钢管混凝土类综述

时间:2019-05-13 22:54:51下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《钢管混凝土类综述》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《钢管混凝土类综述》。

第一篇:钢管混凝土类综述

摘要: 介绍了钢管混凝土结构的特点、研究现状及其工程应用,探讨了钢管混凝土结构研究方向。

关键词: 钢管混凝土

近20年来,钢管混凝土结构逐渐被应用于建筑结构尤其是在高层建筑结构中,随着建筑物高度的增加,钢管高强混凝土和钢管超高强混凝土结构的应用也将会得到快速的发展。一般的,我们把混凝土强度等级在C50以下的钢管混凝土称为普通钢管混凝土;混凝土强度等级在C50以上的钢管混凝土称为钢管高强混凝土;混凝土强度等级在C100以上的钢管混凝土称为钢管超高强混凝土。

钢管混凝土结构是由混凝土填入钢管内而形成的一种新型组合结构。由于钢管混凝土结构能够更有效地发挥钢材和混凝土两种材料各自的优点,同时克服了钢管结构容易发生局部屈曲的缺点。近年来,随着理论研究的深入和新施工工艺的产生,工程应用日益广泛。钢管混凝土结构按照截面形式的不同可以分为矩形钢管混凝土结构、圆钢管混凝土结构和多边形钢管混凝土结构等,其中矩形钢管混凝土结构和圆钢管混凝土结构应用较广。

1.钢管混凝土结构的特点

众所周知,混凝土的抗压强度高。但抗弯能力很弱,而钢材,特别是型钢的抗弯能力强,具有良好的弹塑性,但在受压时容易失稳而丧失轴向抗压能力。而钢管混凝土在结构上能够将二者的优点结合在一起,可使混凝土处于侧向受压状态,其抗压强度可成倍提高.同时由于混凝土的存在,提高了钢管的刚度,两者共同发挥作用,从而大大地提高了承载能力。钢管混凝土作为一种新兴的组合结构,主要以轴心受压和作用力偏心较小的受压构件为主,被广泛使用于框架结构中(如厂房和高层)。钢管混凝土结构的迅速发展是由于它具有良好的受力性能和施工性能,具体表现为以下几个方面:

1.1 承载力高、延性好,抗震性能优越

钢管混凝土柱中,钢管对其内部混凝土的约束作用使混凝土处于三向受压状态,提高了混凝土的抗压强度;钢管内部的混凝土又可以有效地防止钢管发生局部屈曲。研究表明,钢管混凝土柱的承载力高于相应的钢管柱承载力和混凝土柱承载力之和。钢管和混凝土之间的相互作用使钢管内部混凝土的破坏由脆性破坏转变为塑性破坏,构件的延性性能明显改善,耗能能力大大提高,具有优越的抗震性能。

塑性是指在静载作用下的塑性变形能力。钢管混凝土短柱轴心受压试脸表明,试件压缩到原长的2/3,纵向应变达30%以上时,试件仍有承载力。剥去钢管后,内部混凝土虽已有很大的鼓凸褶皱,但仍保持完整,并未松散,且仍有约5%的承载力,用锤敲击后才粉碎脱落。抗震性能是指在动荷载或地震作用下,具有良好的延性和吸能性。在这方面,钢管混凝土构件要比钢筋混凝土构件强得多。在压弯反复荷载作用下,弯矩曲率滞回曲线表明,结构的吸能性能特别好,无刚度退化,且无下降段,和不丧失局部稳定性的钢柱相同,但在一些建筑中,钢柱常常要采用很厚的钢板以确保局部稳定性。但还常发生塑性弯曲后丧失局部稳定。因此,钢管混凝土柱的抗震性能也优于钢柱。

1.2 施工方便,工期大大缩短

钢管混凝土结构施工时,钢管可以做为劲性骨架承担施工阶段的施工荷载和结构重量,施工不受混凝土养护时间的影响;由于钢管混凝土内部没有钢筋,便于混凝土的浇注和捣实;钢管混凝土结构施工时,不需要模板,既节省了支模、拆模的材料和人工费用,也节省了时间。

1.3 有利于钢管的抗火和防火

由于钢管内填有混凝土,能吸收大量的热能,因此遭受火灾时管柱截面温度场的分布很不均匀,增加了柱子的耐火时间,减慢钢柱的升温速度,并且一旦钢柱屈服,混凝土可以承受大部分的轴向荷载,防止结构倒塌。组合梁的耐火能力也会提高,因为钢梁的温度会从顶部翼缘把热量传递给混凝土而降低。经实验统计数据表明:达到一级耐火3小时要求和钢柱相比可节约防火涂料1/3一2/3甚至更多,随着钢管直径增大,节约涂料也越多。

1.4 耐腐蚀性能优于钢结构

钢管中浇注混凝土使钢管的外露面积减少,受外界气体腐蚀面积比钢结构少得多,抗腐和防腐所需费用也比钢结构节省。钢管混凝土构件的截面形式对钢管混凝土结构的受力性能、施工难易程度、施工工期和工程造价都有很大的影响。圆钢管混凝土受压构件借助于圆钢管对其内部混凝土有效的约束作用,使钢管内部的混凝土处于三向受压状态,使混凝土具有更高的抗压强度。但是圆钢管混凝土结构的施工难度大,施工成本较高。相比之下,方钢管混凝土结构的施工较为方便,但钢管混凝土受到的约束作用较小,结构的承载力较低。

1.5 施工方面

钢管混凝土柱的零件较少,焊缝少,构造简单,柱脚常采用在棍凝土基础上预留杯口的插人式柱脚,因而工厂制造比较简单,同时构件自重较小,运输和吊装也较易,施工很简便,而且钢管馄凝土柱采用板材卷制,板材厚度都不大,一般在40m以内,无论工厂焊接和现场进行对接,都没有什么困难。同时,与钥筋混凝土柱相比,钢管混凝土柱的外皮钢管具有钢筋的功能,兼有纵向钢筋和横向箍筋的作用,所以管内没钢筋,省了钢筋下料和绑扎钢筋等一系列工艺,又由于柱外皮钢管本身就是耐侧压的模板,同时也省了支模和拆模等工序。近年来,泵送砖相当普遍,现场浇灌并无困难,我国创造并广泛使用的高位抛落不振捣混凝土的施工方法,更简化了现场灌混凝土的工序,简便了施工。也有在管柱下部开临时浇灌孔,用混凝土泵自下而上灌注混凝土的方法,既快,又保证浇灌质量。而且,在浇筑后,钢管内处于相当稳定的湿度条件,水分不易蒸发,省去浇水养护工序,简化了混凝土的养护工艺。在钢管构件的制作、安装要求方面:①钢管混凝土柱用的钢管,焊接、制作要求较高。一般应优先采用螺旋焊管,无螺旋焊接管时,也可以用滚床自行卷制钢管,但卷管的方向应与钢板压延方向垂直且对管的内径有一定的要求。焊接时除一般钢结构的制作要求外要严格保证管的平、直,不得有翘曲、表面锈蚀和冲击痕迹。特别是它对钢管内壁的除锈要求。可能会增加钢管的制作周期;②在构件制作过程中,钢管的对接是一个难点。结构要求焊后的管肢要平直,这就需要在焊接时采取相应的措施和特别注意焊接的顺序以及考虑到焊接变形的影响。管肢对接焊接前,对于小直径钢管应采用点焊定位.对于大直径钢管应另用附加钢筋焊于钢管外壁作临时固定联焊。在钢管对接焊过程中,如发现点焊定位处的焊缝出现微裂缝,则该微裂缝部位必须全部铲除重焊。为了确保联接处的焊缝质量,在现场拼接时,在管内接缝处必须设置附加衬管。对于格构式柱要求往的肢管和各种腹杆的组装连接尺寸和角度必须准确。特别是腹杆与肢管联接处的间隙,应采用自动切管机按照相接面管的直径和角度切割成空间相交曲线的管端。如无自动切割机时应按板金展开图进行放样切割。在高层建筑中常常采用变径的钢管,变径管的对接就又是一个施工难点,变径处节点构造较为复杂,无疑会影响到施工的进度。

2.钢管混凝土结构的研究现状

20世纪60年代之前,钢管混凝土结构的研究对象主要是圆钢管混凝土结构。从60年代后半期以后,开始比较系统地研究矩形钢管混凝土结构。目前,圆钢管混凝土结构的研究已经取得了丰硕的成果,很多国家制定了相应的设计和施工规范或规程,如欧洲标准EC4(1996)、德国标准DIN18800(1997)、美国标准ACI319-89、SSLC(1979)和LRFD(1997)、日

本标准AIJ(1980,1997)。在我国,钢管混凝土结构的研究主要集中在圆钢管中填充素混凝土的内填型圆钢管混凝土结构,最早开展研究工作的是原中国科学院哈尔滨土建研究所。1968年以后,中国建筑科学研究院、冶金部冶金建筑科学研究院等单位也先后对钢管混凝土基本构件的工作性能、设计方法、节点构造和施工技术等方面展开了系统的研究。进入80年代后,研究工作进一步深入,通过大量的试验研究和理论分析,对构件的承载力和变形性能及其影响因素进行了全面的研究,得到了实用的设计计算公式。与此同时,钢管混凝土结构的施工技术也在迅猛发展,涌现出很多新的施工工艺和施工方法,钢管混凝土结构的优势得到了更加充分的发挥。近十几年来,我国钢管混凝土结构的科学研究和工程应用都取得了令人瞩目的成就。目前已经先后有国家建材局、中国工程建设标准化委员会、国家经济贸易委员会和解放军总后勤部颁布发行了有关钢管混凝土结构的设计规程。为钢管混凝土结构在我国的推广奠定了坚实的基础,使钢管混凝土结构广泛应用于各种大型建筑工程和交通运输工程中。钢管混凝土结构的应用在近十年的时间里得到了飞速的发展。

我国对于矩形钢管混凝土结构的研究工作开展得较晚,1985年郑州工学院开始进行方钢管混凝土轴压短柱的研究,其后同济大学等单位也进行了方钢管混凝土构件的研究,取得了一定的成果,而我国的矩形钢管混凝土结构的设计施工规程尚在制定中。

3. 钢管混凝土结构的工程应用

早在19世纪80年代,钢管混凝土结构就已经出现。例如,1879年英国赛文(severn)铁路桥的建造中采用了钢管桥墩,在钢管中灌了混凝土以防止内部锈蚀并承受压力。前苏联乌拉尔的伊谢特铁路桥采用钢管混凝土构件做拱形桁架的上弦和上部建筑的柱子,省钢25%。1961年比利时建造船坞时,采用钢管混凝土构件做桁架的压杆和立柱,比钢结构节省钢材40%。法国巴黎居民区的第一座摩天大楼采用了钢管混凝土框架柱,比钢结构节省钢材40%。前苏联在一些吊车栈桥(跨度达48m)中采用钢管混凝土结构,比全钢结构节省钢材12%-28%,降低造价28%,比钢筋混凝土结构省钢9%,降低造价56%。日本、瑞士等国在输电跨越塔中采用了钢管混凝土结构,也都取得了显著的经济效益。

在20世纪60年代以前,由于钢管内浇注混凝土的施工工艺尚未得到很好的解决,现场的施工操作显得繁琐,钢管混凝土结构在施工性能方面的优势没有得到应有的发挥。到80年代后期,由于泵送混凝土工艺的发展,解决了现场钢管内部浇灌混凝土的工艺问题,加上现代高强混凝土需要用钢管约束来克服其脆性。因此,钢管混凝土结构在美国和澳大利亚等国的高层建筑中得到了广泛应用,被认为是高层建造技术的一次重大突破。

我国钢管混凝土结构技术的开发和应用已有近40年的历史。1966年钢管混凝土结构应用于北京地铁车站工程,70年代又在单层工业厂房、重型构架中得到了成功的应用。近10年来,随着国家经济的迅猛发展,钢管混凝土结构在我国的高层建筑工程、地铁车站工程和大跨度桥梁工程中得到了卓有成效地应用,推动了建造技术的发展。在我国,钢管混凝土结构主要应用于以下的领域中。

3.1 高层建筑工程

在高层建筑结构中,钢管混凝土柱具有很大的优势:具有承载力高,抗震性能好的特点,既可以取代钢筋混凝土柱,解决高层建筑结构中普通钢筋混凝土结构底部的“胖柱”问题和高强钢筋混凝土结构中柱的脆性破坏问题;也可以取代钢结构体系中的钢柱,以减少钢材用量,提高结构的抗侧移刚度。钢管混凝土构件的自重较轻,可以减小基础的负担,降低基础的造价。全部采用钢管混凝土柱的工程可以采用“全逆作法”或“半逆作法”进行施工,从而加快施工进度;钢管混凝土柱的钢材厚度较小,取材容易、价格低。其耐腐蚀和防火性能也优于钢柱。钢管混凝土柱不易倒塌,即使损坏,修复和加固也比较容易。

3.2 大跨度桥梁工程

随着经济的迅速发展,需要建造能够跨越江河、海湾和山谷的,安全、经济且轻盈美观的大跨度桥梁。在我国,钢管混凝土已经被广泛地应用于拱桥结构中,也开始应用于斜拉桥结构中。在拱桥结构中,钢管混凝土构件主要用来承受轴向压力。拱桥的跨度很大时,拱肋将承受很大的轴向压力,采用钢管混凝土构件是非常合理的。另外,钢管可以做为桥梁安装架设阶段的劲性骨架和灌注混凝土的模板。因此,钢管混凝土被认为是建造大跨度拱桥的一种比较理想的复合结构材料。自1990年在四川省旺苍县建成跨度为115米的我国第一座钢管混凝土拱桥以来,在10来年的时间里,我国已经建成了100多座钢管混凝土拱桥,其中跨度在100米以上的就有30多座,尤其是重庆市万县长江公路大桥,跨度达到420米,一跨过江。经过多年的实践,我国在钢管混凝土拱桥建设上已经积累了丰富的经验,形成了一套较为完整的钢管混凝土拱桥建造技术。

近年来,在斜拉桥和梁式桥中也开始采用钢管混凝土结构,同样取得了良好的经济效益。例如,广东南海市紫洞大桥、湖北秭归县向家坝大桥和四川万县万洲大桥都采用了钢管混凝土空间桁架组合梁式结构,减轻了结构恒载,提了结构承载力利用系数,同时采用与之相适应的、合理的施工工艺,简化了施工程序,减少了施工设备,加快了施工进度,降低了工程造价。在对广东南海市紫洞大桥主桥进行了技术经济分析,主桥采用钢管混凝土空间桁架组合梁式结构与采用预应力混凝土连续钢结构方案相比较,可以节省混凝土44%,节省预应力钢材62%,增加普通钢材23%。加上施工设备、临时设施和施工工期等方面的因素,主桥的经济效益就更为可观。钢管混凝土空间桁架组合梁式结构适用于多种桥型,如系杆拱桥结构、特大跨径斜拉桥结构、特大跨径悬索桥结构等,推广其应用必将带来显著的经济效益和社会效益。

3.3 地铁车站工程

地铁车站是我国最早采用钢管混凝土结构的工程项目。早期的地铁车站是深埋地下的多跨结构,用明挖法施工;采用钢管混凝土柱主要是利用其承载力高的特点,以减小柱子的截面尺寸,有效地利用空间。近年来,在城市中心地区修建的地铁车站多为浅埋式的、具有综合功能的多层地下建筑。采用盖挖逆作法施工,以尽量减少对城市正常生活的干扰以及对地面交通和邻近建筑的影响。盖挖逆作法,是先施工地下结构的顶盖,在顶盖的保护下进行开挖,按照从顶到底的顺序进行施工。为此,必须在土方开挖前设置好顶盖的中间支撑柱,钢管混凝土柱将施工阶段的临时柱和结构的永久柱合二为一,因此是最好的选择。90年代以来,北京地铁的复八线工程中,采用盖挖逆作法建成了“天安门东站”、“大北窑站”和“永安里站”;在建中的南京地铁的“三山街站”也是采用的盖挖逆作法进行施工。

3.4 单层和多层工业厂房柱

单层工业厂房的柱属于偏心受压构件,为了充分发挥钢管混凝土结构的特点,很多工程中的柱子设计成格构式组合柱,如双肢柱、三肢柱和四肢柱,把偏心弯矩转变为轴心力。如1972年建成的本溪钢铁公司二炼钢轧辊钢锭模车间采用了四肢柱;1980年建成的太原钢铁公司第一轧钢厂第二小型厂的下柱采用双肢柱;1982年建成的吉林种籽处理车间采用了三肢柱;1980年建成的武昌造船厂船体结构车间采用了四肢柱。与钢筋混凝土柱和普通钢柱相比,钢管混凝土组合柱显得特别轻巧,节约钢材,施工简便,同时刚度好。单层工业厂房中采用钢管混凝土柱时,钢管中混凝土的浇注可以在全部主体结构安装完成后进行,所以大大缩短了工期。如1992年建成的哈尔滨建成机械厂大容器车间,从破土动工到竣工只用了15.5个月;同年该厂又建成了容罐式汽车车间,主体结构的施工仅用了半年时间。

80年代初,我国开始在多层工业厂房中采用钢管混凝土柱。多层工业厂房柱基本为偏心

受压单管柱;如1984年建成的上海特种基础科研所的科研楼,1985年建成的柳州水泥厂窑尾加热车间。

4.钢管混凝土结构研究的发展方向

4.1 高强度材料的应用

采用高强混凝土可以减轻结构自重、降低工程造价。随着混凝土强度的提高,其延性下降,这阻碍了它在实际工程中的应用。将高强混凝土灌入钢管中形成高强钢管混凝土,由于受到钢管的约束作用,混凝土处于三向受压状态,其延性将大为提高,而其构件的承载力也得到了相应的提高。因此,高强钢管混凝土具有很大的发展潜力。

近年来,国内外对高强钢管混凝土构件的研究表明;高强钢管混凝土的力学性能与普通钢管混凝土有所不同,其设计不能套用普通钢管混凝土构件的设计公式。而我国现行的钢管混凝土设计施工规范和规程只适用于普通钢管混凝土结构,因此必须加大高强钢管混凝土的研究力度,尽快制定出相应的设计施工规范和观察。

4.2 节点动力性能的研究

节点是结构设计中的关键部位,也是施工的难点。对于钢管混凝土节点,其合理与否直接关系到结构的安全性和整个工程的造价。钢管混凝土节点可以分为两种;钢管混凝土柱与钢筋混凝土梁的连接节点和钢管混凝土柱与钢梁的连接节点。目前,国内对于钢管混凝土节点静力性能的研究较多,而对于节点动力性能的研究报导还较少。

4.3 耐火性能的研究

我国还没有制定针对钢管混凝土结构的防火规定。对于已经建成的钢管混凝土结构,有的采用钢筋混凝土结构的要求外包混凝土,有的按照钢结构的要求涂防火材料,都没有统一规定和科学的依据。近年来,国内学者就钢管混凝土的耐火性能问题进行了研究,已经取得了可喜的成绩;应尽快编制出适合我国国情的钢管混凝土结构防火规范。

4.4 钢管混凝土结构体系抗震性能的研究

在对采用钢管混凝土柱及钢筋混凝土柱的框架结构进行了抗震性能的对比试验研究;并从理论上分析比较了两种结构的动力性能,得出了钢管混凝土框架结构的抗震性能明显优于钢筋混凝土框架结构的结论。但目前对钢管混凝土结构抗震性能的研究,主要还是集中在基本构件方面,而对于钢管混凝土整体结构的抗震性能的研究还不多。应开展这方面充分的研究,以提供合理的抗震设计参数,便于工程应用。

4.5 矩形钢管混凝土结构的研究

矩形钢管混凝土结构中,钢管对于其内部混凝土的约束作用相对较弱,但是它具有节点形式简单,便于施工等优点。国外学者对矩形钢管混凝土结构已进行了大量的研究,制定了相应的设计规程,在工程应用上也取得了很大的进展。我国的矩形钢管混凝土结构的设计施工规程尚在制定中。

与钢筋混凝土结构和钢结构相比,钢管混凝土结构是一种相对年轻的结构形式。随着其理论研究的深入和完善,新型施工工艺的产生和高性能材料的应用,钢管混凝土结构的应用范围将不断扩大。

4.6 钢管混凝土施工方面的研究

钢管混凝土结构在施工中也有一些问题不容忽视。在结构构件的连接构造方面:①当钢管混凝土柱与混凝土梁连接时,就必须借助于柱上的牛腿和加强板。如果用暗牛腿、会给浇注混凝土带来不便,影响施工进度;②当钢管混凝土柱与无梁盖连接时,尤其是采用升板法施工时,板与柱的连接构造是相当复杂的,会直接影响到施工的进度;③为了能够充分发挥钢管混凝土的承载力,钢管混凝土的连接应尽可能地将连接力可靠地传递到核心混凝土上。

常采用柱顶盖板、柱脚底板和层间隔板、穿心板等来实现。当然前提条件必须是应保证管内混凝土的密实,做到这一点也是不易的。横隔板和上、下柱的连接是比较萦琐的,尤其是对于小直径管,特别不便于施工。穿心板的制作也很麻烦,而且还会妨碍管内混凝土的浇注和振捣。一般仅在大直径钢管混凝土中使用。

4.7 预应力钢管混凝土方面的研究

实际上,随着钢管混凝土组合结构体系的应用愈来愈广泛,钢管混凝土还常用于结构的受拉部位,如钢管混凝土空间桁架的下弦及受拉腹杆、大跨度拱桥的水平拉杆和挡土墙的锚杆等。因此,本文提出了预应力钢管混凝土结构,即对钢管混凝土构件施加预应力,以提高结构的承载力。预应力钢管混凝土结构不仅有效地拓展了钢管混凝土的应用范围(钢管混凝土结构的应用范围不再局限于轴心受压短柱,可扩展到结构的受拉部位),而且改善了钢管混凝土结构的性能,也充分发挥了组合结构的优势。另外,预应力钢管混凝土结构用于斜拉桥的斜拉索亦是一种有益的尝试,可改善结构的动力性能,减小斜索垂度的影响,提高索的耐久性和抗腐蚀能力。

4.8薄壁离心钢管混凝土结构

薄壁离心钢管混凝土结构是介于钢筋混凝土环形杆和钢管杆之间的一种新型钢—砼复合结构,该结构既可以充分发挥钢和混凝土两种材料的物理力学性能,又可避免这两种材料在各自单独实用条件下的弱点,具有良好的共同工作和力学性能。我国从1984年起,开始该结构研究试验,目前关于该种结构的基本计算理论、技术规程、制造工艺以及施工及验收规程均图#以编制出版,已形成较为完整的体系。

该种结构与传统的其它结构相比具有以下优缺点:(1)与钢筋混凝土电杆相比,其优点为:在使用钢材相同的情况下,可减小断面,减轻重量;简化制造工艺,不需要钢模,提高劳动生产率;抗震和抗冲击能力强,运输、安装破损少,搬运及立塔施工方便;可解决混凝土杆所普遍存在的裂缝问题,延长使用寿命;不需预埋件、抱箍等附件,连接方便;提高了构件及工程的美观效果。(2)与钢管结构或普通钢结构相比,其优点为:节省25-50%的钢材,降低造价20-40%左右;提高局部稳定性;解决钢管内壁防腐问题。

第二篇:钢管混凝土的优缺点

钢管混凝土

学习研究报告

土木建筑工程学院

目录

任务分工...................................................................................................................................3 钢管混凝土的结构性质...........................................................................................................3

一、钢管混凝土的基本原理:...........................................................................................3

二、钢管混凝土的截面形式:...........................................................................................3

三、根据钢管作用的差异,钢管混凝土柱又可分为两种形式:...................................4

四、常用的拱桥截面形式:...............................................................................................4 相对于钢筋混凝土钢管混凝土的优缺点...............................................................................5 优点:...................................................................................................................................5 缺点:...................................................................................................................................6 国外钢管混凝土的一些研究...................................................................................................7

一、钢管混凝土的耐火性能的研究...................................................................................7

二、钢管混凝土火灾后剩余承载力的研究.......................................................................7

三、实心钢管与空心钢管混凝土耐火性研究...................................................................8 国内钢管混凝土的新技术.......................................................................................................8 薄壁钢管混凝土核心桩.......................................................................................................8 钢管混凝土在工程中的应用.................................................................................................10 钢管内流态混凝土受力机理.............................................................................................10 主拱钢管灌注混凝土顺序对结构受力的影响.................................................................11

任务分工

钢筋混凝土国内新技术的查询:王乾 钢筋混凝土国外新技术的查询:王曾 新技术应用具体实例的查询:林宇恒

钢管混凝土结构性质以及钢管混凝土与钢筋混凝土优缺点的对比:黄正源

钢管混凝土的结构性质

一、钢管混凝土的基本原理:

1、利用横向钢管,对受压混凝土施加侧向约束,使管内混凝土处于三向受压的应力状态,延缓其纵向微裂缝的发生和发展,从而提高其抗压强度和压缩变形能力。

2.借助内填混凝土的支撑作用,增强钢管壁的几何稳定性,改变窑钢管的失稳模态,从而提高其承载能力。钢管混凝士利用钢管和混凝土中材料在受力过程中的相互作用即钢管对混凝土的约束作用使混凝土处于复杂应力状态之下,从而使混凝土的强度得以提高,塑性和韧性性能大为改善。同时,由于混凝土的存在可以避免或延缓钢管发生局部屈曲。可以保证其材料性能的充分发挥;另外,在钢管混凝土的施工过程中,钢管还可以作为浇筑其核心混凝土的模板。总之通过钢管和混凝土组合而成为钢管混凝±,不仅可以弥补两种材料各自材料的缺点,而且能够充分发挥二者的优点,这也正是钢管混凝土组合结构的优势所在。

二、钢管混凝土的截面形式:

主要有圆形,正方形和矩形

三、根据钢管作用的差异,钢管混凝土柱又可分为两种形式:

1、是组成钢管混凝土的钢管和混凝土在受荷初期即共同受力,如圆形截面

2、是外加荷载作用在核心混凝土上,钢管只起对其核心混凝土的约束作用,即所谓的钢管约束混凝土柱,如方形截面。

四、常用的拱桥截面形式:

相对于钢筋混凝土钢管混凝土的优缺点

优点:

1、承载能力大为提高,特别是在高层建筑中,钢管混凝土柱抗压和抗剪承载能力相对普通钢筋混凝土优势较为明显和钢柱相比,抗压承载力虽略低, 但却无局部失稳问题。而且钢管混凝土的塑性性能好, 防止了管内砼的脆性破坏。在高层建筑中可以做到不限制轴压比。这是钢筋混凝土结构无法做到的。

2、塑性和韧性好,所以抗震性比钢筋混凝土更好。混凝土脆性较大,对于高强度混凝土更是如此,其工作的可靠性因此大为降低。如果将混凝土灌入钢管中形成钢管混凝土,核心混凝土在钢管的约束下,不但在使用阶段改善了它的弹性性质,而且在破坏时具有很大的塑性变形。同时柱子截面大幅减小,相应的自重大幅减小,地震引起的地震反应也相应减少。

2、扩大了使用空间。由于钢管混凝土柱的承载力高,不但柱子截面减小,而且可以大柱网、大空间的框架结构体系。

3、具有良好的经济效应

a.相对钢筋混凝土,钢管混凝土可以大量节约混凝土,减少自重,而用钢量却几乎相当或者略多,同时还能减少模板 b.施工简单,可以大大缩短工期

c.柱子截面减小,降低了地基基础的造价。采用钢筋混凝土的高层建筑, 其自重一般为1.5t/ m2~ 2t/ m2(不包括基础)而采用钢管混凝土柱钢梁结构时, 一般自重都小于1t/ m, 在国外, 有低达0.5t/ m2~ 0.6t/ m2 的例子。显然, 和采用钢筋混凝土结构相比, 采用钢管混凝土柱可以减小地基上单位面积荷载25% 以上, 自然, 基础尺寸也相应减少,降低了基础工程造价。

d.采用高强度混凝土时,可有效防止混凝土的脆性破坏,充分发挥高强度混凝土的承载力 缺点:

1、使用范围有限

从现已建成的众多建筑来看, 钢管混凝土的使用范围还仅限于柱、桥墩、拱架等。目前还很少有使用钢管混凝土梁的先例。这是因为梁一般都做成矩形, 而矩形的钢管混凝土受力比较复杂而且构造要求繁琐, 经济效益不佳。

2、从钢管构件的制作、安装要求讲也是具有一定难度和繁锁性

a.钢管混凝土柱用的钢管, 焊接、制作要求较高

b.在构件制作过程中, 钢管的对接是一个难点。结构要求焊后的管肢要平直, 这就需要在焊接时采取相应的措施和特别注意焊接的顺序以及考虑到焊接变形的影响

3.从质量检查及施工方法上讲, 这种结构构件形式也是存在弊端的

a.钢管混凝土柱管内混凝土的浇注属于隐蔽工程, 混凝土的浇灌质量是无法直观检查的。当采用人工浇灌并振捣时, 只能依靠操作人员的责任心和严密的施工组织管理来保证施工质量。如果超声脉冲检测发现有不密实部位, 就得将钢管钻孔压浆补强, 然后再将钻孔补焊封固。所以无论从质量检测还是完善施工质量都是较为费工的。

b.从混凝土浇灌方面讲。如果采用泵送顶升法, 施工就必须有与之配套的泵及输送设备, 而且对粗骨料的粒径、水灰比、坍落度要求比较严格。采用高位抛法施工, 混凝土的配合比要求亦很严格。必须先进行配合比实验来确定水灰比, 然后才可以正式浇注。因此, 无论采用哪种方式施工, 都必须有严密的施工组织管理。这或许会比普通钢筋砼结构施工更需要管理。

3、相对于钢筋混凝土,钢馆混凝土的耐火性稍差。国外钢管混凝土的一些研究

一、钢管混凝土的耐火性能的研究

国外学者主要研究了钢管配筋混凝土结构的耐火极限且柱结构不采取防火保护措施的情况,研究者对圆形和方形截面的钢管混凝土结构在火灾下的力学性能进行了大量的理论分,析和试验研究,并制定了各自的设计规程,由于钢管混凝土是一种新型结构,目前国内尚未制定该类结构防火方面的规定,不但制约了该结构的推广,而且对于已建成结构的耐火极限也缺乏必要的科学依据。有的按照钢筋混凝土结构的要求外包以混凝土,有的则按钢结构的要求涂以防火涂料。这样做虽然可能保证防火要求和结构的安全性,但大都偏于保守而造成浪费。近年来,国内学者进行了圆形截面钢管混凝土结构耐火性能的研究工作,已取得可喜的成果,在方形截面和矩形截面钢管混凝土柱及钢管高强混凝土柱耐火性能的研究方面也有了不少成果,结果表明,钢管混凝土具有比钢结构更好的耐火性能,并形成了一套实用的抗火设计方法,成功地应用在国内钢管混凝土超高层建筑中规模最大的深圳赛格广场中,节省了大量投资。

二、钢管混凝土火灾后剩余承载力的研究

由于钢管混凝土结构具有良好的耐火性能,通过采取合理的计算方法和防火构造可以满足结构所需要的耐火极限。国内外学者对在高温、恒高温、标准升温曲线等不同情况下钢管混凝土结构的耐火性能和耐火极限做了大量的研究,我国的相关抗火设计规程也在编制之中。由于钢管混凝土耐火性能好,建筑物在遭受火灾后往往还具有一定的承载能力,如何评估和维修加固火灾后的结构是工程中面临的新问题,因此很有必要研究火灾后钢管混凝土结构的承载力,建立其剩余承载力的计算理论和方法,为合理制定火灾后该类结构的修复加固提供决策的依据。以往国内外尚缺乏这方面的资料,福州大学进行了一系列火灾后钢管混凝土柱的剩余承载力的试验研究,包括圆形截面、方形截面和矩形截面,并取得了相关成果

三、实心钢管与空心钢管混凝土耐火性研究

关于实心钢管混凝土的耐火性能已有大量的实验研究,而空心钢管混凝土的耐火实验目前还非常少见.针对这一不足,对空心钢管混凝土进行了耐火实验研究,其中考虑了不同的空心率,并对中空注水对构件耐火性能的影响也进行了实验研究.实验结果表明:在相同的荷载比下,构件的耐火时间随空心率先增大后减小.当空心率较小时,中空注水对构件耐火时间的提高作用不明显;当空心率较大时,注水对耐火时间的提高才体现出来.国内钢管混凝土的新技术

薄壁钢管混凝土核心桩

钢管混凝土在工程中的应用

深圳彩虹(北站)太桥位于广东省深圳市区,是连接八卦二路与田贝四路的一座城市跨线桥。该跨桥线桥全长1.2km,跨越深圳火车北站29条股道,是目前世界上跨越铁路股道最多的桥梁之一。主桥采用门构式(下承)钢管混凝土柔性系杆拱,拱脚无推力,桥面宽23.8m,拱脚处桥面宽28m。设计荷载:汽—超20,挂—120,人群荷载:4.5kN/m2,桥下按电气化列车运营要求预留净空,不小于7.2m。桥面纵坡2.5‰,横坡为双向1.5%,地震按7度设防。

主桥计算跨径150m,矢跨比1/4.5,拱轴为悬链线,拱轴系数1.167,采用双拱肋,每片拱肋由4-Ф750×12mm钢管混凝上组成桁式断面,桁高3.0m,桁宽2.0m,钢管内灌注C50微膨胀混凝土。两片拱肋之间采用6道风撑连接,拱顶没2片K撑,拱脚侧各设2片一字形风撑。

桥面采用预应力钢高托座—混凝土空心板叠合梁,设汁成纵向漂浮体系。下部结构基础为独柱独桩式,桥墩采用Ф2.8m~Ф3.4m变截面钢管混凝土组合柱,主拱与桥墩采用拱墩固结形式,采用纵向系杆平衡主拱的水平推力。

钢管内流态混凝土受力机理

钢管内的混凝土,在灌注过程中处于流态,类似于液体,一般在设计时仅将其作为荷载;由于液态混凝土向拱脚钢垫板传递液压力,从而减轻钢拱肋负荷,改变结构受力状况;因此,本桥设计时不仅将其作为荷载;同时考虑液态混凝土向拱脚钢垫板传递液压力的减载作用。

钢管内的流态混凝土承受一部分内力。因此钢管内的混凝土凝固时有初应力。流态混凝土不能传递剪力、弯矩,也不能传递集中力产生的点压力,但它能传递液压力,其大小为P=γ×h。在拱顶处h=0,但在拱脚处h就等于矢高f。拱脚截面承受着整个主拱及桥面的全部荷载,从而控制设计。因此。研究流态混凝土对拱脚的受力影响有意义。本桥考虑流态混凝土受力机理后钢管承受混凝土重量引起的拱脚应力由46.52MPa减小到33.28MPa,降低37.1%。同时,设计中在拱脚采用了实腹段。先浇实腹段混凝土,再灌钢管内的混凝土,对于改善拱脚的受力有利,对设计夫跨度的钢管混凝土拱桥更具指导意义。先安装的构件将参与后期受力。钢管参加各阶段受力,而钢管内混凝土仅参与除钢管与管内混凝土重量以外的后期受力。显然,在同·截面上,钢管所受的力比混凝土要大。从材料性质上看,钢材的抗拉压性能均比混凝土好,钢管混凝上的施工顺序也正是设计所期望的。

主拱钢管灌注混凝土顺序对结构受力的影响

经分析确定,先灌上管混凝土,后灌下管混凝土,理由如下:(1)桥面恒活载作用下,拱脚产生负弯矩,使拱脚上缘受拉,下缘受压,与前阶段的初应力叠加起来,对安装桥面及运营阶段均有利。(2)先灌上管混凝十使墩顶产生的水平变位较小。(3)从构造上看。上管受力稍大一些更合理,因为下管拱脚的锚固不及上管强。

第三篇:浅谈钢管混凝土拱桥施工方法

摘 要:本文主要对钢管混凝土拱桥的施工方法及施工要点进行了研究说明,结合钢管混凝土拱桥的理论基础,对钢管混凝土拱桥的施工方法进行了理论和计算方法的阐述。

关键词:钢管混凝土 拱桥 施工

一、绪论

钢管混凝土是在薄壁圆形钢管内填充混凝土而形成的一种组合材料,它一方面借助内填混凝土增强钢管的稳定性,同时又利用钢管对核心混凝土的套箍作用,使核心混凝土处于三向受压状态,从而使其具有更高的抗压强度和变形能力。

钢管混凝土在桥梁工程中的应用已有一百多年的历史。早在1879年,英国的severn铁路桥建设中就采用了钢管桥墩,当时在管中灌注混凝土,主要用来防止内部锈蚀并承受压力。20世纪30年代末期,前苏联用钢管混凝土建造了跨度101m的公路拱桥和跨度140m的铁路拱桥。我国从1959年开始研究钢管混凝土的基本性能和应用,进入20世纪80年代,钢管混凝土在桥梁工程中的应用开始得到研究,据不完全统计,在20年内,建成了200余座不同跨径、不同结构体系的钢管混凝土拱桥,2005年建成的重庆巫山长江大桥,主跨达460m。钢管混凝土拱桥之所以得到如此快的发展,归纳起来有以下几个方面的原因:

(一)跨度适应能力强;

(二)承载能力大,施工快捷;

(三)地基适应性好;

(四)造型优美;

(五)有较成熟的施工技术作支撑。

钢管混凝土拱桥工程实例 序号 桥名 建成时间 主跨(m)矢跨比(m)结构形式 1 四川泸州合江长江大桥 518 中承式 2 重庆巫山长江大桥 2005 460 1/3.8 中承式 3 湖北宜昌支井河大桥 2009 430 1/6 上承式 4 湖南湘潭莲湘大桥 388 1/5.19 中承式 5 湖南茅草街大桥 2006 368 1/5 中承式

二、钢管混凝土拱桥施工要点

(一)钢管拱肋制作

钢管拱肋制作是钢管混凝土拱桥施工中的重要工序和施工质量控制的关键环节。钢管拱肋制作属于钢结构加工部分,钢管切割、焊接技术要求高,一般应由具有较强钢结构加工能力的单位完成,焊接工人应持证上岗。

钢管拱肋制作方法有工厂制作和施工现场制作两种方式,究竟选择何种制作方法,应根据桥梁的结构特点、施工单位的技术水平、施工现场的运输条件、钢管拱肋的安装工艺和经济指标等综合确定。

工厂化制作的好处在于:能使产品制作处于较稳定的生产流水线上,人员、生产设备和检测设备配置等方面能得到保证;工厂制作受温度变化、湿度、粉尘等不利环境的影响较现场制作要小得多;可以按照规范的作业程序进行日常生产组织管理;场地建设和制作加工所需的设备运输费用低。不足之处在于:成品或半成品的构件需通过陆地或水运运输到安装现场,运输费用高,出现部分损伤和损坏的风险性较大。现场加工制作需要较大的生产场地,受现场施工条件局限,大型加工设备投入、试验检验手段、环保和安全及职业健康管理等方面不如加工化制作完善,运输成本较低,但增加了场地建设费用和较多的辅助施工费用。

用于钢管混凝土拱桥拱肋中的钢管有螺旋焊钢管、直缝焊钢管和无缝钢管三种。管径较大的弦管和腹杆通常采用有缝钢管,管径小的钢管宜采用无缝钢管。螺旋焊接加工费用较低,管节较长(一般为12~20m),成管焊缝质量容易控制,也有利于钢管与混凝土的共同作用。

将拱肋弦管加工成曲线的方法有热加工和冷加工两种方式,即热煨弯成型技术和以直代曲多段短钢管对接拟合拱轴线成型技术。钢管弯曲应按《铁路钢桥制造规范》(tb 10212-2009)规定执行。以直代曲方法适合于直管焊接的钢管来加工制作拱肋弦管,这种方法具有工艺简单、设备投入少、加工速度快、对钢材损伤小、施工成本低等优点,但直管连接处有凸点,拱轴线形不连续。当直缝焊接管管节较长时,也应将其弯成弧形。

钢管弯制完成后,与已经加工好的其他部件进行组装,形成单节段拱肋。单节段组装方式有卧式拼装和立式拼装两种。卧式拼装是将钢管拱肋侧向翻转90°,把立面改成平面进行加工制作。国内钢管拱肋桁架的拼装,通常用于采用无支架缆索吊装、支架安装工艺的钢管拱桥。卧式拼装方式降低了钢管拱肋节段重心位置和拼装作业高度,便于施工操作和控制,能充分利用自动焊接和起重设备进行作业,起到了提高焊接质量和降低安全风险的作用。立式拼装是按照钢管拱肋曲线搭设拱形工作支架,使钢管拱肋节段保持立面姿态进行零部件组装的方式。采用该方式加工制作时,由于钢管拱肋节段中心高,稳定性较差,高空作业量增加,作业难度大,故在安全技术方面需要制定相应的措施保证拱肋在立式姿态下稳定;同时工作支架也需要专门设计,耗用的施工辅助材料较多,成本较高。立式拼装主要用于受场地使用要求限制或受安装工艺限制的钢管拱桥。

第四篇:钢管类原材料检验规范

钢管类原材料检验规范

1:目的通过对钢管原材料的检验确保本厂生产的产品符合生产工艺及客户的质量技术要求。2:范围

适用于本厂生产用的所有钢管类原材料。3:验收规则

3.1钢管类的质量由供方技术部门检查和验收。

3.2 供方必须保证交货的钢管符合有关规定,并出具理化检测报告单,本厂将按批次选取样块,送理化室进行复查。

3.3 钢管到厂应附有证明该批钢管符合标准要求和订货合同的质量证明书。4:外观质量

4.1 钢管内、外表面不得有裂缝、折叠、分层、龟裂、裂纹、轧折和结疤缺陷存在,这些缺陷必须完全清除掉,清除不得超过其边长和壁厚的负偏差。4.2 划痕允许深度不大于0.1mm。

4.3 钢管内、外表面应光滑,允许有深度不超过0.08的少量凹坑、擦伤和细小的划道,但这些缺陷必须在壁厚的公差范围内。

4.4 表面镀层的钢管其质量判定可参照《电镀件检验标准》执行。

第五篇:钢管混凝土拱桥设计研究的论文

摘要:介绍了上海城市轨道交通明珠线特殊大桥-苏州河桥(25m+64m+25m)的三跨中承式钢管混凝土梁-拱组合体系桥的设计特点,施工阶段划分及结构分析过程和施工难点处理措施。

关键词:钢管混凝土结构;拱桥;设计与施工;徐变控制;

1概述

苏州河桥位于上海城市轨道交通明珠线跨越既有沪杭铁路苏州河桥桥位,与苏州河正交。桥梁需跨越苏州河及两岸的万航渡路和光复西路。河道通航标准为通航水位3.5m,Ⅵ级航道,净宽20m,净高>=4.5m;两岸滨河路规划全宽20m(机非混行),其中机动车道宽8m;两侧非机动车道宽各3m;人行步道宽各3m;两岸滨河路机动车道净高>=4.50m,非机动车道净高>=3.50m,人行道净高>=2.5m。桥式采用25+64+25m三跨中承式钢管混凝土梁-拱组合体系桥,桥梁全长114m,宽12.5m。外部结构体系为连续梁,即拱脚与桥墩处以支座连接,内部为由主纵梁、小纵梁和横梁及钢管混凝土拱肋的组合结构体系。

2钢管混凝土拱桥设计

2.1桥型选择

本方案设计的主导思想是在现有桥梁结构的技术水平发展的基础上有所创新,桥梁造型与周围环境相协调,桥式方案力求新颖独特,并充分体现现代化大都市的节奏与气派。

拱桥是一种造型优美的桥型,它的主要特点是能充分发挥材料的受压性能,而钢管混凝土的特点是在钢管内填充混凝土,由于钢管的套箍作用,使混凝土处于三向受压状态,从而显著提高混凝土的抗压强度。同时钢管兼有纵向主筋和横向套箍的作用,同时可作为施工模板,方便混凝土浇筑,施工过程中,钢管可作为劲性承重骨架,其焊接工作简单,吊装重量轻,从而能简化施工工艺,缩短施工工期。

苏州河桥的桥型方案经过研究分析、结构优化及评估论证,最后采用25+64+25m飞鸟式钢管拱桥的设计方案。以抗压能力高的钢管混凝土作为主拱肋,以抗拉能力强的高强钢绞线作为系杆,通过边拱肋的重量,随着施工加载顺序逐号张拉系梁中的预应力筋以平衡主拱所产生的水平推力,最终在拱座基础中仅有很小的水平推力。拱脚与桥墩的连接由固接改为铰接,以避免由于轨道交通无缝线路产生的纵向水平力和温度应力引起拱脚过大的推力而导致拱脚处混凝土开裂,克服了拱桥对基础的苛刻要求。

全桥总布置如图1:

2.2上部结构

主桥为中承式拱桥,主拱理论轴线为二次抛物线,矢跨比为1:4,其中桥面以下部分采用C50钢筋混凝土结构,截面为带圆角的矩形截面。桥面以上部分采用钢管混凝土结构,钢管截面为圆端形,采用A3钢,钢管壁厚16mm,外涂桔红色漆,内填C55微膨胀混凝土。

边拱矢跨比为1:7.4,理论轴线为二次抛物线,截面采用钢筋混凝土矩形截面,按偏心受压构件设计。拱上立柱采用圆形截面钢管混凝土立柱,下端与边拱肋固结,上端设聚四氟乙烯球冠形铰支座,与边纵梁铰接。

主拱每侧设7根吊杆,间距约6.4m,吊杆采用挤包双护层大节距扭铰型拉索,吊杆钢索双护层均为高密度聚乙烯护层(PE+PE桔红色),锚具为冷铸墩头锚。吊杆上端锚固在钢管混凝土拱肋内,下端锚固在横梁底部。

主拱桥面以上部分共设三道一字型风撑,每侧边拱设三道横撑,主拱设一道横撑,以增加全桥的稳定性。拱座采用钢筋混凝土结构,每墩设两个拱座。通过横撑相连。拱座施工时应预先埋好立柱钢管、主拱及边拱伸入拱座内的钢筋,准确对位。

桥面系为由边纵梁、横梁、小纵梁及现浇桥面板组成。边纵梁为箱形断面,边孔与边拱肋相接部分及中拱与边纵梁连接部分为矩形断面,采用C50级部分预应力混凝土结构,在恒载及自重作用下为全截面受压构件。横梁采用C50级预应力混凝土结构,全桥共设小横梁15片,端横梁2片,中横梁与边纵梁接合处2片。全桥共设四片小纵梁(全桥通长)与横梁固结在一起形成格构体系。桥面板采用C40级钢筋混凝土板,桥面板采用在格构系上现浇的方法处理。桥面板的钢筋布置应采取防迷流措施。

桥面排水原则上采用“上水下排”,即横坡加导水槽方式,在桥梁横断面内设0.5%的横坡。承轨台每隔一定的距离断开,向两侧排水。

桥面上部建筑设施包括混凝土道床及轨道、通信信号电缆支架、隔音屏、防噪柱及接触网腕臂柱。桥面布置有:聚氨脂防水层、0.5%双向排水坡、落水管、承轨台及钢轨、I字形钢筋混凝土柱、防噪屏及电缆支架等。每隔30~50m设接触网立柱一对,每隔1000m左右布置一组接触网锚固立柱。桥上不设人行道及照明。

支座采用QGPZ盆式橡胶支座和QGBZ板式橡胶支座。

2.3下部结构

拱桥主墩基础采用桩基础,将⑨层粉细砂层作为桩基持力层,为满足桥梁上部钢轨对基础沉降的要求,经分析计算比较,采用桩径为D=0.8m的钻孔灌注桩,桩长67m,每个主墩12根桩,承台4.8×17.0×2.0m,边墩基础采用8根桩径D=0.8m钻孔灌注桩,桩长67m,承台4.35×16×2.0m,边墩及盖梁为双柱式钢筋混凝土结构。

3结构分析

结构分析采用有限元程序SAP91进行三维空间计算,包括整体分析、稳定分析等,用桥梁专用平面分析程序PRPB和BSACS分别进行了验算。在计算时桥面以上主拱拱肋除按钢管混凝土设计外,还用类似于钢筋混凝土构件的方法进行施工计算,在截面形成阶段采用应力叠加法设计。钢管的套箍系数取0.8。

3.1施工阶段计算

本桥施工体系转换分五个阶段进行,施工中中孔利用既有铁路钢桥作支架,待新桥建成后拆除既有桥。

第一阶段:在支架上现浇两边段(立柱、拱、横梁)及全桥边纵梁,待混凝土达到强度后每片边纵梁内张拉两根预应力束。

第二阶段:将工厂内制造的主拱肋钢管,每侧7段,运到工地,在边纵梁上搭设支架拼装就位。空钢管拱肋合拢后即封住主拱、纵梁结合处,再形成钢管混凝土截面。待主拱内混凝土达到设计强度后即开始张拉吊杆,给吊杆以初始张拉力,后锚固于主拱肋内。现浇中段横梁,待混凝土达到设计强度的90%后,张拉横梁预应力筋,浇全桥小纵梁,待混凝土达到设计强度后,张拉小纵梁内的预应力束。在每片边纵梁两端施加预应力,张拉两根预应力束。

第三阶段:张拉边纵梁内T2及B2各一束,铺装中孔桥面板后,拆除中拱支架。

第四阶段:拆除边拱支架,浇注全桥桥面板,张拉边纵梁内三根预应力束。

3.2成桥阶段计算

进行以下几方面的计算:

1.二期恒载按换算均布荷载分担到横梁和纵梁上;

2.支座沉降计算;

3.温度变化计算;

4.活载为轻轨列车荷载,每列最多八节,每节8轴,重车轴重170kN,轻车轴重80kN,双线荷载;

5.计算承轨台在成桥后三个月、六个月、一年、三年的徐变变形量。

3.3稳定性分析

在本桥的稳定性方面,设计时考虑两片主拱之间加设三道一字型风撑,拱肋基础连成整体。全桥整体稳定分析采用SAP93曲屈稳定分析程序进行计算,弹性稳定系数10-12。

3.4桩基计算

桩基设计从三方面控制:

1.地基承载力控制:Nd=(up?fili+fipAp)/K;

2.桩身强度控制:s?0.2R;

3.沉降控制:满足轨道变形的要求,控制在2cm。

最终沉降量采用分层总和法计算,将桩基承台桩群与桩之间土作为实体深基础,且不考虑沿桩身的压力扩散角,压缩层厚度自桩端全断面算起,至附加压力等于土的自重压力的20%处。

沉降计算结果

4施工关键问题

4.1与既有铁路桥关系及处理

苏州河桥桥位选择的目的即是利用旧沪杭铁路上的旧铁路桁架作为施工架桥的临时支架,新桥完成后即拆除旧桥。

经调查得知:沪杭铁路内环线上既有的苏州河桥,建于1907年,基础桩采用木桩,上部结构于1994年更换新钢桁梁,钢桁梁为一孔跨度44.34m的简支梁,其全长45.4m,桁高5.5m,采用高强螺栓连接。一孔重量为132.98t(包括东侧人行道及上弦检查走道,人行道1.5m)。该桥为单线桥,设计活载为中活荷载。苏州河桥其南端接万航渡路平交道口,铁路通讯、信号电缆从桥下穿过,市区电线、高压线由桥侧上空跨过。

因此桥梁设计时应考虑两个问题,其一,如何使新桥在施工的各个阶段施加于支架上的荷载不超过旧有铁路桥的设计承载力,其二,保证旧桥拆除时不影响新桥的安全稳定。

设计时,每个施工阶段的计算均增加了一项,即验算旧桥的承载力,对支架拆除顺序进行了准确规定。但在施工时,有遇到以下问题:

1.根据现场量测结果,新桥纵轴线偏离老桥轴线(南端82mm,北端73mm),使得老桥偏心受力。

2.由于新桥全宽12.5m,而老桥全宽5.9m。新桥的两侧边纵梁均位于老桥的外面,故施工支架必须伸出老桥之外,采用I字钢横向架设于老桥顶上,以满足立模的需要和刚度要求。

3.由于老桥桁梁的两端为斜焊,上面不能架设I字钢,另外,既有人行道在施工期内又不能封闭,故必须对老桥进行接长处理,以满足架设I字钢和桥上支架与岸上满堂支架连接的需要,老桥接长采取在上弦杆用2根并列的I200mm接出,梁端部和岸上的竖杆均采用300mm的钢管,在梁的斜杆中间另加一根竖杆,各杆件的连接均采取满焊的方式,并在纵横向加设斜拉杆以增加稳定。

4.由于轨顶标高限制,老桥梁顶与新桥边纵梁底的间距较小,架设施工支架I55I字钢后,仅剩32cm左右的间隙,故边纵梁底模下的纵向隔栅只能采用10X20cm的方木,在纵向隔栅与I字钢之间垫楔形木,用以调整梁底标高,同时便于以后拆模。

5.I字钢分别架设在老桥钢桁梁的节点及两节点间1/3处,两端各挑出4.03-4.12m和2.48-2.57m,为保证I字钢的稳固,在老桥桁梁处采用U形钢筋将I字钢与老桥上弦杆焊接,同时在I字钢下部,用75X75角钢纵向连接成整体,该纵向角钢又可作为斜撑的支撑点。

6.在老桥的梁底与桥台的支承垫石、台帽间均用硬木和钢板等加以塞死,以增加老桥钢梁的稳固。

由于施工时采取的施工方法使得施工荷载超过设计荷载,故设计单位根据施工方式及拆模顺序的要求,重新验算了老桥承载力、老桥上弦杆挠度、老桥横向倾覆稳定、施工支架I字钢悬臂端挠度及I字钢稳定。

4.2预应力梁张拉

预应力张拉时,应力应变实行双控,张拉程序为:0初应力(0.1σk)1.0σk持荷5分钟锚固。设计取值已考虑锚固损失,故不采用超张拉。从0.1σk至1.0σk的伸长量数值为控制值,该值与0.9σk的设计伸长值相比较,判断是否超标。施工单位也实测弹性模量,核算伸长量。

预应力张拉时按强度、龄期实行双控。强度要求达到100%,龄期控制在9-19天。

锚具供货厂家提供的夹片需片片检验硬度,并控制在允许范围内,现场按规定抽检。

4.3钢管拱的吊运和安装、钢管内混凝土灌注

由于在旧桥上搭设施工支架,施工场地有限,钢管拱肋安装采取边纵梁上支设管排、排架中部铺上钢轨滑道,以及滑辘提升措施的施工方案,取保安全施工。由于中承式拱与桥面连接处需三方向固接,即此处的结点需连接钢管拱、边纵梁、横梁与桥面以下钢筋混凝土拱肋,而边纵梁、横梁为预应力梁,钢管拱内有加劲肋和钢筋,三者相连形成固接,要求强度和质量非常高,而钢管拱的安装精度控制为6mm,施工难度非常大。

同时,由于在同类型桥梁中,该桥的跨度较小,钢管断面不会很大,为方便混凝土灌注,同时考虑到景观问题,钢管断面选择为椭圆形断面,在混凝土灌注时要求严格控制骨料规格的要求,确保混凝土灌注均匀、饱满。

4.4基础施工

苏州河桥主墩距老桥基础很近,南主墩中心与老桥台边相距6.5m,北主墩中心与老桥台边相距5.8m,由于老钢桥将作为新建桥的临时施工支架,因此施工中老桥不能受到扰动。同时进入汛期后,在主墩基础施工时也需确保防汛的要求,最后主墩施工采取如下措施:

a.采用沉井施工法,确保对土体的围护。

b.采用超长护筒(河床以下2.0m),确保不因渗水而产生塌孔。

c.采用沉井封底,克服因渗水而出现沉陷。

主墩总体施工顺序如下:沉井制作、沉井下沉、钻机操作平台布置、埋设护筒、沉井封底、钻孔桩施工、承台和拱墩施工。

4.5施工监测

由于该桥结构形式复杂,施工难度大,因此,施工时进行了以下监测:

1.徐变变形

对梁、拱的徐变变形进行跟踪量测。分别在桥面边跨端部、边跨跨中、中墩支点处桥面、纵横梁与拱相交处、中跨中和拱顶处设8个测试断面,共23个点。

2.拱肋钢管截面应力监测。

3.施工过程中各个阶段拱脚实施变位、倾角监控。

4.现场实测钢管混凝土弹性模量发展曲线。

5经济技术指标

该桥全长114米,宽12.5米,桥梁面积1425m2,桥梁总概算1216万元,综合经济指标为8300元/m2。

6综合分析

钢管混凝土拱桥首次在轨道交通桥梁中(尤其是在上海这种软土地区)应用,是一种大胆的尝试,它主要有以下几个特点:

1.桥梁造型优美:飞鸟式钢管拱桥横跨苏州河,形成明珠线的一道风景;

2.以抗压能力高的钢管混凝土作为主拱肋,以抗拉能力强的高强钢绞线作为系杆,通过边拱肋的重量,随着施工加载顺序逐号张拉系梁中的预应力筋以平衡主拱所产生的水平推力,最终在拱座基础中仅有很小的水平推力。克服了拱桥对基础的苛刻要求。

3.利用旧沪杭铁路上的旧铁路桁架作为施工架桥的临时支架,新桥完成后即拆除旧桥,解决了水上施工的难点。

参考文献

1.上海城市轨道交通明珠线苏州河桥施工设计总说明,1998年4月。

2.陈宝春,钢管混凝土拱桥发展综述,《桥梁建设》,1997年第二期。

3.上海城市轨道交通明珠线苏州河桥施工组织设计,1998年6月。

下载钢管混凝土类综述word格式文档
下载钢管混凝土类综述.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    苏州河桥钢管混凝土拱桥设计与施工

    1、概述 苏州河桥位于上海城市轨道交通明珠线跨越既有沪杭 铁路苏州河桥桥位,与苏州河正交。桥梁需跨越苏州河及两岸的万航渡路和光复西路。河道通航标准为通航水位3.5m,Ⅵ级......

    钢管混凝土在抗震工程中的应用论文

    钢管混凝土结构是在劲性钢筋混凝土结构、螺旋配筋混凝土结构以及钢管结构的基础上发展起来的。下面是小编收集整理的钢管混凝土在抗震工程中的应用论文,希望对您有所帮助!摘要......

    钢管租赁

    钢管租赁服务中心 合同书 出租方:合同编号: 承租方:签订地点: 签订时间:年月日 第一条:租赁依据 根据《经济合同法》及有关规定,按照平等互利的原则,为明确出租方与承租方的权利和义......

    提篮式钢管混凝土拱桥上部结构施工技术汇报(鲁班奖)

    提篮式钢管混凝土拱桥上部结构施工技术汇报(鲁班奖工程) 针对提篮式钢管混凝土拱桥上部结构施工的特点,研究制定了提篮拱桥钢结构现场卧式加工制作、焊接工艺规程及验收技术标......

    T91钢管简介

    T91钢管化学成分 T91钢管是钢管的一种, T91钢是美国国立像树岭实验室和美国燃烧工程公司冶金材料实验室合作研制的新型马氏体耐热钢。它是在9Cr1MoV钢的基础上降低含碳量,严格......

    钢管行业发展规划[合集]

    钢管行业发展规划x xx 发布2018 年,钢管行业深入推进供给侧结构性改革,坚持新的发展理念,市场环境得到明显改善,钢管价格基本稳定,企业效益好转,行业发展取得了一定成效。2018 年......

    钢管租赁合同

    出租方:_________ (以下简称甲方)承租方:_________ (以下简称乙方)根据《中华人民共和国民法典》及其它有关法律、法规的规定,甲、乙方双方根据平等互利、等价有偿的'原则,经协......

    钢管销售合同

    钢管销售合同 钢管销售合同1 卖方(甲方):________________公司 合同编号:____________买方(乙方):__________________公司 签订地点及履行地:_______签订时间: ____ 年___月___日......