一元二次方程解法第2课时配方法1(共5则范文)

时间:2019-05-13 22:01:33下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《一元二次方程解法第2课时配方法1(共)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《一元二次方程解法第2课时配方法1(共)》。

第一篇:一元二次方程解法第2课时配方法1(共)

一元二次方程解法第2课时配方法

1一、课前回顾与预习

1.根据完全平方公式填空:

⑴ x²+6x+9=﹙﹚²⑵ x²-8x+16=﹙﹚²

⑶ x²+10x+﹙ ﹚²=﹙﹚² ⑷ x²-3x +﹙ ﹚²=﹙﹚²

(5)x2+12x+____=(x+6)2;(6)x2+4x+____=(x+_____)2;

(7)x+8x+____=(x+______).

2.解下列方程:(1)((x3)2=25;(2)12(x2)2-9=0.

二、合作交流

例1.你会解方程 x+6x-16=0吗?你会将它变成(x+m)=n(n为非负数)的形式吗?

用配方法解一元二次方程的步骤:

(1)将一元二次方程整理成二次项系为1的一般形式。

(2)在二次项和一次项之后加上一次项系数的一半的平方,再减去这个数。

(3)把原方程配方成(xa)b0的形式;

(4)运用直接开平方法求解。22 22

2例

2、解下列方程:

(1)x+10x+9=0;(2)x-3x-4=0.

(3)x-2x-2=0;(4)x+

3=;

3、应用配方法把关于x的二次三项式x2-4x+6变形,然后证明:无论x取任何实数值,此二次三项式的值都是正数,再求出当x取何值时,这个代数式的值最小,最小值是多少? 222

2(三)当堂检测:

1.x2px_______=(x-_______)2.

2、将一元二次方程x2-6x-1=0配方后,原方程可化为()

A、(x-3)2=10B、(x-6)2=35C、(x-3)2=8D、(x-6)2=373、二次三项式x2-4x+3配方的结果是()

A、(x-2)2+7B、(x-2)2-1C、(x+2)2+7D、(x+2)2-

14、用配方法解方程x2+x-1=0,配方后所得方程是()

1313A.(x2B.(x+)2= 242

41515C.(x2D.(x2= 24245、配方法解方程:

(1).x2-2x-1=0(2)x22x30

26、若a、b、c是△ABC的三条边,且abc506a8b10c,判断这个三角形的形状。

四、课后练习

一、选择题:

1.用配方法解方程x2x50时,原方程应变形为()

A.(x1)6 B.(x2)9 222222C.(x1)62D.(x2)9

22.把x2-4x配成完全平方式需加上().

(A)4(B)16(C)8(D)

13.若x2+px+16是一个完全平方式,则p的值为().

(A)±2(B)±4(C)±8(D)±16

二、用配方法解一元二次方程

(1). x222x20.(2)、x4x20

(3)、x+12x-15=0(4)3x(x-3)=2(x-1)(x+1).. 2

2三、已知代数式x-5x+7,先用配方法说明,不论x取何值,这个代数式的值总是正数;再求出当x取何值时,这个代数式的值最小,最小值是多少? 2

第二篇:一元二次方程解法——因式分解、配方法

一元二次方程解法——因式分解、配方法

知识点回顾:

定义:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.

一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.

一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

解法一 ——直接开方法

适用范围:可解部分一元二次方程

直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)^2=n(n≥0)的方程,其解为x=m±√n

归纳小结:

共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.•我们把这种思想称为“降次转化思想”.由应用直接开平方法解形如x2=p(p≥0),那么x=

转化为应用直接开平方法解形如(mx+n)

2=p(p≥0),那么mx+n=,达到降次转化之目的.若p<0则方程无解

自主练习:1:用直接开平方法解下列方程:

(1)x2225;(2)(x1)2

9;

(3)(6x1)2

250.(4)4(x2)2

810

(5)5(2y1)2

180;(61(3x1)264;(7)6(x2)2

41;

2.关于x的方程x29a212ab4b2

0的根x1,x2.

3.关于x的方程x2

2axb2

a2

0的解为解法二——分解因式法

适用范围:可解部分一元二次方程

因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。解下列方程.

(1)2x2+x=0(2)3x2+6x=0

上面两个方程中都没有常数项;左边都可以因式分解:

2x2+x=x(2x+1),3x2+6x=3x(x+2)因此,上面两个方程都可以写成:

(1)x(2x+1)=0(2)3x(x+2)=0

因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是:

(1)x=0或2x+1=0,所以x11=0,x2=-

2.(2)3x=0或x+2=0,所以x1=0,x2=-2.

因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法. 例1.解方程

(1)4x2=11x(2)(x-2)2=2x-4分析:(1)移项提取公因式x;(2)等号右侧移项到左侧得-2x+4提取-2因式,即-2(x-2),再提取公因式x-2,便可达到分解因式;一边为两个一次

式的乘积,•另一边为0的形式解:(1)移项,得:4x2-11x=0

因式分解,得:x(4x-11)=0于是,得:x=0或4x-11=0

x111=0,x2=

(2)移项,得(x-2)2-2x+4=0

(x-2)2-2(x-2)=0因式分解,得:(x-2)(x-2-2)=0整理,得:(x-2)(x-4)=0于是,得x-2=0或x-4=0x1=2,x2=

4例2.已知9a

2-4b2

=0,求代数式aba2b2

baab的值.

分析:要求aba2bb2

aab的值,首先要对它进行化简,然后从已知条

件入手,求出a与b的关系后代入,但也可以直接代入,因计算量比较大,比

较容易发生错误.

解:原式=

a2b2a2b2ab2b

a

∵9a2-4b2=0

∴(3a+2b)(3a-2b)=0

3a+2b=0或3a-2b=0,a=-23b或a=23b当a=-23b时,原式=-2b

=3,当a=2b时,原式23=-3.

3b

例3.(十字相乘法)我们知道x2-(a+b)x+ab=(x-a)(x-b),那么x2-(a+b)x+ab=0就可转化为(x-a)(x-b)=0,请你用上面的方法解下列方程.

(1)x2-3x-4=0(2)x2-7x+6=0(3)x2+4x-5=0

上面这种方法,我们把它称为十字相乘法. 一:用因式分解法解下列方程:(1)y2

+7y+6=0;(2)t(2t-1)=3(2t-1);

(3)(2x-1)(x-1)=1.(4)x2

+12x=0;

(5)4x2-1=0;(6)x2

=7x;

(7)x2

-4x-21=0;(8)(x-1)(x+3)=12;

(9)3x2+2x-1=0;(10)10x2

-x-3=0;

(11)(x-1)2

-4(x-1)-21=0.

解法三——配方法

适用范围:可解全部一元二次方程引例::x2+6x-16=0

x2+6x-16=0移项→x2+6x=16

两边加(6/2)2使左边配成x2+2bx+b2的形式 → x2+6x+32=16+9

左边写成平方形式 →(x+3)=25降次→x+3=±5 即 x+3=5或x+3=-5解一次方程→x1=2,x2=-8 像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方拓展题.用配方法解方程(6x+7)2(3x+4)(x+1)=6

分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)

看为一个数y,那么(6x+7)=y2,其它的3x+4=6x+7)+

211,x+1=6x+7)26

-,因此,方程就转化为y•的方程,像这样的转化,我们把它称为换元法. 6

1111y+,x+1=y-解:设6x+7=y则3x+4=

法.

可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.

配方法解一元二次方程的一般步骤:(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.

用配方法解一元二次方程小口诀

二次系数化为一;常数要往右边移;一次系数一半方;两边加上最相当 例1.用配方法解下列关于x的方程(1)x2-8x+1=0(2)x2-2x-

=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.

例3.解下列方程

(1)2x2+1=3x(2)3x2-6x+4=0(3)(1+x)2+2(1+x)-4=0

分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来 完成,即配一个含有x的完全平方.

2266

依题意,得:y2(12y+12)(16y-

16)=6

去分母,得:y2(y+1)(y-1)=72

y2(y2-1)=72,y4-y2=72

(y2-12)2=2894y2-1172=±2

y2=9或y2=-8(舍)

∴y=±3

当y=3时,6x+7=36x=-4x=-

当y=-3时,6x+7=-36x=-10x=-53

所以,原方程的根为x2

51=-3,x2=-3

例5.求证:无论y取何值时,代数式-3 y2+8y-6恒小于0.一元二次方程解法——因式分解、配方法

2013-7-14***(李老师)姓名:

(一)1.下面一元二次方程解法中,正确的是().A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7

B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x2

31=5,x2=

5C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x两边同除以x,得x=

12.下列命题①方程kx2-x-2=0是一元二次方程;②x=1与方程x2=1是同解方程;③方程x2=x与方程x=1是同解方程;④由(x+1)(x-1)=3可得x+1=3或x-1=3,其中正确的命题有().

A.0个B.1个C.2个D.3个

3.如果不为零的n是关于x的方程x2-mx+n=0的根,那么m-n的值为().A.-

12B.-1C.1

D.1 4.x2-5x因式分解结果为_______;2x(x-3)-5(x-3)因式分解的结果是______.

5.方程(2x-1)

2=2x-1的根是________.

6.二次三项式x2+20x+96分解因式的结果为________

;如果令x2+20x+96=0,那么它的两个根是_________.

8.用因式分解法解下列方程.

(1)3y2-6y=0(2)25y2-16=0

(3)x2-12x-28=0(4)x2-12x+35=0

9.已知(x+y)(x+y-1)=0,求x+y的值.

(二)1.配方法解方程2x2-

4x-2=0应把它先变形为().A.(x-13)2=89B.(x-221281210

3)=0C.(x-3)=9D.(x-3)=9

2.下列方程中,一定有实数解的是().

A.x2+1=0B.(2x+1)2=0C.(2x+1)2+3=0D.(x-a)22

=a 3.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是().A.1B.2C.-1D.-2 4.将二次三项式x2-4x+1配方后得()A.(x-2)2+3B.(x-2)2

-3C.(x+2)2+3D.(x+2)2-3 5.已知A.x2x2-8x+15=0-8x+(-4)2,左边化成含有=31B.x2x的完全平方形式,其中正确的是(-8x+(-4)2=1C.x2+8x+42=1D.x2).

-4x+4=-116.如果mx2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m等于().

A.1B.-1C.1或9D.-1或9 7.方程x2+4x-5=0的解是________. 8.方程x2

x10左边配成一个完全平方式,所得的方程是. 9.代数式x2x2

x21的值为0,则x的值为________.

10.已知(x+y)(x+y+2)-8=0,求x+y的值,若设x+y=z,则原方程可变为_______,所以求出z的值即为x+y的值,所以x+y的值为______.

11.无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是_______数. 12.如果16(x-y)2+40(x-y)+25=0,那么x与y的关系是________. 13.用配方法解方程.

(1)9y2-18y-4=0

(2)x2

(3)x2

x10(4)3x2

6x10

(5)(x1)22(x1)

14.如果x-4x+y2

(6)2x25x40 0

(4)x23x2(5)(2x+3)-25=0.(6)2x27x20(7)(x-1)=2x-2(8)6x2-x-2=0,求(xy)的值.

z

15.用配方法证明:

(1)a2

a1的值恒为正;(2)9x2

8x2的值恒小于0.

(3)多项式2x4

4x2

1的值总大于x4

2x2

4的值.

16.用适当的方法解下列方程

(1)x2

-4x-3=0(2)(3y-2)2

=36(3)x2-4x+4=0

(9)(3x+1)2=7

(11)4(x+2)2-9(x-3)2=0

(13)3x2

+1=2

x(10)9x2-24x+16=11

(12)(x+5)(x-5)=3(14)(2x+3)2+5(2x+3)-6=0

第三篇:一元二次方程解法——配方法 教学设计

《解一元二次方程——配方法》 教学设计

漳州康桥学校

陈金玉

一、教材分析

1、对于一元二次方程,配方法是解法中的通法,它的推导建立在直接开平方法的基础上,他又是公式法的基础:同时一元二次方程又是今后学生学习二次函数等知识的基础.一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位.我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过的一元二次方程、二次根式、平方根的意义、完全平方式等知识加以巩固.初中数学中,一些常用的解题方法、计算技巧以及主要的数学思想,如观察、类比、转化等,在本章教材中都有比较多的体现、应用和提升.我们想通过一元二次方程来解决实际问题,首先就要学会一元二次方程的解法.解一元二次方程的基本策略是将其转化为一元一次方程,这就是降次.2、本节课由简到难展开学习,使学生认识配方法的基本原理并掌握具体解法.二、学情分析

1、知识掌握上,九年级学生学习了平方根的意义和两个重要公式——平方差公式和完全平方公式,这对配方法解一元二次方程打好了基础.2、学生对配方法怎样配系数是个难点,老师应该予以简单明白、深入浅出的分析.3、教学时必须从学生的认知结构和心理特征出发,分析初中学生的心理特征,他们有强烈的好奇心和求知欲.当他们在解决实际问题时发现要解的方程不再是以前所学过的一元一次方程或可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的问题.而从学生的认知结构上来看,前面我们已经系统的研究了完全平方式、二次根式,这就为我们继续研究用配方法解一元二次方程打好了基础.三、教学目标

(一)知识技能目标

1、会用直接开平方法解形如xmn(n0).22、会用配方法解简单的数字系数的一元二次方程.(二)能力训练目标

1、理解配方法;知道“配方”是一种常用的数学方法.2、了解用配方法解一元二次方程的基本步骤.(三)情感与价值观要求

1、通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们的数学应用意识和能力,激发学生的学习兴趣.2、能根据具体问题的实际意义,验证结果的合理性.四、教学重点和难点

教学重点:用配方法解一元二次方程 教学难点:理解配方法的形成过程

五、教学过程(一)活动1:提出问题

要使一块长方形场地的长比宽多6m,并且面积为16m,场地的长和宽各是多少? 设计意图:让学生在解决实际问题中学习一元二次方程的解法.师生行为:教师引导学生回顾列方程解决实际问题的基本思路,学生讨论分析.(二)活动2:温故知新

21、填上适当的数,使下列各式成立,并总结其中的规律.(1)x6x x3(2)x8x (x)2222(3)x12x (x)2(4)x5x (x)

222(5)a2ab (a)(6)a2ab (a)2

2222、用直接开平方法解方程:x26x92

设计意图:第一题为口答题,复习完全平方公式,旨在引出配方法,培养学生探究的兴趣.(三)活动2:自主学习

自学课本思考下列问题:

1、仔细观察教材问题2,所列出的方程x26x160利用直接开平方法能解吗?

2、怎样解方程x26x160?看教材框图,能理解框图中的每一步吗?(同学之间可以交流、师生间也可交流.)

3、讨论:在框图中第二步为什么方程两边加9?加其它数行吗?

4、什么叫配方法?配方法的目的是什么?

5、配方的关键是什么?

交流与点拨:

重点在第2个问题,可以互相交流框图中的每一步,实际上也是第3个问题的讨论,教师这时对框图中重点步骤作讲解,特别是两边加9是配方的关键,使之配成完全平方式.利用a±2ab+b=(a±b).222注意:9=(),而6是方程一次项系数.所以得出配方的关键是方程两边加上一次项系数一半的平方,从而配成完全平方式.设计意图:学生通过自学经历思考、讨论、分析的过程,最终形成把一个一元二次方程配成完全平方式形式来解方程的思想(四)活动4:例题学习

例:解下列方程:

(1)x8x10(2)2x13x(3)3x6x40

教师要选择例题书写解题过程,通过例题的学习让学生仔细体会用配方法解方程的一般步骤.交流与点拨:用配方法解一元二次方程的一般步骤:

(1)将方程化成一般形式并把二次项系数化成1;(方程两边都除以二次项系数)(2)移项,使方程左边只含有二次项和一次项,右边为常数项.(3)配方,方程两边都加上一次项系数一半的平方.(4)原方程变为mxnp的形式.22222(5)如果右边是非负数,就可用直接开平方法求取方程的解.设计意图:牢牢把握通过配方将原方程变为mxnp的形式方法.2(五)课堂练习:导学练上面的【课堂检测】习题

师生行为:对于解答题根据时间可以分两组完成,学生板演,教师点评.设计意图:通过练习加深学生用配方法解一元二次方程的方法.六、归纳与小结:

1、理解配方法解方程的含义.2、要熟练配方法的技巧,来解一元二次方程,3、掌握配方法解一元二次方程的一般步骤,并注意每一步的易错点.4、配方法解一元二次方程的解题思想:“降次”由二次降为一次.

第四篇:一元二次方程(配方法第一课时)

一、填空题

1、在下列各式中是一元二次方程的共有

①x2+3=x;②2 x2-3x=2x(x-1)– 1;③3 x2-4x – 5;④x2=-1

x+21、已知方程2(m+1)x2+4mx+3m-2=0是关于x的一元二次方程,那么m的取值范围是。

2、关于x的方程mx2-3x= x2-mx+2是一元二次方程,则m___________.

3、一元二次方程(1-3x)(x+3)=2x2+1的一般形式是它的二次项系数是;一次项系数是;常数项是。

4. 4x(x-1)=2(x+2)+8化成一般形式_______________,二次项系数____,一次项系数是____,常数项是______.5.方程x2=1的解为______________.方程3 x2=27的解为______________.1x2+6x+____=(x+____)2,x23x____+=(a±____)2 (x)2a2±46、已知关于x的一元二次方程(2m-1)x2+3mx+5=0有一根是x=-1,则

7、若代数式x2-2x与代数式-9+4x 的值相等,则x的值为。

8.关于x的一元二次方程(m+3)x2+4x+ m2-9=0有一个解为0 , 则m=_____

二、选择题(每小题4分,计20分)

9、下列方程,是一元二次方程的是()

1x①3x2+x=20,②2x2-3xy+4=0,③x2-=4,④x2=0,⑤x2-+3=0 x3

A.①②B.①②④⑤C.①③④D.①④⑤

10、一元二次方程的一般形式是()

Ax2+bx+c=0Ba x2+c=0(a≠0)Ca x2+bx+c=0Da x2+bx+c=0(a≠0)

11.方程6 x2-5=0的一次项系数是()

A6B5C-5D0

12.将方程x2-4x-1=0的左边变成平方的形式是()

A(x-2)2=1B(x-4)2=1C(x-2)2=5D(x-1)2=411、方程(x-3)2=(x-3)的根为()

A.3B.4C.4或3D.-4或313、从正方形铁片上截去2cm宽的一个长方形,剩余矩形的面积为80cm2,•则原来正方形的面积为()

A.100cm2B.121cm2C.144cm2D.169cm2

2四.用直接开平方法解方程:(2)5x2-=0(3)(x+5)2=16(4)8(3-x)2 –72=05

(1)x2 =64

五.用配方法解下列方程.:(2)x2+ 6x-5=0(3)x2-4x+ 3=0

(1)x2+ 2x + 3=0

(4)x2-2x-1 =0(5)-x2-x+12 =0(6)x2-6x+9 =0

第五篇:§23.2一元二次方程的解法(配方法)

§23.2一元二次方程的解法(配方法)

(第3课时)

授课班级_______ 姓名____________ 典例分析

说明不论m为何值时,关于x的方程

(m28m17)x2

2mx10都是一元二次方

程。

点评:关键是看二次项系数是否有可能为0。课下练习

一、选择题:

1.将一元二次方程x26x50化成(xa)2

b的形式,则b等于().A.-4B.4C.-14D.14 2.用配方法解方程x22x50时,原方程应变形为()A.x12

6B.x12

6 C.x22

9

D.x22

9

3.已知方程x2

6xq0可以配成(xp)27 的形式,那么x2

6xq2可以配成下列的()A.(xp)25B.(xp)2

9 C.(xp2)2

9D.(xp2)5

二、填空题 4.x2

nm

x_____(x___)2

.5.二次三项式x2

7x1的最小值为______.6.若方程x2

pxq0可化为(x12

32)

4,则p=_____,q=______.7.方程2y237y配方后得2(y

74)2

=___.8.当x=______时,3x26x2有最大值,这个最大值是_______.三、解答下列各题 9.用配方法解下列方程 ①3x212x210

②(x2)(x3)1

③(x1)2(x1)1

2④x24x20.

10.如果a、b、c是△ABC的三边,且满足式子

a22b2c2

2ab2bc,请指出△ABC的形状,并给出论证过程.11.说明代数式2x24x1总大于x2

2x4.

下载一元二次方程解法第2课时配方法1(共5则范文)word格式文档
下载一元二次方程解法第2课时配方法1(共5则范文).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    一元二次方程的解法(配方法)教学设计

    一元二次方程的解法(配方法)教学设计 一、教材版本:义务教育课程标准实验教科书数学(华师大版)九年级上册第二十三章第二节 二、教材结构与内容分析: 本节内容是初中数学九年级上......

    一元二次方程的解法 第2课时导学案_

    一元二次方程的解法 第2课时学习目标: 1、掌握用配方法解数字系数的一元二次方程; 2、理解解方程中的程序化,体会化归思想。 重点:用配方法解数字系数的一元二次方程; 难点:配方的......

    一元二次方程的解法配方法教学设计(共5则范文)

    教学目标:(一)知识与技能:1、理解并掌握用配方法解简单的一元二次方程。2、能利用配方法解决实际问题,增强学生的数学应用意识和能力。(二)过程与方法目标:1、经历探索利用配方法解......

    一元二次方程配方法5篇范文

    解一元二次方程练习题(配方法)步骤:(1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方;(4)原方程变形为(x+m)2=n的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解......

    一元二次方程配方法5则范文

    配方法 复习: 1、完全平方公式: 2、开平方运算:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根 知识点一:开平方法解一元二次方程 如果方程的一边可以化为含未......

    23.2.2_一元二次方程的解法(三)配方法 学案

    23.2《一元二次方程的解法——配方法》学案学习目标:1、熟练掌握完全平方公式,会将一个二次三项式配成一个完全平方。2、理解配方法的根据就是直接开平方。3、会用配方法解一......

    21.1一元二次方程(第1课时)

    21.1一元二次方程(第1课时) 教学内容 一元二次方程概念及一元二次方程一般式及有关概念. 教学目标 了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;•应用一元二次方......

    一元二次方程的解法(二)配方法—知识讲解(提高)

    一元二次方程的解法(二)配方法—知识讲解(提高) 【要点梳理】 知识点一、一元二次方程的解法---配方法 1.配方法解一元二次方程: 配方法解一元二次方程: 将一元二次方程配成方程......