概率论与数理统计(共5则范文)

时间:2019-05-14 13:48:25下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《概率论与数理统计(共)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《概率论与数理统计(共)》。

第一篇:概率论与数理统计(共)

大数定律与中心极限定理的应用

马吟涛(1.江西师范大学 科学与技术学院,江西 南昌 330027)

摘要:大数定律以严格的数学形式表达了随机现象最根本的性质—平均结果的稳定性,它是概率论中一个非常重要的定律,应用很广泛。本文介绍了几种常用的大数定律,并分析了它们在理论与实际中的应用。关键词:大数定律,概率分布,保险业

中图分类号:O 413.1

文献标识码:A 引

概率与统计是研究随机现象的统计规律的学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。然而,在大量重复试验或观察中,我们会发现,一个事件发生的频率具有稳定性,它的稳定性会随着试验次数的增多表现得越来越明显。这种稳定性与它在在实验进行中的个别特征无关,且不再是随机的。大数定律给出了稳定性的确切含义,并且给出了什么条件下才具有稳定性。那么,这对于我们解决理论与实际问题有哪些实际意义呢?这就是我们在下面将要了解到的,大数定律的某些应用。即,大数定律及其在理论与实际生活中的一些应用。

一方面,在理论上,大数定律可以看作是求解极限、重积分以及级数的一种新思路,另一方面,在实际生活中,保险动机的产生、保险公司财政稳定和保费的确定,我们都将看到大数定律的重要作用。常见大数定律

由于随机变量序列向常数的收敛有多种不同的形式,按其收敛为依概率收敛,以概率 1 收敛或均方收敛,分别有弱大数定律、强大数定律和均方大数定律。

常用的大数定律有:伯努利大数定律、辛钦大数定律、柯尔莫哥洛夫强大数定律和重对数定律。

设有一随机变量序列,假如它具有形如(1)的性质,则称该随机变量服从大数定律(见左上方图片)。

伯努利大数定律:设μ_n为n重伯努利实验中事件A发生的次数,p为每次实验中A出现的概率,则对任意的ε>0,有(2)成立。

切比雪夫大数定律:设{X_n}为一列两两不相关的随机变量序列,若每个X_i的方差存在,且有共同的上界,即Var(X_i)小于或等于c,则{X_n}服从大数定律,即对任意的ε>0,(1)式成立。

马尔可夫大数定律:对随机变量序列{X_n},若(3)成立,则{X_n}服从大数定律,即对任意的ε>0,(1)式成立。

辛钦大数定律:设{X_n}为独立同分布的随机变量序列,若X_i的数学期望存在,则{X_n}服从大数定律,即对任意的ε>0,(1)成立。

3相关定义定理以及应用

定义:设X1,X2,,Xn,是一个随机变量序列,a是一个常数,若对于任意正数,有limPXna1,nP则称序列X1,X2,,Xn,依概率收敛于a.记为Xna.切比雪夫不等式

设随机变量具有有限的期望与方差,则对0,有

P(E())D()2或P(E())1D()2

证明:我们就连续性随机变量的情况来证明。设~p(x),则有

P(E())xE()p(x)dxxE()(xE())22D()

p(x)dx

12(xE())2p(x)dx2该不等式表明:当D()很小时,P(E())也很小,即的取值偏离E()的可能性很小。这再次说明方差是描述取值分散程度的一个量。

切比雪夫不等式常用来求在随机变量分布未知,只知其期望和方差的情况下,事件{E}概率的下限估计;同时,在理论上切比雪夫不等式常作为其它定理证明的工具。

定理1(切比雪夫大数定律)

设{n}是相互独立的随机变量序列,每一随机变量都有有限的方差,且一致有界,即存在常数C,使D(i)Ci1,2,,则对任意的0,有

1n1n1n1nplimP{iE(i)}0[即iE(i)(n)] nni1ni1ni1ni1证明:由切比雪夫不等式知:0,有: 1111nCC0P{iE(i)}2D(i)i1222220(n)

ni1ni1ni1nnn1n该定理表明:当n很大时,随机变量1,,n的算术平均值i接近于其

ni11n数学期望E(i),这种接近是在概率意义下的接近。通俗的说,在定理的条ni1nnnDni件下,n个相互独立的随机变量算术平均值,在n无限增加时将几乎变成一个常数。

推论:设1,,n是相互独立的随机变量,由相同的数学期望和方差E(i),D(i)2i1,2,,则0,有

1n1n limP{i}0(即i以概率收敛于)

nni1ni1这个结论有很实际的意义:人们在进行精密测量时,为了减少随机误差,往

1n往重复测量多次,测得若干实测值1,,n,然后用其平均值i来代替。

ni1定理2(De Moivre-Laplace极限定理)(定理1的特殊情形)设n(n1,2,)是n重Bernoulli试验中成功的次数,已知每次试验成功的概率为

p0p1,则对xR,有

limP{nnnpnpqx}12ext22dtx。

该定理也可改写为:ab,有limP{annnpnpqb}ba

1第i次试验出现成功证明: 令i 则

0第i次试验不出现成功{i}为独立同分布的随机变量序列,且Eip,Dip(1p)均存在 显然:ni,此时ni1nnnpnpq 该定理为上定理的一个特殊情形,故由上定理该定理得证。

4.大数定律在数学分析中的一些应用 4.1大数定律在极限、重积分上的应用

大数定律本身便是概率论中非常重要的定理之一,而它与其他数学理论也有密不可分的联系,而且对这些数学理论分支有不可或缺的作用。

大数定律本身便是频率靠近概率的极限理论,是大量随机现象的平均结果稳定于平均值的极限理论。可以说大数定律是利用极限才得出的,同时利用大数定律可以来求解极限,这当然只是众多求极限方法之一,但也有它独特的简洁和巧妙。就以大数定律和极限这个概念的关系为例子,用它来对我们要求的重积分和极限相关的问题进行另一种方式的求解。极限伴随重积分出现的类型在高数中是常见的,在利用大数定律来求解这类重积分的极限的题目前,先介绍一个相关定理。

勒贝格控制收敛定理

设(1)fn是可测集E上的可测函数列;

(2)fnxFxa.e于E(n=1,2,…..,)且Fx在E上可积分(称

; fn 为Fx所控制,而Fx叫控制函数)(3)fnxfx;

则fx在E上可积分且limfnxdxfxdx;

nEEaax1ax2......xn例1:已知ab0,求lim......bdx1......dxn的值。bbnxx2......xn00111解:设x1,……xn,为独立同分布的随机变量序列,xn(n1)服从(0,1)aabbb上的均匀分布,x1a,x2为独立同分布,x1为独立同分布。且 ,......,xn,x2,......,xnExxiadxiExia2ai1,i1

0a1121xiadxi,i1 02a11DxiaExa2iExa2i1a21,i1 2a1a12a1a121 2nn12aDxn1a2a2又 D2222nnn1n12a1a12a1a1由契贝晓夫大数定律可知:当xn是独立的同分布的随机变量序列,且

1n1nDxn,由前面知道是强大数定律可知,limPxEx0k1; k2nnnnn1k1k11na1na由此可知 limxkExk0 nnnk1k11na1即 limxk

nna1k1b又因为0xn1,k1,且ab故有xx,k1,因此xxk。

akbknaknk1k1由此n,有0110aaaaa11xx......xx1ax2......xn12ndx1......dxnbdx1......dxndx1......dxn1 bb00xxb......xbx1bx2......xn12n根据勒贝格控制收敛定理可知:

baax1a......xnPdx1ax2......xnlimbdx......dxlim= 1n0xxb......xbn0nxb......xb12nn111bx1a......xnPd=b1Pdb1Pd limnxb......xba1a11naax1ax2......xnb1即limb。dx......dx1n0xxb......xbn0a112n11可以看出,利用大数定律求解数学分析中的重积分和极限收敛问题有它简洁的一面,也体现了大数定律等概率论等知识的广泛联系和应用。[7]

4.2在生产生活中的应用

例2: 一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱的平均重50千克,标准差5千克.若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保证不超载的概率大于0.977.解答:设n为第i箱的重量(), 由列维-林德伯格中心极限定理,有 YnXi,i1近似地~500050n所以n必须满足N(50n,25n),P{Yn5000}Φ0.977Φ(2),5n100010n2,也就是最多可以装98箱. n98.0199,n(供电问题)某车间有200台车床,在生产期间由于需要检修、调换刀具、变换位置及调换零件等常需停车.设开工率为0.6, 并设每台车床的工作是独立的,且在开工时需电力1千瓦.问应供应多少瓦电力就能以99.9%的概率保证该车间不会因供电不足而影响生产? 解:某一时刻开动的车床数,X~B(200, 0.6),要求最小的k,使P{0Xk}0.999.由D-L定理,近似地X~N(np,npq), P{0Xk}Φ(knp0np)Φ()npqnpqP{0Xk}Φ(knp0np)Φ()npqnpqΦ(k120120k120)Φ()Φ()0.999 484848所以若供电141.5千瓦,那么由于供电不足而影响生产的可能性不到0.001,相当于8小时内约有半分钟受影响,这一般是允许的。

某产品次品率p = 0.05,试估计在1000件产品中次品数的概率.次品数X~B(1000,0.05),E(X)np10000.0550,D(X)np(1p)500.9547.5,由棣莫弗-拉普拉斯中心极限定理,有:P{40X60}Φ(2Φ(1.45)10.853.60504050)Φ()47.547.5次品数:X~B(1000,0.05),E(X)np10000.0550,D(X)np(1p)500.9547.5,P{40X60}Φ(60504050)Φ()2Φ(1.45)10.853.47.547.5若是使用切比雪夫的不等式来进行计算,P{40X60}P{X5010}47.50.525.但是这样的计算并不完整,有点过于保守。102 中心极限定理对保险业更是具有指导性的意义,一个保险公司的亏盈,是否破产,我们通过学习中心极限定理的知识都可以做到估算和预测.大数定律是近代保险业赖以建立的基础.根据大数定律中心极限定理,我们知道承保的危险单位越多,损失概率的偏差越小,反之,承保的危险单位越少,损失概率的偏差越大.因此,保险人运用大数法则就可以比较精确的预测危险,合理的拟定保险费率.下面我们以一道具体的有关保险业的实例来阐述一下大数定律和中心极限定理在保险业中的重要作用和具体应用.14.3在保险中的运用

例 3 :已知在某人寿保险公司里有10000个同一年龄段的人参加保险,在同一年里这些人死亡率为0.1% ,参加保险的人在一年的头一天交付保险费10元,死亡是家属可以从保险公司领取2000元的抚恤金.求保险公司一年中获利不少于40000 元的概率;保险公司亏本的概率是多少? 解 设一年中死亡的人数为x人.死亡概率为P0.001 ,把考虑10000人在一年里是否死亡看成10000重贝努里试验, 保险公司每年收入为10000*10100000 元,付出2000x元.(1)P(保险公司获利不少于40000 元)P(0x30)10000*0.00110

P(1000002000x)40000

D(x)np*(1p)10*0.9993.161

10x103010}(6.3271)(3.1631)0.99933.1613.1613.161

即保险公司一年中以99.93% 的概率获利400000元以上.(2)保险公司亏本的概率:

010x105010P2000x10000Px501Px501P{}3.1613.1613.161P0x30P{1(1.6542)(3.1641)0.0008

由此可见,我们应用大数定律和中心极限定理的知识可以准确算出保险公司的破产几率.如何降低保险公司的风险以及影响保险公司盈亏的因素是我们需要进一步讨论的.本文仅给出了大数定律和中心极限定理在彩票和保险业的应用, 而在现实生活中大数定律和中心极限定理的应用是非常广泛的,学会使用大数定律和中心极限定理将对我们的学习和生活带来很多帮助.5.结论

随着试验次数的增加,事件发生的频率逐渐稳定于某个常数,这一事实显示了可以用一个数来表征事件发生的可能性大小,这使人们认识到概率是客观存在的,进而由频率的三条性质的启发和抽象给出了概率的定义,而频率的稳定性是概率定义的客观基础。在实践中人们还认识到大量测量值的算术平均值也具有稳定性,而这种稳定性就是本节所要讨论的大数定律的客观背景,而这些理论正是概率论的理论基础。

参考文献:

[1] 钱和平宋家乐.强混合鞅差序列部分和乘积的几乎处处中心极限定理 [J].《中国科技信息》 2012年 第8期

[2] 罗中德.中心极限定理教学方法研究 [ J].《现代商贸工业》 2012年 第8期 [3] 冯凤香.独立随机变量序列部分和乘积的几乎处处中心极限定理 [J].《吉林大学学报:理学版》 2012年 第2期

[4] 许道云 秦永彬 刘长云.学习《概率论与数理统计》应该注意的若干问题(6)——极限性质及其应用 [J].《铜仁学院学报》 2011年 第6期

[5] 王丙参 魏艳华 林朱.大数定律及中心极限定理在保险中的应用 [ J].《通化师范学院学报》 2011年 第12期

[6] 任敏 张光辉.非同分布φ-混合序列部分和乘积的几乎处处中心极限定理 [J].《黑龙江大学自然科学学报》 2011年 第6期

[7] 王媛媛.部分和乘积的几乎处处中心极限定理 [J].《桂林理工大学学报》 2011年 第3期

[8] 张鑫.大数定理发展边程初探 [ J].《科技信息》 2011年 第22期 [9] 陈晓材 吴群英 邓光明 周德宏.不同分布φ^~混合序列的弱大数定理 [J].《平顶山学院学报》 2010年 第2期

Law of large numbers and central limit theorem

Abstract:The law of large numbers describles the most fundamental of the random nature in rigorous mathematical formation—the stability of the average results.It is a very important law, and its applications are very wide.This article describes several common law of large numbers, and analyzes their theoretical and practical applications.Key words: law of large numbers, probability distribution, insurance

第二篇:概率论与数理统计

概率论与数理统计,运筹学,计算数学,统计学,还有新增的应用数学,每个学校情况不太一样,每个导师研究的方向也不太一样。看你报的哪个学校了~~ 赞同

数学的方向还是比较多的,比如金融,计算机,理科的方向 赞同

参看08年该校硕士招生简章中的专业目录及参考书目,先做到心里有数 09年的在08年7、8月份才能出 每年新的招生简章都是在上一年的研究生招生录取工作结束之后才能公布的 所以不要急 最早也要等到7月份 现在不要急 先按照08的看 一般两三年之内不会有什么变化 即使有 也是在原有基础上 增加或改动一两本参考书的版本 不会有实质性的变动 而且 你如果现在就开始准备考研复习那就算比较早的了 一般从暑假开始复习就可以的 所以这个时期是基础段复习可把精力主要放在英语上 强化英语考研词汇是非常必要的 至于专业课 可以先按08的指定参考书初步复习等新的招生简章出来 再进行有针对性地复习不用担心万一改动了我会不会白白看了 以一个过来人的经验 知识储备的越多越好 名校的试题往往不局限于指定参考书的范围(楼主既然这么问了,这要好好慢慢的回答)

建议楼主考清华的经济学研究生,清华的工科类要强于北大(个人意见);2,清华现在要考考A版的数学对你的有点好处,但影响不大,复试对你有利。3,清华的专业课考的难都因人而异,初试复试考一样的专业课,包括金融学(含国际金融、证券投资、投资市场、保险精算等,本专业所招人数最多)、国际经贸(研究生阶段叫做世界经济)、西方经济学、财政学、政治经济学专业;报考时可以随意报考自己喜欢的专业,录取时先全院统一录取(按分数高低),再按分数与志愿选择;专业课考的不是很难;(建议楼主去看下金融学基础,复旦大学出版社简称白皮书,或许对你有帮助)4,清华经济就业形势就目前环境下就业非常棒,中国才处于开始阶段,每年毕业生到各大银行、金融机构、保险机构、证券公司、财政货币机关、国家机关及高校任职,待遇非常之高!

网站,你可以试试去这里看看。在页面中部的对话框输入学校或专业就可以任意查。在这里,你还可以查到任意学校的招生简章,复习指导,网上报名及其它重要信息。全国各校公布分数线的时间也在这里最早发布。你可以试试,相信不会让你失望。。

因你是转专业,再给你一点个人建议吧

一、慎重选择:不要轻易下决定

不断地学习不同领域的知识,是所有有求知欲的人们的美好愿望,然而,这同样会成为朝三暮四的借口。

其实,很多考研人本来就存有逃避现实社会的压力,而选择继续呆在学校的心理;而在跨专业考研的人中,更有许多人根本就没有好好学过原来的专业,甚至从没认真考虑过是否自己适合它,只为了逃避,才选个看起来容易的专业去考。

如果是这样,请先停下来想想自己到底想要什么再说。因为一颗对待生活从不认真的心,是不会因为换了个专业就能有起色的。

如果不是这样,那么,也请三思。就因为一直认真,这次更要谨慎。

首先,考研复习将是艰巨的历程。隔行如隔山——这句古谚将贯穿之后的整个求学过程。自己原来的专业,再不济也学了三四年,耳濡目染,基础知识一定比没学过的扎实,细节也许没钻研,但大的格局和概念、思维方式是存在于脑海中的,即使是每次考前一个月的突击,突击了四年,也不是没有用的。这就是本专业对于外专业的一大优势。反过来,即是跨专业者相对于本专业者的劣势。

复习的时候,要花更多的时间在专业课上,使得基础课很容易就被搁置了,而任何一科的掉队,都会影响整个复习过程的心态和考试结果。

其次,备考中可能出现意想不到的困难。

不熟悉专业试题的答题惯例,会莫名其妙丢掉不该丢的分。而且,笔试通过了,复试中存在的不确定性因素,使跨专业者总是难以拥有“尽在掌握”的自信,而它确实也是难以“尽在掌握”的。

最后,也是最重要的,考上之后三年的研究生生活。

不管是面对基本功扎实的同学们,还是面对有一定要求和标准的导师,还是面对也许让自己一时找不到坐标点的新求学生涯——如何给自己定位,如何重拾自信,如何建立对新专业的“新感情”,如何规划以后的职业和人生,这都是需要付出比别人更多心力去克服的问题。所以,是否要转变方向,换一个专业,需要尖锐严格地审视自身,而不是盲目跟风,可以考虑以下几点:

是否真正热爱将要为之付出心血的新专业?

长远来看,这个新领域是否有自己的天赋和性格发挥的空间?

是否可以肯定学习三年之后真能丰富完善自己的知识结构,而不是剃头担子两头塌?最后也是最基本最当前的问题:基础课是否有自身优势?没有优势怎么拨得出更多的时间给专业课的复习?

二、审时度势:了解自己,踏实去做

经过了自我的拷问,还坚定地要跨专业考研的朋友——相信你一定是个头脑清醒、梦想坚定的人。

在此,我们不得不再次强调跨专业考研的理由和标准:第一,热爱;第二,基于对自身才智和优势短处进行全面评估而做出的决定;第三,要自信,更要不怕苦不怕累。

可以举个例子。一个在学校并非不认真对待自己学业的考研人,在经过四年的学习之后,发现仍然不喜欢自己所学的数学专业,而爱好文史哲。如果基础课英语政治还不错,那么他就具备了考虑跨专业考研的最低要求。那么,接下来怎么确定专业呢?首先,看爱好。对新闻传播、考古、文学皆有兴趣,怎么办?一个一个排除。对于新闻,多搜集资料,看作为一个新闻工作者需要什么样的素质,比如,敏锐的新闻感、强烈的争取和参与意识、健康的身体。直面自己的优缺点,如果有敏锐的新闻感,却没有强烈的争取和参与意识,甚至都无法面对需要长时间的工作强度,那么放弃。对于考古,作同样评估;另外,如果这时你的父母亲反对你的考古梦想,请把他们的忧虑考虑进去,一意孤行并不可取,要考虑到家庭的实际情况;并且,父母也是了解你的人,他们对你的性格、天分其实很了解。那么如果你认为父母意见的可接受性大过你对于考古的热忱,考古这一项,也被划去。最后剩下文学,如果经过一系列评估,觉得可行,那么它之下还有很多专业细分,是中国文学还是世界、比较文学,是古代文学还是现当代文学?要根据自己平时看书的偏好、积累的多少、考试试题能否应付等等内在和外在的因素来决定。这些将和下一部分联系起来谈。

这只是一个例子,跨专业的方向转变五花八门,几页纸不可能描述详尽,我们只能通过这个例子,了解一下需要考虑和平衡的各方面因素。

当然,请牢记,内心的热爱和对自己学习能力的自信在选择中最为重要。有了这两点,相

信你的选择会是对你而言最好的选择。这将是一个美丽的决定,决定之后,一定有云开见日的感觉。方向确定了,就朝着那儿毫不回头地走吧。

三、报考准备:眼观六路,耳听八方

让我们直接进入主题。

第一,细分专业和学校,确定报考目标。一定要看自己喜欢哪个城市,既然想借助这次的考研改变现状开始一段新的求学历程,一直想去哪个(或哪些)城市念书就不要将就。圈出大致范围,再找到那里学校的招生简章、专业招生表——网上查找或动用一切关系。特别要注意的是,你有意向的专业是否拒绝跨专业考生。在进行认真细致的对比之下确定两到三个你想去的名校和你喜欢的专业。这一步可以和前面确定城市同时进行,每个人情况不同,自行制定每一步适合自己的计划是必要的,而且能从中得到极大的充实感,总之,它让我们感到:一切都在自己的控制之下。

然后,尽可能地多找一些这几个可选学校可选专业的历年试题,仔细研究,看看哪一类的试题自己更有把握。这一步至关重要,这一步不可省略也不可推后,它将直接影响到以后的考试发挥。经过这一步,学校和细分专业几乎都能定下来了。

这一阶段什么时候进行呢?越早越好。我们不提倡把战线拉得太长,真正有效的复习从4月到次年1月足矣;然而跨专业不同,需要“酝酿”。可以不用过早开始真正的复习,但至少要比别人早两个月到半年开始寻找学校、涉猎与新专业相关的期刊、书籍、寻找对于新专业的亲近感和对于新学校新未来的向往感——这是真正复习开始的前站,用这段时间弥补跨专业的不足,在真正的战役打响时,我们将更加坚定更有信心。

第二,专业课教材到位。前面把工作真正做到细致,4月份到5月份一定要定下最终要考的学校和专业。定下之后,就要相信自己的判断,不要犹疑,快去买专业课教材!按照学校列出的书目买全专业课教材,还要找出一两个能帮上忙师兄师姐、找同学、找亲戚,甚至找网友去打听没有列出的那些。

这里有两个问题:买书和找师兄师姐——自己能买到的书,尽量自己去买,有学校可以邮购,有书店可以搜寻,再不行,去图书馆系统或网上找出这本书的出版社,找到出版社电话,打电话、汇款去邮购。不要一开始就事事麻烦别人,自己能解决的自己找渠道解决。后面有更重要的事去麻烦他们。实在不行了,去找师兄师姐,最重要的是问题要明确。随便说:“我要考你们学校某专业,请帮助我”是没用的。要明确说出你的具体问题,要考哪些书,重点看哪些泛读看哪些,打听到哪里能买到自己却没办法,请他们帮忙——听到这么明确的问题,人人都会乐意帮忙。6月底之前,主要的专业课教材一定要到位。

第三,复习时要注意的问题。

首先,基础课不能偏废。前面说了,基础课要有一定把握,才可能跨专业考研,否则到关键时刻就会感到分身乏术。在主攻专业课时,基础课一天都不能停。可以用早晨、吃午饭前、吃晚饭前以及睡觉前的时间去复习英语:阅读、单词、听力,一个都不能少。如果每天坚持,就是这些边边角角的时间都足够英语的复习准备。政治也一样,最好报一个秋季班,几个月上下来,有老师领着复习,比自己摸索更有效率,大致的知识脉络也会清晰起来了。请相信自己,从初中就开始学的这门课,不会差到哪里去,但也要在心里培养对它的兴趣,一讨厌它、搁置一段日子,一切都晚了;反过来,每天花两个小时,只要坚持,就会既轻松又有成就感。

跨专业考生往往把一腔热情放在专业课上,有意无意地就偏废了基础课,等发觉时间紧迫的时候,回头一看基础课落下一大截,这会大大影响后面冲刺和考试的信心。

其次,专业课复习。11月份报名之前一定要把专业书踏踏实实至少细读一遍。这一遍不要欺骗自己,质量至上,一定要全部弄通弄懂。这样在后面的两个月才会更有底。

笔记一定要做。当11月报名时间来临时,你会发现越来越多的人们讨论起复习进度。那时候本专业考生和别的跨专业考生所做的准备和进度会让你大惊失色——有那么多人准备得那么好!本来就对不熟悉的专业容易产生的“心虚”这个时候会更加强烈,那么回过头总结一下自己的成果,只有实实在在密密麻麻的几本笔记会成为自己的强心剂,数数看,几本笔记,七八万字是少不了的。加上政治英语,你会为自己所做的上10万字的笔记而惊讶的。这是积聚信心、抬头挺胸的重要来源。

四、全力复习:坚持到底,毫不畏惧

首先,研究历年试题,自己划重点。历年试题非常非常重要,报名之前即11月初,一定要把学校相关专业的历年试题弄到手。这需要积极调动网络资源,自己能下载的下载,能买到的去买,最后一招:求助师兄师姐。这时提出的请求也一样要尽可能明确。有一个女生,考某大学某专业,通过同学的同学的姐姐,找到一位师姐,打电话给她:“我知道你们学校图书馆五楼的阅览室有历年试题的专柜,可以借出来复印。请帮忙复印某年到某年某专业的„„”该师姐大惊:“我都不知道有这样一个地方,你怎么知道的?”这个女生慢慢说来,怎么从网上找到该学校专栏讨论、怎么了解到的,师姐大开眼界,兴趣高涨,帮她把相关专业能找到的试题全都复印一通寄去。

接下来就是更仔细地研究试题。只需要一个晚上时间,把历年试题全都摆在桌面,总结规律和重点难点,老师出题的习惯等等。借此可以划出下一步复习的重点(甚至是考试的重点),不再一律通读,而是有头脑的、有目标的复习。不要怕系内老师改朝换代,再改也有一脉相承的科研风格,掌握了大体,以不变应万变。

划完重点,一股“运筹帷幄”的气势油然而生,趁着这股气势,投入到更深入的复习中去,一定事半功倍。

其次,为考试做准备,掌握专业答题习惯。在剩下的两个月当中,一定要找点时间去学校的自己要考的专业宿舍混混,目的是了解专业答题有什么惯例、有什么特殊要求和需要注意的地方。随便哪个学校都行,自己方便找的、正规的大学就可以;当然,方便的话,最佳选择就是所考学校研一同专业学生宿舍,这样就不仅了解试题情况,还可以挖掘更多这两个月应该注意的问题。

考试的时候,和复习中所强调的一样——一定要自信。要相信自己经过了周密的计划、万全的准备。拿到试卷的时候,要像热爱专业书籍一样热爱它们,冷静的头脑,热情的心灵,一定战无不胜。

最后,就是复试了。关于导师是否要找,各有各的说法,能找到最好,没找过的也不用惴惴不安。相信自己最重要。

其实接到复试通知书的时候,一般都没有更多时间去扩展知识面了,这些是最初就应该做的。这时候跨专业考生常常担心自己的基础不够,再次心虚。那么与其瞎抓一把,不如把以前看过的书拿出来再翻一遍,总有用得上的,做生不如做熟。对于某些领域的熟悉或精通,比泛泛而谈更能显出自己的特色。用真诚的微笑和哪怕是使劲鼓才能鼓起的信心和勇气,去直面导师。好歹经过这一年的学习,我们也算复合型人才了,怕什么!

说到这里,整个过程看起来完了——其实没有!拿到录取通知书的时候,是一个开始。

进入研究生阶段的学习,是一个更自主、更专业的学习过程,跨专业学生一踏入这片天地,肯定会受到冲击。不熟悉的领域,老师觉得应该是常识自己却闻所未闻的知识,难以找到的新生活定位„„这些都要有心理准备。建议在5月到8月这段天堂般的生活中也不要忘记看看与专业相关的书籍(并非专业课本),继续打基础,进入研究生生活根本没有时间给你去打基础。

总之,对于勇敢的考研人,继续用韧性和信心,在开学前调养好身心,并不放弃不断学习的好习惯,为进入一个新的求学生涯做好准备,都是必要的。相信这样贯穿始终的准备,一定会迎来新的局面,实现挑战人生充实自己的梦想。对生活认真,生活也会认真地回报你。要相信,要坚持。

第三篇:概率论与数理统计

《概率论与数理统计》公共基础课教学实践

1012502-31 汤建波

概率与数理统计在现实的牛产和生活中有着广泛的应用,因此,《概率论与数理统计》作为公共课是很多专业所必修的。但是,由于这门课的学习方法与《微积分》《线性代数》等其他课程有着极大的差异,很多学生在学习过程中感到难以把握概念与理论,在遇到问题时不知如何人手。因此,笔者在总结这几年教学实践的基础上,提出以下思考。

一、适度引入案例。形成生动教学及启发性教学

概率论源于博弈,是赌博中的很多问题催生了概率论这门数学学科。在开课伊始,教师就适度引入触发概率论的一些问题,如“De.mere”问题,“分赌金问题”等等,使学生在故事中不仅得到r课本里所没有的历史知识,而且无形中可以提高学习兴趣,消弭一部分同学的畏难情绪。另外,再在随后的教学过程中引入“彩票中奖问题”“蒙特卡罗法求订法”“保险付赔问题”等等,引导学生了解、探索这门学科在现实中的应用,使学乍实现由知识向能力的转化,从而增强学,F利用概率统计解决实际问题的“欲望”,促使他们更好地认识现实世界。

概念是概率课程中最基本的内容,对概念的理解程度直接影响学生对这门课程的学习与掌握程度。在教学中,应尽量从实际问题入手,先提出问题,接着在问题的分析和解决中抽象出概念,让学生清楚概念的来龙去脉,而不是硬性给出定义,让学生死记硬背。例如,在讲述“事件”这个定义时,引入“卫瞿嫦娥二号将于2010年10月1日发射”这一现实中的“事件”在概率论中应该是“实验”,而其结果“发射成功”才能算是概率论所定义的“事件”,这样,在区别现实的“事件”与概率论所研究的“事件”基础上,学生加深了对“事件”这一定义的理解。在阐明相互独立和互不相容之间的区别有P(A)>0,P(B)>0时,A、B相瓦独屯与互不相容是不能同时成立的,直观上可以这样解释:相互独立意味这

4、B其中一方发生与否并不影响另一方的发生,而互不相容意味着A、B只要其中一方发生了,另一方就一定不发生,所以这两个关系不能同时存在。从公式上解释是:P(A)>0,P(B)>0且A、B相互独立,则P(AB)=P(A)P(B)>0,而如果A、B互不相容,则P(AB)=P(西)=0。但是只要有一方的概率为0,如,如果A=西,则A与B既相互独立又互不相容,因为此时P(AB)=P(A)P(B)=0。综上所述,相互独立与互不相容并没有必然的联系。

而在区别“不相关”与“相互独立”的区别时,可以通过举例得知J]|f、y不相关不一定就独立,因为X、l,之间有可能存在其他的函数关系,但是存在函数关系的随机变量是否就不独立了呢?答案是未必,例子如下:

考察随机变量X、l,和Z:假定x与l,独立月.都服从参数为P的(0—1)分布,令z为x与y的函数:

可以得到当P=1/2时,Z与X相互独立。转载于 无忧论文网 http://www.xiexiebang.com

通过这些举例,避免了学生将“独立”和“互不相容”等同起来,又说明了“独立”与“函数关系”之间的联系。

二、课堂教学中注重数学思想的教育。培养学生建模能力

概率统计中的很多问题都可以归结为同一类问题,数学模型就是这类事物共同本质的抽象。“数学建模”是指对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到一个数学结构。数学模型在概率统计中的应用随处可见,模型化方法贯穿本课程全过程,因此,在教学过程中应该注意培养学生抽象出问题的本质以建立起一般的数学模型的能力。

如“将n只球随机地放入Ⅳ(N大于等于n)个盒子中去,求每个盒子至多有一只球的概率”与“班级同学生日各不相同”具有相同的数学模型。另外,还有古典概型、贝努利概型、正态分布等等这些都是生产生活中抽象出来的,在很多问题中都可以归结为以上的模型。如以下两个

例1,设有80台同类型设备,各台工作是相互独立的,发生故障的概率都是0.01,且一台设备的故障能由一个人处理。考虑两种配备维修工人的方法,其一是由4人维护,每人负责20台;其二是由3人共同维护80台。试比较这两种方法在设备发生故障时不能及时维修的概率的大小。

例2,保险公司在一天内承保了5000张相同年龄、为期1年的寿险保单,每人一份。在合同有效期内若投保人死亡,则公司赔付3万元。设在一年内,该年龄段的死亡率为0.0015,且各个投保人是否死亡相互独立。求该公司对于这批投保人的赔付总额不超过30万元的概率。

以上两个例子虽然不同,但都可以归结为伯努利概型,利用二项分布解决。对这类模型,不应简单地给出它的结果,而应注秀模型的建立、模型的应用范围以及如何把实际问题转化为有关的数学模型去解决。

三、适度引入多媒体教学及数据处理软件。促进课堂教学手段多样化

在概率统计教学中,实际题目信息及文字很多,“一支粉笔、一块黑板,以讲授为主”的传统教学方法显然已经跟不上现代化的教学要求,不利于培养学生的综合素质和创新能力。因此,有必要借助于现代化媒体技术和统计软件,制作内容、图形、声音、图像等结合起来的多媒体课件。~方面,采用多媒体教学手段进行辅助教学,能够将教师从很多重复性的劳动中解脱出来,教师可以将更多的精力和时间投入到如何分析和解释问题,以提高课堂效率,与学生有效地进行课堂交流。另一方面,用图形动画和模拟实验等多媒体作为辅助教学手段,便于学生对概念、图形等的理解。如投币试验、高尔顿板钉实验等小动画在不占用太多课堂时间的同时,又增添了课堂的趣味性。又如在利用Mathematica软件演示大数定律和中心极限定理时,就能将抽象的定理化为形象的直观认识,达到一定的教学效果。在处理概率统计问题中,教师也会面对大量的数据,另外,集数学计算、处理与分析为一身的数据处理软件如:Excel,Matlab,Mathematic,SAS,SPSS等,在计算一些冗长数据时可以简化计算,降低理论难度。而且,在教师的演示过程中,能让学生初步了解如何应用计算机及软件,将所学的知识用于解决生产生活中的实际问题,从而激发他们学习概率知识的热情,提高他们利用计算机解决问题的能力。

最后,在教学过程中,教师应该考虑到各个专业的学生今后学习与发展的需要,在满足教学大纲的要求下,选择与其专业关系紧密的知识点进行重点讲授。同时,在讲授过程中,本着以人为本的教学理念,注意多种方法灵活应用,建立积极的互动教学模式,尽量避免教师在课堂上满堂灌、填鸭式地教学,充分调动学生学习的主动性,挖掘学生的学习潜能,最大限度地发挥和发展学生的聪明才智,使学生能理解概率统计这一学科领域思想方法的精髓。

论文参考文献:

[1]盛骤,谢式千。潘承毅.概率论与数理统计[M].北京:高等教育出版社,2009.

[2] 姜启源.数学模型[M].北京:高等教育出版社。2003:4—7.

[3] 徐钟济.蒙特卡罗方法[M].上海:上海科学技术出版社,1985:171—188.

[4] 郝晓斌,董西广.数学建模思想在概率论与数理统计课程教学中的应用[J].经济研究导刊,2010,90(16):244—245.

[5]徐荣聪,游华.(概率论与数理统计)课程案例教学法[J].宁德师专学报(自然科学版),2008(2):145—147.

第四篇:概率论与数理统计

概率论与数理统计

一、随机事件和概率

考试内容

随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验

考试要求

1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.

2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.

3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布

考试内容

随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布

考试要求

1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.

2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布 及其应用.

3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为 的指数分布 的概率密度为

5.会求随机变量函数的分布.

三、多维随机变量及其分布

考试内容

多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布

考试要求

1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质.理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.

2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.

4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征

考试内容

随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质

考试要求

1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会

运用数字特征的基本性质,并掌握常用分布的数字特征.

2.会求随机变量函数的数学期望.五、大数定律和中心极限定理

考试内容

切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-laplace)定理 列维-林德伯格(Levy-Lindberg)定理

考试要求

1.了解切比雪夫不等式.

2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).

3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).

六、数理统计的基本概念

考试内容

总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩分布分布分布 分位数 正态总体的常用抽样分布

考试要求

1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:

2.了解 分布、分布和 分布的概念及性质,了解上侧 分位数的概念并会查表计算.

3.了解正态总体的常用抽样分布.

七、参数估计

考试内容

点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计

考试要求

1.理解参数的点估计、估计量与估计值的概念.

2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.

3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.

4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验

考试内容

显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验

考试要求

1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.

2.掌握单个及两个正态总体的均值和方差的假设检验.

数学大纲和去年相比变化之处

从拿到大纲的情况来说,今年的大纲和往年是没有什么变化,这一点和我前面所预测的是基本上一致的。当然大纲没有变化,对大家也有一个好处,也就是大家可以按照原先的计划,按步就班的走,不用考虑有一些计划

调整等等这样一类的东西。

2011年考试的难度是有一个怎样的趋势

至于难度,咱们要说2011年的难度,可以看一下这几年的难度水平。数一2008,2009年的难度水平基本上是一致的,2010年的考试难度有一定的上升,我认为2011年难度水平应该有所下降。大纲没有变,而考研是一个选拔性的考试,要求有一定的稳定性。所以,数一的同学,2011年的考试试题难度可能有所下降,水平和2008,2009是一致的。对数二和数三来说,水平应该和往年基本上是一致的。

2011年的考察重点会在哪个方面

由于今年考研大纲没有变化,我们可以根据考试的一些要求,还有历年考试真题的情况,咱们可以看一下历

年考试的重难点。

咱们看高等数学部分,高等数学部分第一部分函数、极限连续这一块,重点要求掌握两个重要极限,未定式的极限、等价无穷小代换,这样一些东西,还有一些极限存在性问题,间断点的类型,这些东西在历年的考察中都比较高,而我上课的时候一直给大家强调,考极限的话,主要考的是洛必达法则加等价无穷小代换,特别针对

数三的同学,这儿可能出大题。

第二部分是一元函数微分学,这块大家主要处理这几个关系,连续性,可导性和可微性的关系,掌握各种函数的求导方法。比如隐函数求导,参数方程求导等等这一类的,还有注意一元函数的应用问题,这也是历年考试的一个重点。数三的同学这儿结合经济类的一些试题进行考察。

一元函数微分学涉及面非常广,题型比较多,而且这一部分还有一个比较重点的内容,就是出证明题。咱们知道中值定理是历年经常考的一个考点,所用的主要方式就是构造辅助函数的方法进行证明。当然,这里还包含

一部分等式和不等式的证明,零点问题,以及极值和凹凸性。

多元函数微分学,这一块内容实际上也是按照一元函数微分学的形式进行考察的,比如咱们求偏导数,先固定一个变量,给另一个变量求导数,归根到底还是考察一元函数微分学。对多元函数微分学,大家还有一个内容

要掌握,连续性、偏导性和可微性,特别是抽象函数求二阶导数和二阶混合偏导这一类的题。

当然,还有一个问题,多元函数微分学的应用,主要牵扯两方面,一个是条件极值,一个是最值问题。这两

块。

积分学包含两块,也就是一元函数积分学和多元函数积分学,对于一元函数积分学一个是不定积分和定积分的计算,对不定积分一定要非常熟练掌握基本运算,对于定积分除了掌握用不定积分计算的方式,还要注意用定

积分的性质,比如定积分的奇偶性,周期性,单调性等等。

还有一块,定积分应用,主要考察面积问题,体积问题,或者说这块和微积分的结合等等。对于数一的同学来说,咱们还牵扯到一块,三重积分,曲线和曲面积分这两块,对于三重积分来说,大家主要掌握一些基本的,比如对球体、锥体、圆柱的积分,对于曲线和曲面积分主要掌握格林公式和高斯公式,利用格林公式把第二类曲线积分转化成二重积分,利用高斯公式把曲面积分转化成三重积分进行运算,这里有一个比较常考的知识点,曲

线积分与路径无关,这个要作为一个主要的知识点进行掌握。

第四部分,就是微分方程,微分方程有两个重点,一个是一元线性微分方程,第二个是二阶常系数齐次/非齐次线性微分方程,对第一部分,大家掌握九种小类型,针对每一种小类型有不同的解题方式,针对每个不同的方程,套用不同的公式就行了。对于二阶常系数线性微分方程大家一定要理解解的结构。另一块对于非齐次的方程来说,大家要注意它和特征方程的联系,有齐次为方程可以求它的通解,当然给出的通解大家也要写出它的特征

方程,这个变化是咱们这几年的一个趋势。这一类问题就是逆问题。

对于二阶常系数非齐次的线性方程大家要分类掌握。当然,这一块对于数三的同学来说,还有一个差分方程的问题,差分方程不作为咱们的一个重点,而且提醒大家一下,学习的时候要注意,差分方程的解题方式和微方

程是相似的,学习的时候要注意这一点。

第五个,级数问题,主要针对数一和数三,有两个重点,一个是常数项级数的性质,包括敛散性。

第二块,牵扯到幂级数,大家要熟练掌握幂级数的收敛区间的计算,收敛半径与和函数,幂级数展开的问题,要掌握一个熟练的方法来进行计算。对于幂级数求和函数它可能直接给咱们一个幂级数求它的和函数或者给出一

个常数项级数让咱们求它的和,要转化成适当的幂级数来进行求和。

关于线性代数这一块,有这样几个重点的内容,一个是逆矩阵和矩阵的秩。第二个,向量的线性相关性和向量的线性表示。向量组合的相关性,这一块极有可能考的类似于计算的证明题。比如让咱们证明几个向量线性无关。第三块是方程组的解的讨论,其中还包括有待定参数的解的讨论,这块的问题,往年也考得比较多。

第四块特征值和特征向量的性质,以及矩阵的对角化。

第五块,正定二次型的判断。大家在学线代的时候,还要注意一个方向,就是线性代数各个章节的连贯性是比较强的,我们在复习总结的时候,特别是后期,对于这一块内容要自己有一个总结,然后还可以看一看比如咱

们的复习全书或者复习指南这之类的书,在脑海中对线性参数的知识点要形成一个知识性框架。

概率统计这块(数二不考),概率统计要注重这几块内容,一个是概率的性质与概率的公式,这一块要求咱们非常熟练的掌握,比方说加法公式,减法公式,乘法公式,全概率公式和Bayes公式,这块要非常熟悉的掌握。

还有一部分,古典概率和几何概率,这块大家掌握中等难度的题就可以了。

第二块,一维随机变量函数的分布,这个要重点掌握连续性变量的这一块。这里面有个难点,一维随机变量函数这是一个难点,求一元随机变量函数的分布有两种方式,一个是分布函数法,这是最基本要掌握的。另外是

公式法,公式法相对比较便捷,但是应用范围有一定的局限性。

第三块,多维随机变量的联合分布和边缘分布还有条件分布,多维随机变量的独立性,这块是考试的重点,当然也是一个难点。这块还有一个问题要求大家掌握的,随机变量的和函数和最值函数的分布。

第四块,随机变量的数字特征,这块很重要,要记住一维随机变量的数字特征都要记熟,数字特征很少单独性考察,往往和前面的一维随机变量函数和多维随机变量函数和第六章的数理统计结合进行考察。特别针对数一的同学来说,考察矩估计和最大似然估计的时候会考察无偏性。

第五块,参数估计这一点是咱们经常出大题的地方,这一块对咱们数一,数二,数三的同学,包含两块知识点,一个是矩估计,一个是最大似然估计,这两个集中出大题。数一的同学,咱们特别强调一点,考这个矩估计

或者最大似然估计,极有可能结合无偏性或者有效性进行考察。

第五篇:概率论与数理统计A,教学大纲

概率论与数理统计A

Probability & Statistics A

课程编码:09A00210 学分:3.5 课程类别:专业基础课 计划学时:56

其中讲课:56 实验或实践:0 上机:0 适用专业:部分理工类、经济、管理类学院各专业,主要有信息学院、机械学院、电气自动化、土建学院、资环学院、商学院、物理学院等。

推荐教材:杨殿武 苗丽安主编,《概率论与数理统计》,科学出版社,2014年;参考书目:浙江大学盛骤主编,《概率论与数理统计》,高等教育出版社,2009年;吴赣昌主编,《概率论与数理统计》,中国人民大学出版社,2006年。

课程的教学目的与任务

本课程是大部分理工科、管理、经济类各专业的专业基础课程,课程内容侧重于讲解概率论与数理统计的基本理论与方法,同时在教学中结合各专业的特点介绍性地给出在各领域中的具体应用。课程的任务在于通过本课程的学习,要使学生获得:随机事件与概率、一元与多元随机变量及其分布、随机变量的数字特征;、数理统计的基本概念、参数估计与假设检验等方面的基本概念、基本理论和基本运算技能,培养学生抽象思维能力、逻辑推理能力以及运用数学知识分析问题和解决随机问题的能力,提高学生的数学素质和解决实际问题的能力。

课程的基本要求

(一)概率论基础

掌握古典概型、几何概型的计算;掌握全概率公式及贝叶斯公式的运用及独立性。

(二)随机变量及其分布

掌握一维离散型和连续型随机变量的概率分布的计算及一维随机变量的函数的分布。

(三)多维随机变量及其分布

1、掌握二维离散型随机变量的概率分布及二维连续型随机变量的概率密度的性质。

2、掌握二维离散和连续型随机变量的边缘分布和随机变量的独立性及二维随机变量的函数的分布。

(四)随机变量的数字特征

1、掌握数学期望、方差的性质及运算;掌握六种常见分布的数学期望和方差。

2、掌握协方差及相关系数的性质及相关性。

(五)大数定律与中心极限定理

了解切比雪夫不等式,了解独立同分布中心极限定理和棣莫佛--拉普拉斯定理。

(六)参数估计

掌握三大分布χ2 分布、t分布及F分布及正态总体的常用的统计量分布;掌握矩估计法、最大似然估计法和区间估计的方法。

(七)假设检验

理解假设检验的基本思想,掌握单个正态总体的均值与方差的假设检验,了解两个正态总体均值与方差相等的假设检验。

各章节授课内容、教学方法及学时分配建议

第1章 概率论基础 建议学时:10学时

[教学目的与要求] 理解随机事件的概念,掌握事件之间的关系与运算;理解概率、条件概率的定义,掌握概率的基本性质,会计算古典概型和几何概型的概率;掌握概率的加法公式,乘法公式,会应用全概率公式和贝叶斯公式;理解事件独立性的概念,掌握应用事件独立性进行概率计算的方法.[教学重点与难点] 重点:事件之间的关系与运算、概率的基本性质与计算;难点:全概率公式和贝叶斯公式的应用。

[授 课 方 法] 以课堂多媒体教学为主,结合课堂练习与讨论,课后练习及答疑为辅。[授 课 内 容] 1.1 概率论的基本概念 1.2 概率的定义 1.3 条件概率 1.4 事件的独立性

第2章 随机变量及其分布

建议学时:10学时

[教学目的与要求] 理解随机变量、分布函数的概念及性质,会计算与随机变量有关的事件的概率;理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、泊松分布及其应用;理解连续型随机变量及其概率密度的概念,掌握概率密度与分布函数之间的关系;掌握正态分布,均匀分布和指数分布及其应用;会求简单随机变量函数的概率分布。

[教学重点与难点] 重点:离散型、连续型随机变量的概率计算,六种常见随机变量的分布;难点:连续型随机变量的概率计算。[授 课 方 法] 以课堂多媒体教学为主,结合课堂练习与讨论,课后练习及答疑为辅。[授 课 内 容] 2.1 随机变量

2.2 离散型随机变量及其概率分布 2.3 随机变量的分布函数 2.4 连续型随机变量及其概率分布 2.5 随机变量函数的分布

第3章 多维随机变量及其分布 建议学时:10学时

[教学目的与要求] 理解二维随机变量、联合分布的概念、性质及两种基本形式:离散型联合概率分布,边缘分布和条件分布;连续型联合概率密度、边缘密度和条件密度,会利用二维概率分布求有关事件的概率;理解随机变量的独立性的概念,掌握离散型和连续型随机变量独立的条件;掌握二维均匀分布,了解二维正态分布的概率密度;会求两个独立随机变量的简单函数的分布。

[教学重点与难点] 重点:二维离散型、连续型随机变量的概率计算,独立性的概念;难点:二维连续型随机变量的概率计算,随机变量函数的分布。

[授 课 方 法] 以课堂多媒体教学为主,结合课堂练习与讨论,课后练习及答疑为辅。[授 课 内 容] 3.1 多维随机变量及其分布函数 3.2 二维随机变量及其分布 3.3 随机变量的独立性与条件分布 3.4 多维随机变量函数的分布

第4章

随机变量的数字特征 建议学时:8学时

[教学目的与要求] 理解随机变量数字特征(数学期望、方差、标准差、协方差,相关系数)的概念;并会运用数字特征的基本性质计算具体分布的数字特征;掌握常用分布的数字特征的概念意义和实际背景;会根据随机变量的概率分布求其函数的数学期望;会根据随机变量的联合概率分布求其函数的数学期望;掌握随机变量独立性与相关系数的相互关系。

[教学重点与难点] 重点:常用六种随机变量的数字特征的概念意义及计算,边缘分布的求法;难点:随机变量函数的数字特征,相关系数。[授 课 方 法] 以课堂多媒体教学为主,结合课堂练习与讨论,课后练习及答疑为辅。[授 课 内 容]

4.1 数学期望

4.2 方差

4.3 协方差与相关系数

第5章 大数定律与中心极限定理 建议学时:2学时

[教学目的与要求] 了解大数定律与中心极限定理的中心思想与意义。[教学重点与难点] 辛钦大数定律、棣莫佛--拉普拉斯定理。[授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅。[授 课 内 容]

5.1 大数定律

5.2 中心极限定理

第6章 参数估计

建议学时:8学时

[教学目的与要求] 理解样本和统计量等基本概念;掌握样本均值、样本方差的计算;熟悉χ2 分布、t分布及F分布及正态总体的常用的统计量的分布。理解参数的点估计、估计量与估计值的概念;掌握矩估计法和最大似然估计法;了解估计量的无偏性,有效性和一致性的概念,并会验证估计量的无偏性;了解区间估计的概念,会求单正态总体的均值与方差的置信区间。

[教学重点与难点] χ2 分布、t分布及F分布及正态总体的常用统计量的分布,矩估计法、最大似然估计法,正态总体的均值与方差的置信区间。

[授 课 方 法] 以课堂多媒体教学为主,结合课堂练习与讨论,课后练习及答疑为辅。[授 课 内 容]

6.1 数理统计的基本概念 6.2 点估计

6.3 区间估计

第7章 假设检验

建议学时:8学时

[教学目的与要求] 理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误;了解单正态总体均值与方差的假设检验方法及双正态总体均值与方差的假设检验方法。

[教学重点与难点] 单正态总体均值与方差的假设检验;双正态总体均值与方差的假设检验。[授 课 方 法] 以课堂多媒体教学为主,结合课堂练习与讨论,课后练习及答疑为辅。[授 课 内 容] 7.1 假设检验概述 7.2 单个正态总体的假设检验 7.3 两个正态总体的假设检验

撰稿人:王金梅

审核人:杨殿武

下载概率论与数理统计(共5则范文)word格式文档
下载概率论与数理统计(共5则范文).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《概率论与数理统计》课程标准

    《概率论与数理统计》课程建设 课程标准 第一部分 前言 《概率论与数理统计》(Probability Theory and Mathematical Statistics),由概率论和数理统计两部分组成。它是研究随......

    概率论与数理统计教学浅谈

    概率论与数理统计教学浅谈 国内多数高校工科本科生都开设了概率论与数理统计这门课程[1-2]。该课程无论是在经济、管理、力学、军事科学等众多学科和实际生活中都有广泛的应......

    概率论与数理统计说课稿

    理工系 课程建设——教师说课 《概率论与数理统计》说课稿 各位老师大家好! 我说课的课程是“概率论与数理统计” 《概率论与数理统计》是研究随机现象的统计规律的性的一门......

    概率论与数理统计 第一章

    辽宁石油化工大学 概率论与数理统计教案 第一章 概率论的基本概念 【基本要求】1、理解随机事件和样本空间的概念,熟练掌握事件之间的关系与基本运算; 2、理解事件频率的概念,......

    概率论与数理统计实验报告

    概率论与数理统计 实验报告 题目1:n个人中至少有两人生日相同的概率是多少?通过计算机模拟此结果。 问题分析:n编程: n=input('请输入总人数n='); a=365^n; m=n-1; b=1; for i=......

    概率论与数理统计学习方法

    《概率论与数理统计》学习方法 学习方法是指学生在接受、吸收、消化、掌握知识的过程中,有意识地主动实施的学习方案和技巧。我们在《概率论与数理统计》课程的教学活动中,为......

    《概率论与数理统计》读后感

    《概率论与数理统计》读后感 马克.吐温曾讽刺道:有三种避免讲真相的方式:谎言,该死的谎言和统计数据。这个笑话很中肯,因为统计信息频繁地看似一个黑匣子——了解统计定理怎样让......

    概率论与数理统计 学习心得

    - 《概率论与数理统计》由于其理论及应用的重要性,目前在我国高等数学教育中,已与高等数学和线性代数渐成鼎足之势。 学生们在学习《概率论与数理统计》时通常的反映之一是“......