上形成的环量与该边界所围的曲面的第二类曲面积分联系起来。该解释是从速度环量的角度出发得到的,比高斯定理要难,不强求掌握。

无旋场的速度环量为零,这相当于一个区域没有旋转效应,这是容易理解的

格林定理是斯托克斯定理的平面情形

进一步考察无旋场的性质

旋度为零,相当于对旋度作的第二类曲面积分为零——即等号后边的第二类曲线积分为零,相当于该力场围绕一闭合空间曲线作做的功为零——即从该闭合曲线上任选一点出发,积分与路径无关——相当于所得到的曲线积分结果只于终点的选择有关,与路径无关,可看成终点的函数,这是一个场函数(空间位置的函数),称为势函数——所得的势函数的梯度正好就是原来的力场——因为力场函数是连续的,所以势函数有全微分

简单的概括起来就是:无旋场——积分与路径无关——梯度场——有势场——全微分

要注意以上这些说法之间的等价性

三定理(Gauss Stokes Green)的向量形式和分量形式都要熟悉

第五篇:高等数学积分总结[推荐]

问题引例:曲边梯形的面积、变速直线运动的路程n积分定义:bfxdxlimfxiia0i1b计算方法:fxdxFbFaa一元定积分几何意义:连续曲线与x轴所围曲边梯形面积的代数和物理意义:变力沿直线做功应用几何:平面图形的面积直角坐标、极坐标、体积已知平行截面、旋转体体积平面曲线的弧长直角坐标、极坐标、参数方程、旋转曲面的面积应用物理:水压力、质量与引力、边际成本

一元不定积分:解决定积分的计算问题,将积分问题与求导问题联系起来

问题引例:曲顶柱体的体积、平面薄片的质量n积分定义:fx,ydlimf,iii0i1D计算方法:关键问题是定限,在直角坐标下d=dxdy,在极坐标下d=rdrd二重积分几何意义:以D为底,fx,y为曲顶柱体的体积的代数和物理意义:应用几何:求平面图形的面积dD应用物理问题引例:四维空间中曲顶柱体的体积问题n积分定义:fx,y,zdvlimf,,viiii0i1计算方法:直角坐标 dv=dxdydz柱面坐标xrcos,yrsin,zz,dv=rdrddz三重积分球面坐标xrsincos,yrsinsin,zrcos,dv=r2sindrdd定限的方法参考二重积分 几何意义、物理意义应用几何应用物理

问题引例:曲线形构件的质量nn积分定义:fx,ydslimf,s,fx,y,zdslimf,,siiiiiii00i1i1LL计算方法:用路径函数L化简fx,y,化为一元定积分弧长元素ds=dx2dy22ds=1+y'xdx对弧长的曲线积分2ds=1+x'ydy第一型曲线积分22ds=t+'tdt22ds=r+r'd几何意义、物理意义应用几何应用物理n问题引例:曲面不均匀薄片的质量n积分定义:fx,y,zdSlimf,,Siiii0i1对面积的曲面积分计算方法:

1、投影,2、代入,3、转换22第一型曲面积分fx,y,zdSfx,y,zx,y1zxzydxdyDxy应用几何:计算曲面面积应用物理

Pi,ixiQi,iyi问题引例:变力沿曲线作功Wlim0i1nn

1、定义:如果一阶微分方程Px,ydxQx,ydy0的左端恰好是某一个二元积分定义:Px,ydxlimP,x,Qx,ydylimQi,iyiiiiLL00i1i1函数u的全微分,此时方程的通解为u=C,因此全微分方程的关键就是求u积分的定义可推广到空间的情况,并可简写成Px,ydxQx,ydy

2、求解方法:L对坐标的曲线积分计算方法:本质是将其化为一元定积分用参数方程、将y化为x'全微分方程uu第二型曲线积分①不定积分法:P,uPdxy,PdxyQxy两种曲线积分的关系:②凑微分法PdxQdyPcosQcosds③积分因子法:见笔记PdxQdyRdzPcosQcosRcosds 其中cos,cos,cos是曲线在一点的与有向曲线同向的切向量的方向余弦 问题引例:曲面的侧的定义指明了曲面是有方向的曲面的投影,流体力学中流量问题=vdSn积分定义:limPi,i,iSzyQi,i,iSxzRi,i,iSxyPcosQcosRcosdS0i1对坐标的曲面积分nlimPi,i,iSzyQi,i,iSxzRi,i,iSxyPdydzQdxdzRdxdy第二型曲面积分0i1第一式将定义以第一型曲面积分的形式给出;第二式是我们普遍用的第二型曲面积分两个式子反应的是一个东西,也就阐明了两类曲面积分的联系计算方法:投影、代入、转换应用:流量的计算

QP 格林定理:①曲线正向的定义;②dxdy,L为D的取正向的边界曲线LPdxQdyxyD QP应用格林公式应注意:1曲线L必须封闭;2、在D内每点具有一阶连续偏导;3L为正向曲线 xy

A格林公式曲线积分的路径无关性:概念,积分值只与初始点的坐标有关PdxQdy B 四个等价命题:在一个单连通区域内,函数Px,y、Qx,y在G内有一阶连续偏导 则下面四个命题等价:QP ①=;②PdxQdy0;③PdxQdy与路径无关;④存在函数ux,y,使duPdxQdyLL xy 高斯公式:是闭曲面围成的区域,函数P、Q、R在上具有一阶连续偏导,则PQRPdydzQdzdxRdxdy++dVxyzPQRPcosQcosRcosdS++dV高斯公式通量散度xyz其中是的外侧,cos、cos、cos是点出法向量的方向余弦PQR通量与散度:=AdS,divA++xyz

斯托克斯公式:设是以为边界的有向曲面,的正向与的侧符合右手规则,P,Q,R具有一阶连续偏导  RQQPPRPdxQdyRdzdydzdzdxdxdyL yzzxxy斯托克斯公式环流量与旋度

环流量与旋度:向量场A沿有向闭曲线的曲线积分Ads称为A沿的环流量 RQPRQP旋度:rotA= ikjyzzxxy

积分应用归纳几何应用:

1、求曲边梯形的面积:用一元定积分可做

2、求曲顶柱体的体积:用二重积分可做,用三重积分可做

3、曲面的面积:1dSdS 柱面面积=fx,yds——牟合方盖的表面积Lfy,zds,fx,zdsLL该柱面以L为准线,母线平行于z轴,介于z0与曲面zfx,y之间的部分

4、平面的面积:其实就是曲面面积的特殊情况,用一元定积分可做,用二重积分可做

物理应用:

1、质量平面直线杆一元定积分线状质量线密度长度平面曲线杆对弧长的曲线积分这也就解释了为什么对弧长的积分化为定积分空间曲线杆被积函数为三元函数的对弧长的曲线积分平面面片二重积分面状质量面密度面积空间面片对曲面的面积积分立体快质量体密度体积三重积分解释了为什么对曲面的面积积分化为二重积分=fP;MfPd

2、质心物理重心——质心——几何中心——形心概念解释:物理重心——是在重力场中,物体处于任何方位时所有各组成质点的重力的合力都通过的那一点。规则而密度均匀物体的重心就是它的几何中心。质心——质量中心简称质心,指物质系统上被认为质量集中于此的一个假想点。与重心不同的是,质心不一定要在有重力场的系统中。值得注意的是,除非重力场是均匀的,否则同一物质系统的质心与重心不通常在同一假想点上。形心——面的形心就是截面图形的几何中心,质心是针对实物体而言的,而形心是针对抽象几何体而言的,对于密度均匀的实物体,质心和形心重合。质心的计算:引入了静力矩的概念xx,ydyx,y薄片:xDx,yd,ydDx,yd平面DDxx,ydsyx,曲线杆:xLydsx,yds,yLx,ydsLL3、转动惯量:定义:IMr2Ixy2x,ydDIyx2x,ydDI0x2y2x,yd D



块:xxdv,yydvdvdv空间面片:xxd,yyddd曲杆:xxds,yydsdsds

下载高等数学教学总结word格式文档
下载高等数学教学总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高等数学极限总结

    我的高等数学 学我所学,想我所想 【摘要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的。然而极限部分绝大部分的运算令很多从中学进入高校的学......

    高等数学极限总结[最终定稿]

    【摘 要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的。然而极限部分绝大部分的运算令很多从中学进入高校的学生感到困窘。本文立足教材的基......

    高等数学上册总结

    《工程应用数学A》课程总结 无论我们做什么事都要不断地思考,不断地总结,学习也是这样,所以这次就借此机会对于这一学期所学内容进行一次总结,也算是对自我的一次思考。 一、课......

    高等数学教学设计方案

    篇一:课程整体教学设计(新高数) 《高等数学》课程整体设计一、管理信息 课程名称:高等数学 课程代码:220000103 制 定 人: 张秀玲 制定时间:2011.7.20 所属部门:基础课教学部......

    高等数学教学心得

    高等数学教学心得 高等数学教学心得1 高等数学是我院财务管理、工程管理、国际贸易、商管等相关专业的基础课,主要讲述了一元函数与多元函数的微积分学,针对不同专业的实际情......

    高等数学B教学建设项目总结1

    高等数学B教学项目建设总结1高等数学是大学理工科以及一些文科专业的必修课程,是一门数学基础课程,其重要性在于它是各种精确自然科学、社会科学中表述基本定律和各种问题的根......

    高等数学难点总结函数

    函数(高等数学的主要研究对象) 极限:数列的极限(特殊)——函数的极限(一般) 极限的本质是通过已知某一个量(自变量)的变化趋势,去研究和探索另外一个量(因变量)的变化趋势 由极限可以推......

    《高等数学》课程建设总结

    《高等数学》课程建设总结 作为工科本科院校,高等数学课程是我校长期扶持的重点建设课程,其教学质量的好坏直接影响到我校本科教学质量能否稳步提高。为了适应大众化教育阶段......