配方法讲解练习

时间:2019-05-13 22:01:33下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《配方法讲解练习》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《配方法讲解练习》。

第一篇:配方法讲解练习

过程

1.转化: 将此一元二次方程化为a^2;+bx+c=0的形式(即一元二次方程的一般形式)

2.移项: 常数项移到等式右边

3.系数化1: 二次项系数化为1

4.配方: 等号左右两边同时加上一次项系数一半的平方5.求解: 用直接开平方法或因式分解法求解

6.整理(即可得到原方程的根)

ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n)

解一元二次方程练习题(配方法)

1.用适当的数填空: ①、x2+6x+=(x+)2;

②、x2-5x+=(x-)2;

③、x2+ x+=(x+)2;

④、x2-9x+=(x-)2

2.将二次三项式2x2-3x-5进行配方,其结果为_________.

3.已知4x2-ax+1可变为(2x-b)2的形式,则ab=_______.

4.将一元二次方程x2-2x-4=0用配方法化成(x+a)2=b的形式为_______,所以方程的根为_________.

5.若x2+6x+m2是一个完全平方式,则m的值是()

A.3B.-3C.±3D.以上都不对

6.用配方法将二次三项式a2-4a+5变形,结果是()

A.(a-2)2+1B.(a+2)2-1C.(a+2)2+1D.(a-2)2-1

7.把方程x+3=4x配方,得()

A.(x-2)2=7B.(x+2)2=21C.(x-2)2=1D.(x+2)2=2

8.用配方法解方程x2+4x=10的根为()

A.2±10B.-2±14C.-2+10D.2-10

9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值()

A.总不小于2B.总不小于7C.可为任何实数D.可能为负数

10.用配方法解下列方程:

(1)3x2-5x=2.(2)x2+8x=9

(3)x2+12x-15=0(4)41 x2-x-4=0

11.用配方法求解下列问题(1)求2x2-7x+2的最小值 ;

(2)求-3x2+5x+1的最大值

1.①9,3②2.52,2.5③0.52,0.5④4.52,4.52.2(x-34)2-4983.4

4.(x-1)2=5,1±55.C6.A 7. C 8.B9.A 10.(1)方程两边同时除以3,得x2-53x=23,配方,得x2-53x+(56)2=23+(56)2,即(x-56)2=4936,x-56=±76,x=56±76. 所以x1=56+76=2,x2=56-76=-13. 所以x1=2,x2=-13.(2)x1=1,x2=-9(3)x1=-6+51,x2=-6-51; 11.(1)∵2x2-7x+2=2(x2-72x)+2=2(x-74)2-338≥-338,∴最小值为-338,(2)-3x2+5x+1=-3(x-56)2+3712≤3712,∴最大值为3712

第二篇:初三数学配方法练习

初三数学配方法综合练习

1、求证:无论m取什么实数时,总有m2

+4m+5是正数。

2、小李家今天来了一位客人,小李问这位叔叔:“是你的年龄大,还是我爸爸的年龄大?”

这位叔叔说:“你爸爸的年龄是你的平方数,我的年龄是你的6倍少10,你说谁的年龄大呢?”你能帮小李解答这个问题吗?

3、阅读下面材料,完成填空。

我们知道x2+6x+9可以分解因式,结果为(x+3)2,其实x2+6x+8也可以通过配方法分解因式,其过程如下:

x2+6x+8= x2+6x+9–9+8

=(x+3)2–1

=(x+3+1)(x+3–1)=(x+4)(x+2)

(1)请仿照上述过程,完成以下练习:

x2+4x–5=[x+(_____)][x+(_____)] x2–5x+6=[x+(_____)][x+(_____)] x2–8x–9=[x+(_____)][x+(_____)]

(2)请观察横线上所填的数,这两个数与一次项系数、常数项有什么关系?

若有x2+(p+q)x+pq=(_____)(_____)你能找出下述式子中的p和q吗? x2+3x+2=(_____)(_____)x2–x–20=(_____)(_____)

(4)用分解因式法解方程

x2–28x+96=0x2–130x+4000=0

【练习】

1、若分式x25x4

x1的值为0,则的值为()

(A)-1或-4(B)-1(C)-4(D)无法确定

2、将方程2x2+4x+1=0配方后,得新方程为()(A)(2x+2)2–3=0

(B)(x+2)2–1

2=0

(C)(x+1)2–

1=0

(D)(2x+2)2+3=03、一个三角形两边的长是3和7,第三边的长是a,若满足a2–10a+21=0,则这

个三角形的周长是()

(A)13或17(B)13(C)17(D)以上答案都不对

4、当x等于_____时,代数式x2–13x+12的值等于42。

5、已知方程x2-(m+1)x+(2m-3)=0

(1)求证:无论m为什么实数时,方程总有两个不相等的实数根。(提示:当

b2-4ac﹥0时,一元二次方程总有两个不相等的实数根)

(2)当b2-4ac满足什么条件时,一元二次方程没有实数根?请写出一个没有实

数根的一元二次方程。

第三篇:二次函数配方法练习

1.抛物线y=2x2-3x-5配方后的解析式为顶

点坐标为______.当x=______时,y有最______值是______,与x轴的交点是______,与y轴的交点是______,当x______时,y随x增大而减小,当x______时,y随x增大而增大.

2.抛物线y=3-2x-x2的顶点坐标是______,配方后为

它与x轴的交点坐标是______,与y轴的交点坐标是______.

3.把二次函数y=x2-4x+5配方成y=a(x-h)2+k的形式,得______,这个函数的图象有最______点,这个点的坐标为______.

4.已知二次函数y=x2+4x-3,配方后为当x=______时,函数y有最值______,当x______时,函数y随x的增大而增大,当x=______时,y=0.

5.抛物线y=ax2+bx+c与y=3-2x2的形状完全相同,只是位置不同,则a=______.

6.抛物线y=2x2如何变化得到抛物线y=2(x-3)2+4.请用两种方法变换。

7.抛物线y=-3x2-4的开口方向和顶点坐标分别是()

A.向下,(0,4)

C.向上,(0,4)

2B.向下,(0,-4)D.向上,(0,-4)8.抛物线yx2x的顶点坐标是()

A.(1,1)B.(1,1)22C.(,1)1

2D.(1,0)

第四篇:配方法专题探究

配方法专题探究

例1:填空题:

1.将二次三项式x2+2x-2进行配方,其结果为

2.方程x2+y2+4x-2y+5=0的解是。

分析:利用非负数的性质

3.已知M=x2-8x+22,N=-x2+6x-3,则M、N的大小关系为。分析:利用减法

4.用配方法把二次函数y=2x2+3x+1写成y=a(x+m)2+k的形式。

5.设方程x2+2x-1=0的两实根为x1,x2,则(x1-x2)2。

6.已知方程x2-kx+k=0的两根平方和为3,则k的值为。

分析:根与系数的关系,整体代入法

7.若x、y为实数,且x2y3(2x3),则y1的值等于。x

1分析:整理形式,非负数的应用。

拓展练习题:

***1.完全平方式是_______项式,其中有_____完全平方项,________•项是这两个数(式)

乘积的2倍.

****2.x2+mx+9是完全平方式,则m=_______.

分析:全面考虑

3.4x2+12x+a是完全平方式,则a=________.

分析:可以用判别式的方法

4.把方程x2-8x-84=0化成(x+m)2=n的形式为().

A.(x-4)2=100B.(x-16)2=100C.(x-4)2=84D.(x-16)2=8

45.已知△ABC的三边分别为a、b、c,且a2+b2+c2=ab+bc+ac,则△ABC的形状为。分析:重新组合,正确分割。

6.如果二次三项次x2-16x+m2是一个完全平方式,那么m的值是().

A.±8B.4C.-

D.±

分析:可以用代入验证法

7.用配方法解方程:(1)2x2-x=0;(2)x2+3x-2=0.

8.判断题.

(1)x2+1522x-=(x+)2+()993

3(2)x2-4x=(x-2)2+4()

(3)121y+y+=(y+1)2()2

29.已知(x2+y2)(x2+y2+2)-8=0,则x2+y2的值是().

A.-4B.2C.-1或4D.2或-

4分析:合情推理,十分重要。

10.用配方法说明:-3x2+12x-16的值恒小于0.

11.阅读题:解方程x2-4│x│-12=0.

解:(1)当x≥0时,原方程为x2-4x-12=0,配方得(x-2)2=16,两边平方得x-2=±4,∴x1=6,x2=-2(不符合题意,舍去).

(2)当x<0时,原方程为x2+4x-12=0,配方得(x+2)2=16,两边开平方得x+2=±4,∴x1=-6,x2=2(不符合题意,舍去),∴原方程的解为x1=6,x2=-6.

参照上述例题解方程x2-2│x-1│-4=0.

分析:分类讨论,是全面分析的必要方法。

12.设代数式2x2+4x-3=M,用配方法说明:无论x取何值时,M总不小于一定值,并求出该定值.

分析:极值问题,应该引起重视。

提高训练题:

1、求方程x2+y2+2x-4y+5=0 的解x, y.分析:转化成为特殊形式

2、因式分解:a2b2-a2+4ab-b2+1.对应练习:因式分解:

①x4+x2y2+y4 ;②x2-2xy+y2-6x+6y+9 ;③x4+x2-2ax-a2+1.例

3、化简下列二次根式: ①74;②2;③4322.分析:化简的关键是把被开方数配方

4、求下列代数式的最大或最小值:

① x2+5x+1;② -2x2-6x+1.对应练习:求下列代数式的最大或最小值:

①2x2+10x+1 ;②-12x+x-1.2例

5、解下列方程:

①x4-x2+2xy+y2+1=0 ;②x2+2xy+6x+2y2+4y+10=0.对应练习:解方程:

①x2-4xy+5y2-6y+9=0;②x2y2+x2+4xy+y2+1=0 ;③5x2+6xy+2y2-14x-8y+10=0.例

6、求方程 x2+y2-4x+10y+16=0的整数解

对应练习:求下列方程的整数解:

①(2x-y-2)2+(x+y+2)2=5;②x2-6xy+y2+10y+25=0.练习:

1、因式分解:①x4+x2y2+y4 ;②x2-2xy+y2-6x+6y+9 ;③x4+x2-2ax-a2+1.2、求下列代数式的最大或最小值:①2x2+10x+1 ;②-12x+x-1.23、已知:a2+b2+c2=111,ab+bc+ca=29.求:a+b+c的值.

第五篇:配方法习题

配方法习题

一、选择题

1.下列哪个不是完全平方式?()

A、2x2B、x2-6x+9C、25x2-10x+1D、x2+22x+1

212.以配方法解3x2+4x+1=0时,我们可得下列哪一个方程式?()

252121A、(x+2)2=3B、(3x+)2=、(x+2=D、(x+2=343

33.若2x2-3x+1加上一数k后,成为完全平方式,则k=()

A、18B、7C、116D、44.想将x2+32 x配成一个完全平方式,应该加上下列那一个数?()

A、34B、9994C、8、165.下列哪个不是完全平方式?()

A、x2+4B、x2+4x+4C、4x2+4x+1D、x2+x+1

4二、填空题

1.将方程式x2-4x+1=0配成(x+a)2=b之形式则a+b=___________

2.填入适当的数配成完全平方式x2-1+____________=(x-)

223.已知一元二次方程式x2-2x-1=0的解为x=a±b 则a-b=_______

三、利用配方法解下列一元二次方程式

3x2-8x+3=0。ax2-2bx+c=0(a>0,b2-ac≧0)

3x2-8x+3=03x2+11x+2=0。

x2+2x-1=03x2-8x+3=0

一、选择题(共56分,每小题14分):

1、2x^2+4x+10=12中,可以配方得到_______

A、2(x+1)^2=

3B、2(x+2)^2=

3C、(2x+1)^2=

3D、(2x+1)^2=

5.2、x^2+4x+3=-1的结果是_______

A、x=-

2B、x=

2C、无解

D、此题有两个根

.3、对于关于x的一元二次方程ax^2+bx+c=0(a不为0,a,b,c是常数)进行配方,得到_______

A、(x+b/a)^2(c/a^2)=-b/a

C、(x+b/2a)^2 =(b^2/4a^2)-c/a

D、对于不同的数字没有唯一表达式。

.4、对于关于x的方程(px+q)^2=m的根的判断,其中有可能正确的有_______

(1)x为任意实数,(2)x1=x2=q/p,(3)当m<0时,方程无解

A、没有正确的B、(2)(3)正确

C、只有(3)正确

D、(1)(3)正确

.二、解答题(共46分,第5题18分,第6题28分)

5、请用配方法解方程 x^2+4x+3=156、对于关于x的方程 mx^2+nx+q=0,将其化简成x=?的形式。

一、填空题(1×28=28)

_____ 个.2、单项式-7a2bc的系数是______, 次数是______.3、多项式3a2b2-5ab2+a2-6是_____次_____项式,其中常数项是_______.4、3b2m•(_______)=3b4m+1-(x-y)5(x-y)4=________(-2a2b)2÷(_______)=2a5、(-2m+3)(_________)=4m2-9(-2ab+3)2=_____________

1、下列代数式中:①3x+5y ②x2+2x+y2 ③0 ④-xy2 ⑤3x=0 ⑥ 单项式有 _____个,多项式有

6、如果∠1与∠2互为补角,∠1=72º,∠2=_____º ,若∠3=∠1,则∠3的补角为_______º,理由是__________________________.7、在左图中,若∠A+∠B=180º,∠C=65º,则∠1=_____º,A 2 D ∠2=______º.B C8、在生物课上,老师告诉同学们:“微生物很小,枝原体直径只有0.1微米”,这相当于________________米(1米=106微米,请用科学记数法表示).9、在进行小组自编自答活动时,小芳给小组成员出了这样一道题,题目:我国古代数学家祖冲之发现了圆周率π=3.1415926……,取近似值为3.14,是精确到_______位,有______个有效数字,而小明出的题是:如果一年按365天计算,那么,一年就有31536000秒,精确到万位时,近似数是_____________秒,有______个有效数字.10、小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,则P(小明被选中)= ________ , P(小明未被选中)=________.11、随意掷出一枚骰子,计算下列事件发生的概率标在下图中.⑴、掷出的点数是偶数 ⑵、掷出的点数小于7

⑶、掷出的点数为两位数 ⑷、掷出的点数是2的倍数

0 1/2

1不可能发生 必然发生

二、选择题(2×7=14)

1、今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真的复习老师课上讲的内容,他突然发现一道题:(-x2+3xy-y2)-(-x2+4xy-y2)=

-x2_____+y2空格的地方被钢笔水弄污了,那么空格中的一项是()

A、-7xy B、7xy C、-xy D、xy2、下列说法中,正确的是()

A、一个角的补角必是钝角 B、两个锐角一定互为余角

C、直角没有补角 D、如果∠MON=180º,那么M、O、N三点在一条直线上

3、数学课上老师给出下面的数据,()是精确的A、2002年美国在阿富汗的战争每月耗费10亿美元

B、地球上煤储量为5万亿吨以上

C、人的大脑有1×1010个细胞

D、这次半期考试你得了92分

4、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()

A、B、C、D、5、已知:∣x∣=1,∣y∣= ,则(x20)3-x3y2的值等于()

A、-或-B、或 C、D、-

6、下列条件中不能得出a‖b 的是()c

A、∠2=∠6 B、∠3+∠5=180º 1 2 a

C、∠4+∠6=180º D、∠2=∠8 5 6 b7、下面四个图形中∠1与∠2是对顶角的图形有()个

A、0 B、1 C、2 D、3三、计算题(4×8=32)

⑴-3(x2-xy)-x(-2y+2x)⑵(-x5)•x3n-1+x3n•(-x)

4⑶(x+2)(y+3)-(x+1)(y-2)⑷(-2m2n)3•mn+(-7m7n12)0-2(mn)-4•m11•n8

⑸(5x2y3-4x3y2+6x)÷6x,其中x=-2,y=2 ⑹(3mn+1)(3mn-1)-(3mn-2)

2用乘法公式计算:

⑺ 9992-1 ⑻ 20032

四、推理填空(1×7=7)

A 已知:如图,DG⊥BC AC⊥BC,EF⊥AB,∠1=∠

2E 求证:CD⊥AB

F 证明:∵DG⊥BC,AC⊥BC(___________)

D ∴∠DGB=∠ACB=90º(垂直的定义)

∴DG‖AC(_____________________)

B C ∴∠2=_____(_____________________)

∵∠1=∠2(__________________)∴∠1=∠DCA(等量代换)

∴EF‖CD(______________________)∴∠AEF=∠ADC(____________________)∵EF⊥AB ∴∠AEF=90º ∴∠ADC=90º 即CD⊥AB

五、解答题(1题6分,2题6分,3题⑴2分,⑵2分,⑶3分,总19分)

1、小康村正在进行绿地改造,原有一正方形绿地,现将它每边都增加3米,面积则增加了63平方米,问原绿地的边长为多少?原绿地的面积又为多少?

2、已知:如图,AB‖CD,FG‖HD,∠B=100º,FE为∠CEB的平分线,求∠EDH的度数.A F C

E

B H

G

D3、下图是明明作的一周的零用钱开支的统计图(单位:元)

分析上图,试回答以下问题:

⑴、周几明明花的零用钱最少?是多少?他零用钱花得最多的一天用了多少?

⑵、哪几天他花的零用钱是一样的?分别为多少?

⑶、你能帮明明算一算他一周平均每天花的零用钱吗?

能力测试卷(50分)

(B卷)

一、填空题(3×6=18)

1、房间里有一个从外表量长a米、宽b米、高c米的长方形木箱子,已知木板的厚度为x米,那么这个木箱子的容积是________________米3.(不展开)

2、式子4-a2-2ab-b2的最大值是_______.3、若2×8n×16n=222,则n=________.4、已知 则 =__________.5、一个小男孩掷一枚均匀的硬币两次,则两次均朝上的概率为_________.6、A 如图,∠ABC=40º,∠ACB=60º,BO、CO平分∠ABC和∠ACB,D E DE过O点,且DE‖BC,则∠BOC=_______º.B C

二、选择题(3×4=12)

1、一个角的余角是它的补角的,则这个角为()

A、60º B、45º C、30º D、90º

2、对于一个六次多项式,它的任何一项的次数()

A、都小于6 B、都等于6 C、都不小于6 D、都不大于63、式子-mn与(-m)n的正确判断是()

A、这两个式子互为相反数 B、这两个式子是相等的C、当n为奇数时,它们互为相反数;n为偶数时它们相等

D、当n为偶数时,它们互为相反数;n为奇数时它们相等

4、已知两个角的对应边互相平行,这两个角的差是40º,则这两个角是()

A、140º和100º B、110º和70º C、70º和30º D、150º和110º

三、作图题(不写作法,保留作图痕迹)(6分)

利用尺规过A点作与直线n平行的直线m(不能用平推的方法作).A •

n

四、解答题(7×2=14)

1、若多项式x2+ax+8和多项式x2-3x+b相乘的积中不含x2、x3项,求(a-b)3-(a3-b3)的值.3、如图,已知AB‖CD,∠A=36º,∠C=120º,求∠F-∠E的大小.A B

E

F

C D

下载配方法讲解练习word格式文档
下载配方法讲解练习.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    配方法含答案

    配方法1、方程6x2=18的根是__________;已知2(x-3)2=72,则x的值是__________.2、若方程x2-6x+5=0可化为(x+m)2=k的形式,则m=__________,k=__________.3、一元二次方程x2-2x-3=0的根是_______......

    02 配方法解一元二次方程练习1

    配方法解一元二次方程练习(1)( 2 )x212x150 姓名: 1.用适当的数填空: x2 6x_____(x____)2 ;x25x_____(x____)2 ; x2x_____(x____)2 ; x2 8x_____(x____)2 ; x2  2_____(x____)2 3 x; x2......

    03 配方法解一元二次方程练习2

    (2)9x8x2的值恒小于0. 配方法解一元二次方程练习 1.求x为何值时,2x2 7x2有最小值并求出最小值 ;2.求x为何值时,3x2 5x1有最大值并求出最大值。 3.用配方法证明:多项式2x4 4x2 1......

    现在进行时讲解练习

    现在进行时讲解与练习现在进行时: 表示现在正在进行的动作,由“be动词 + 动词的现在分词”构成。 通常会出现now;right now; these days;at this moment; at present;It’s 5......

    一元二次方程的解法(二)配方法—知识讲解(提高)

    一元二次方程的解法(二)配方法—知识讲解(提高) 【要点梳理】 知识点一、一元二次方程的解法---配方法 1.配方法解一元二次方程: 配方法解一元二次方程: 将一元二次方程配成方程......

    小学四年级语文修辞方法讲解及练习5篇

    小学四年级语文修辞方法讲解及练习一、比喻 (一)什么是比喻 比喻就是“打比方”,即利用不同事物之间的某些相似之处,用一个事物来比方另一个事物。多用一些具体的,浅显的、熟知的......

    1.2.2配方法(推荐五篇)

    1.2.2配方法(1)教学案 学习目标 1、能够用配方法解二次项系数为1的一元二次方程 体验学习一、探究新知 问题1:下面两个方程同学们愿意解哪一个?,这两个方程有联系吗? 二、课堂练......

    数学学习法配方法

    数学学习法——配方法 释义:在数学式变换中,根据需要把有关字母的项对照公式 (ab)2a22abb2,补上恰当的项以配成完全平方的形式,这种方法就叫做配方法,配方法的应用常见于: (1)分解因......