第一篇:微积分上重要知识点总结
1、常用无穷小量替换
2、关于邻域:邻域的定义、表示(区间表示、数轴表示、简单表示);左右邻域、空心邻域、有界集。
3、初等函数:正割函数sec是余弦函数cos的倒数;余割函数是正弦函数的倒数;反三角函数:定义域、值域
4、收敛与发散、常数A为数列的极限的定义、函数极限的定义及表示方法、函数极限的几何意义、左右极限、极限为A的充要条件、极限的证明。
5、无穷小量与无穷大量:无穷小量的定义、运算性质、定理(无穷小量与极限的替换)、比较、高阶无穷小与同阶无穷小的表示、等价无穷小、无穷大量于无穷小量的关系。
6、极限的性质:局部有界性、唯一性、局部保号性、不等式性质(保序性)。
7、极限的四则运算法则。
8、夹逼定理(适当放缩)、单调有界定理(单调有界数列必有极限)。
9、两个重要极限及其变形
10、等价无穷小量替换定理
11、函数的连续性:定义(增量定义法、极限定义法)、左右连续
12、函数的间断点:第一类间断点和第二类间断点,左、右极限都存在的是第一类间断点,第一类间断点有跳跃间断点和可去间断点。左右极限至少有一个不存在的间断点是第二类间断点。
13、连续函数的四则运算
14、反函数、复合函数、初等函数的连续性
15、闭区间上连续函数的性质:最值定理、有界性定理、零值定理、介值定理。
16、导数的定义、左右导数、单侧导数、左右导数的表示、可导则连续。
17、求导法则与求导公式:函数线性组合的求导法则、函数积和商的求导法则、反函数的求导法则、复合函数求导法则、对数求导法、基本导数公式18、19、20、21、隐函数的导数。
高阶导数的求法及表示。
微分的定义及几何意义、可微的充要条件是可导。A微分的基本公式与运算法则dy=f’(x0)Δx.1 / 4
22、微分形式的不变性
23、微分近似公式:
24、导数在经济问题中的应用(应用题):
(1)边际(变化率,即导数)与边际分析:
总成本函数与边际成本、总收益函数与边际收益、利润函数与边际利润
(2)弹性(书78页)及其分析、弹性函数及应用、需求量与价格之间的变化关系
25、中值定理:罗尔定理、拉格朗日中值定理及推论、可喜中值定理、26、洛必达法则求极限(89页)
27、函数单调性
28、函数的极值、最值、极值点与驻点及其区别,最大利润、最小平均成本、最大收益问题,经济批量问题。(注意书100页)
29、曲线的凹凸性的定义及判定(二阶导数)、拐点。
/ 4
30、曲线的渐近线:水平渐近线、垂直渐近线、斜渐近线
31、利用函数的单调性、极值、曲线的凹凸性、拐点、渐近线、定义域、奇偶性、根及
/ 4 其他变化趋势作图
32、不定积分(积分号、被积函数、积分变量被积表达式、积分常数)、原函数、连续则有原函数、不定积分的几何意义及性质
33、基本积分表
34、换元积分法:第一换元法(凑微分法)和第二换元法(变量替换法)35、36、分部积分法 有理数的积分
/ 4
第二篇:微积分知识点小结
第一章 函数
一、本章提要
基本概念
函数,定义域,单调性,奇偶性,有界性,周期性,分段函数,反函数,复合函数,基本初等函数,初等函数
第二章 极限与连续
一、本章提要
1.基本概念
函数的极限,左极限,右极限,数列的极限,无穷小量,无穷大量,等价无穷小,在一点连续,连续函数,间断点,第一类间断点(可去间断点,跳跃间断点),第二类间断点.2.基本公式
(1)limsin口口1口口01,(2)lim(1口0)口e(口代表同一变量).3.基本方法
⑴ 利用函数的连续性求极限; ⑵ 利用四则运算法则求极限; ⑶ 利用两个重要极限求极限; ⑷ 利用无穷小替换定理求极限;
⑸ 利用分子、分母消去共同的非零公因子求
00形式的极限;
⑹ 利用分子,分母同除以自变量的最高次幂求形式的极限;
⑺ 利用连续函数的函数符号与极限符号可交换次序的特性求极限; ⑻ 利用“无穷小与有界函数之积仍为无穷小量”求极限.4.定理
左右极限与极限的关系,单调有界原理,夹逼准则,极限的惟一性,极限的保号性,极限的四则运算法则,极限与无穷小的关系,无穷小的运算性质,无穷小的替换定理,无穷小与无穷大的关系,初等函数的连续性,闭区间上连续函数的性质.第三章 导数与微分
一、本章提要
1.基本概念 瞬时速度,切线,导数,变化率,加速度,高阶导数,线性主部,微分.
2.基本公式
基本导数表,求导法则,微分公式,微分法则,微分近似公式.
3.基本方法
⑴ 利用导数定义求导数;
⑵ 利用导数公式与求导法则求导数; ⑶ 利用复合函数求导法则求导数; ⑷ 隐含数微分法; ⑸ 参数方程微分法; ⑹ 对数求导法;
⑺ 利用微分运算法则求微分或导数.
第四章 微分学的应用
一、本章提要 1.基本概念
未定型,极值点,驻点,尖点,可能极值点,极值,最值,曲率,上凹,下凹,拐点,渐近线,水平渐近线,铅直渐近线.
2.基本方法
⑴ 用洛必达法则求未定型的极限; ⑵ 函数单调性的判定; ⑶ 单调区间的求法;
⑷ 可能极值点的求法与极大值(或极小值)的求法; ⑸ 连续函数在闭区间上的最大值及最小值的求法; ⑹ 求实际问题的最大(或最小)值的方法; ⑺ 曲线的凹向及拐点的求法; ⑻ 曲线的渐近线的求法; ⑼ 一元函数图像的描绘方法. 3.定理
柯西中值定理,拉格朗日中值定理,罗尔中值定理, 洛必达法则,函数单调性的判定定理,极值的必要条件,极值的第一充分条件,极值的第二充分条件,曲线凹向的判别法则.
第五章 不定积分
一、本章提要
1.基本概念 原函数,不定积分. 2.基本公式不定积分的基本积分公式(20个);分部积分公式.
3.基本方法
第一换元积分法(凑微分法);第二换元积分法;分部积分法;简单有理函数的积分方法.
第六章 定积分
一、本章提要
1.基本概念
定积分,曲边梯形,定积分的几何意义,变上限的定积分,广义积分,无穷区间上的广义积分,被积函数有无穷区间断点的广义积分.2.基本公式 牛顿-莱布尼茨公式.3.基本方法
积分上限函数的求导方法,直接应用牛顿-莱布尼茨公式计算定积分的方法,借助于换元积分法及分部积分法计算定积分的方法,两类广义积分的计算方法.4.定理
定积分的线性运算性质,定积分对积分区间的分割性质,定积分的比较性质,定积分的估值定理,定积分的中值定理,变上限积分对上限的求导定理.第七章
定积分的应用
一、本章提要
1.基本概念
微元法,面积微元,体积微元,弧微元,功微元,转动惯量微元,总量函数.
2. 基本公式平面曲线弧微元分式.
3.基本方法
(1)用定积分的微元法求平面图形的面积,(2)求平行截面面积已知的立体的体积,(3)求曲线的弧长,(4)求变力所作的功,(5)求液体的侧压力,(6)求转动惯量,(7)求连续函数f(x)在a,b区间上的平均值,(8)求平面薄片的质心,也称重心.
第八章
常微分方程
一、本章提要
1. 基本概念
微分方程,常微分方程,微分方程的阶数,线性微分方程,常系数线性微分方程,通解,特解,初始条件,线性相关,线性无关,可分离变量的方程,齐次线性方程,非齐次线性方程,特征方程,特征根.
2. 基本公式
一阶线性微分方程
yP(x)yQ(x)的通解公式:
yP(x)dxdxCeP(x)dx. Q(x)e3. 基本方法
分离变量法,常数变易法,特征方程法,待定系数法,降阶法. 4. 定理
齐次线性方程解的叠加原理,非齐次线性方程解的结构.
第九章
空间解析几何
一、本章提要
1.基本概念
空间直角坐标系,向量,向量的模,单位向量,自由向量,向径,向量的坐标与分解,向量的方向余弦,向量的点积与叉积,平面的点法式与一般式方程,直线的点向式及一般式方程,球面,柱面,旋转面,二次曲面,空间曲线在坐标面上的投影,失函数的导数,失函数的积分.
2.基本公式
两点间的距离公式,向量模与方向余弦公式,点积与叉积坐标公式,点到平面的距离公
式,平面与直线间的夹角公式. 3.方程
直线的点向式方程,直线的参数方程,直线的一般式方程,平面的点法式方程,平面的一般式方程.
第十章
多元函数微分学
一、本章提要
1.基本概念
多元函数,二元函数的定义域与几何图形,多元函数的极限与连续性,偏导数,二阶偏导数,混合偏导数,全微分,切平面,多元函数的极值,驻点,条件极值,方向导数,梯度.
2.基本方法
二元函数微分法:利用定义求偏导数,利用一元函数微分法求偏导数,利用多元复合函 数求导法则求偏导数.
隐函数微分法:拉格朗日乘数法. 3.定理
混合偏导数与次序无关的条件,可微的充分条件,复合函数的偏导数,极值的必要条件,极值的充分条件.
第十一章
多元函数积分学
一、本章提要
1. 基本概念
二重积分,三重积分,曲线积分,曲面积分,微元法,柱面坐标系,球面坐标系,积分与路径无关. 2. 基本公式
(1)格林公式:PdxQdyLQPxydxdy;
DRdVz(2)高斯公式:PxQyPdydzQdzdxRdxdy.
3. 基本方法
将二重积分化为二次积分,关键是确定积分的上下限:有直角坐标系下的计算方法和极坐标系下的计算方法;计算三重积分,有直角坐标系、柱面坐标系、球面坐标系的计算方法;计算对坐标的曲线积分,有基本法,格林公式法,与路径无关法;计算对坐标的曲面积分,有对坐标的曲面积分法,高斯公式法.
4. 定理
格林公式定理,积分与路径无关定理,高斯公式定理.
第十二章 级数
一、本章提要
1.基本概念
正项级数,交错级数,幂级数,泰勒级数,麦克劳林级数,傅里叶级数,收敛,发散,绝对收敛,条件收敛,部分和,级数和,和函数,收敛半径,收敛区间,收敛域.
2.基本公式
(1)f(x)在xx0处的泰勒级数系数:a0f(x0),akf(k)(x0)k!;
(2)傅里叶系数: an1πππf(x)cosnxdx(n0,1,2,),bn1πππf(x)sinnxdx(n1,2,).
3.基本方法
比较判别法,比值判别法,交错级数判别定理,直接展开法,间接展开法.
4.定理
比较判别定理,比值判别定理,交错级数判别定理,求收敛半径定理,幂级数展开定理,傅里叶级数展开定理.
第三篇:高等数学(上)重要知识点归纳
高等数学(上)重要知识点归纳
第一章 函数、极限与连续
一、极限的定义与性质
1、定义(以数列为例)
limxna0,N,当nN时,|xna|
n
2、性质
f(x)Af(x)A(x),其中(x)为某一个无穷小。(1)limxx0f(x)A0,则0,当xU(x0,)时,(2)(保号性)若limxx0of(x)0。
(3)*无穷小乘以有界函数仍为无穷小。
二、求极限的主要方法与工具
1、*两个重要极限公式
(1)lim0sin1
1(2)lim(1)e
2、两个准则
(1)*夹逼准则
(2)单调有界准则
3、*等价无穷小替换法 常用替换:当0时
(1)sin~
(2)tan~
(3)arcsin~
(4)arctan~(5)ln(1)~
(6)e1~(7)1cos~
2(8)n11~
12 n 2
4、分子或分母有理化法
5、分解因式法
6用定积分定义
三、无穷小阶的比较*
高阶、同阶、等价
四、连续与间断点的分类
1、连续的定义*
f(x)在a点连续
limy0limf(x)f(a)f(a)f(a)f(a)
x0xa可去型(极限存在)第一类跳跃型(左右极限存在但不相等)
2、间断点的分类 无穷型(极限为无穷大)第二类震荡型(来回波动)其他
3、曲线的渐近线*(1)水平渐近线:若limf(x)A,则存在渐近线:yAx(2)铅直渐近线:若limf(x),则存在渐近线:xaxa
五、闭区间连续函数性质
1、最大值与最小值定理
2、介值定理和零点定理
第二章 导数与微分
一、导数的概念
1、导数的定义* y|xaf(a)dyyf(ax)f(a)f(x)f(a)|xalimlimlimx0x0xadxxxxa
2、左右导数
左导数f(a)limx0yf(x)f(a)limxaxxa右导数f(a)limx0yf(x)f(a)limxaxxa
3、导数的几何意义* y|xa曲线f(x)在点(a,f(a))处的切线斜率k
4、导数的物理意义
若运动方程:ss(t)则s(t)v(t)(速度),s(t)v(t)a(t)(加速度)
5、可导与连续的关系:
可导连续,反之不然。
二、导数的运算
1、四则运算(uv)uv
(uv)uvuv
()uvuvuv
2vdydyduu
2、复合函数求导 设yf[(x)],一定条件下 yuxdxdudx3、反函数求导 设yf(x)和xf1(y)互为反函数,一定条件下:yx1 xy4、求导基本公式*(要熟记)
5、隐函数求导* 方法:在F(x,y)0两端同时对x求导,其中要注意到:y是中间变量,然后再解出y
xx(t)
6、参数方程确定函数的求导* 设,一定条件下
yy(t)y(t)tdyytdyytxtytxtxxt(可以不记)y,yxx3dxxtdxxt(xt)
7、常用的高阶导数公式(1)sin(n)xsin(x),(n0,1,2...)
n(2)cosxcos(x),(n0,1,2...)
2(n)n2(3)ln(1x)(1)(n)n1(n1)!,(n12...)n(1x)1n(1)nn!),(n0,1,2...)(4)(n11x(1x)(5)(莱布尼茨公式)(uv)Cnku(nk)v(k)
(n)k0n
三、微分的概念与运算
1、微分定义 * 若yAxo(x),则yf(x)可微,记dyAxAdx
2、公式:dyf(x)xf(x)dx
3、可微与可导的关系* 两者等价
4、近似计算 当|x|较小时,ydy,f(x)f(xx)f(x)x
第三章 导数的应用
一、微分中值定理*
1、柯西中值定理*(1)f(x)、g(x)在[a,b]上连续(2)f(x)、g(x)在(a,b)内可导(3)g(x)0,则:f()f(b)f(a)(a,b),使得:g()g(b)g(a)当取g(x)x时,定理演变成:
2、拉格朗日中值定理*
(a,b),使得:f()f(b)f(a)f(b)f(a)f()(ba)
ba当加上条件f(a)f(b)则演变成:
3、罗尔定理* (a,b),使得:f()0
4、泰勒中值定理 在一定条件下:
f(n)(x0)f(x)f(x0)f(x0)(xx0)...(xx0)nRn(x)
n!f(n1)()(xx0)n1o((xx0)n),介于x0、x之间.其中Rn(x)(n1)!当公式中n=0时,定理演变成拉格朗日定理.当x00时,公式变成:
f(n)(0)n5、麦克劳林公式 f(x)f(0)f(0)x...xRn(x)
n!
6、常用麦克劳林展开式
x21n(1)e1x...xo(xn)
2!n!xx3x5(1)n12n1xo(x2n)(2)sinxx...3!5!(2n1)!x2x4(1)n2nxo(x2n1)(3)cosx1...2!4!(2n)!x2x3(1)n1n(4)ln(1x)x...xo(xn)
23n
二、罗比达法则* 记住:法则仅能对,型直接用,对于0,,1,00,0,转化后用.幂指函数恒等式*fgeglnf
三、单调性判别*
1、y0y,y0y
2、单调区间分界点:驻点和不可导点.四、极值求法*
1、极值点来自:驻点或不可导点(可疑点).2、求出可疑点后再加以判别.3、第一判别法:左右导数要异号,由正变负为极大,由负变正为极小.4、第二判别法:一阶导等于0,二阶导不为0时,是极值点.正为极小,负为极大.五、闭区间最值求法* 找出区间内所有驻点、不可导点、区间端点,比较大小.00 7
六、凹凸性与拐点*
1、y0y,y0y
2、拐点:曲线上凹凸分界点(x0,y0).横坐标x0不外乎f(x0)0,或f(x0)不存在,找到后再加以判别x0附近的二阶导数是否变号.七、曲率与曲率半径
1、曲率公式K|y|(1y2)
12、曲率半径R
K32
第四章 不定积分
一、不定积分的概念* 若在区间I上,F(x)f(x),亦dF(x)f(x)dx,则称F(x)为f(x)的原函数.称全体原函数F(x)+c为f(x)的不定积分,记为f(x)dx.二、微分与积分的互逆关系
1、[f(x)dx]f(x)df(x)dxf(x)dx
2、f(x)dxf(x)cdf(x)f(x)c
三、积分法*
1、凑微分法*
2、第二类换元法
3、分部积分法* udvuvvdu
4、常用的基本积分公式(要熟记).第五章 定积分
一、定积分的定义 af(x)dxlimf(i)xi x0i
1二、可积的必要条件
有界.三、可积的充分条件
连续或只有有限个第一类间断点或单调.四、几何意义
定积分等于面积的代数和.bn 9
五、主要性质*
1、可加性 aac
2、估值 在[a,b]上,m(ba)af(x)dxM(ba)
3、积分中值定理* 当f(x)在[a,b]上连续时:af(x)dxf()(ba),[a,b]
4、函数平均值:babcbbbf(x)dxba
六、变上限积分函数*
1、若f(x)在[a,b]连续,则F(x)af(t)dt可导,且[af(t)dt]f(x)
2、若f(x)在[a,b]连续,(x)可导,则:[a
七、牛-莱公式* 若f(x)在[a,b]连续,则af(x)dx[f(x)dx]|bF(b)F(a)
axx(x)f(t)dt]f[(x)](x)
b
八、定积分的积分法*
1、换元法
牢记:换元同时要换限
2、分部积分法
audvuv|avdu
babb3、特殊积分(1)aa0,当f(x)为奇函数时f(x)dxa
20f(x)dx,当f(x)为偶函数时(2)当f(x)为周期为T的周期函数时:
aanTf(x)dxn0f(x)dx,nZ
T(3)一定条件下:0xf(sinx)dx0f(sinx)dx
2 10
(n1)!,n是正奇数时(4)02sinnxdx02cosnxdxn!
(n1)!,n是正偶数时!2n!(5)0sinxdx202sinnxdx n
九、反常积分*
1、无穷区间上
a
其他类似 f(x)dxlimaf(t)dtF(x)|aF()F(a)xx2、p积分:ap1时收敛1 dx(a0):pxp1时发散
3、瑕积分:若a为瑕点:
b则af(x)dxlimf(t)dtF(x)|F(b)F(a)
其他类似处理
axaxbb
第六章
定积分应用
一、几何应用
1、面积(1)A(y上-y下)dxaA(x右-x左)dyabb
xx(t),(t),则A|y(t)x(t)|dt(2)C:yy(t)C:(),与,,()围成图形面积(3)12A()d2
2、体积*(1)旋转体体积*Vxay2dx
Vycx2dy
或Vy2axydx(2)截面面积为AA(x)的立体体积为VaA(x)dx
bbdb 11
3、弧长
(1)sa1y2dx(axb)(2)sx2(t)y2(t)dt,(t)(3)s22d,()
二、物理应用
1、变力作功
一般地:先求功元素:再积分waF(x)dx dwF(x)dx,x[a,b],克服重力作功的功元素dw=体积g位移
2、水压力
dP=水深面积g
第七章
微分方程
一、可分离变量的微分方程
dy形式:f(x)g(y)
dxbb二、一阶线性微分方程*
1、线性齐次:yp(x)y0 通解公式*:yCep(x)dx
2、线性非齐次
yp(x)yq(x)通解公式*:ye
p(x)dxp(x)dx[eq(x)dxC)
第四篇:AP微积分BC考试知识点总结
三立教育www.xiexiebang.com
AP微积分BC考试知识点总结
AP微积分BC中用到的高中6大知识点总结,微积分中用到的高中知识主要是函数相关知识,主要有以下几方面内容:
1.函数的定义、函数的图像、分段函数、绝对值函数、定义域和值域等;
2.函数的运算及复合函数,函数图像的对称性;
3.x的n次幂的函数、反比例函数、多项式函数、有理函数、三角函数的定义、性质和图像分析;
4.反函数和反三角函数的图像和性质;
5.指数函数和对数函数;
6.参数方程(只是Calculus BC所要求的内容)
这些基础内容的讲解将主要以做题带动讲解的方式,通过一定数量的例题引导,加速学生对基础知识的回忆,为后面的微积分学习打下一定的坚实基础。
1.函数的基本知识
1.1.Definition
If a variable y depends on a variable x in such a way that each value of x determines exactly one value of y, then we say that y is a function of x.1.2.The vertical line test:
A curve in the xy-plane is the graph of some function f if and only if no vertical line intersects the curve more than once.三立教育www.xiexiebang.com
1.3.The absolute value function
2.函数的运算
2.1.Composition of f with g
Given functions f and g, the composition of f with g, denoted by f ο g, is the function defined by
(f。g)(x)=f(g(x))
The donation of f o g is defined to consist of all x in the domain of g for which g(x)is in the domain of f.2.2.Symmetry Tests
a)A plane curve is symmetric about the y-axis if and only if replacing x by –x in its equation produces an equivalent equation.b)A plane curve is symmetric about the x-axis if and only if replacing y by –y in its equation produces an equivalent equation.c)A plane curve is symmetric about the origin if and only if replacing x by –x and y by –y in its equation produces an equivalent equation
3.常见的函数
3.1.Inverse function
A variable is said to be inversely proportional to a variable x if there is a positive constant k, called the constant of proportionality, such that,3.2.Polynomials 三立教育www.xiexiebang.com
A polynomial in x is a function that is expressible as a sum of finitely many terms of the form cxn, wherec is a constant and n is a nonnegative integar.3.3.Rational function
A function that can be expressed as a ratio of two polynomials is called a rational function.4.反函数
4.1.Inverse function
If the function f and g satisfy the two conditions:
g(f(x))=x for every x in the domain of f
f(g(x))=y for every y in the domain of g
then we say that f is an inverse of g and g is an inverse of f or that f and g are inverse functions.4.2.The Horizontal Line Test
A function has an inverse function if and only if its graph is cut at most once by any horizontal line.5.指数函数、对数函数
5.1.A function of the form f(x)=bx, where b>0, is called an exponential function with base b.5.2.The basic characteristic of exponential function 三立教育www.xiexiebang.com
5.3.The basic characteristic of logarithmic function
5.4.If b>0 and b≠1, then bx and logbx are inverse functions.6.参数方程
6.1.Definition
Suppose that a particle moves along a curve C in the xy-plane in such a way that its x-and y-coordinates, as functions of time, are
x=f(t), y=g(t)
We call these the parametric equations of motion for the particle and refer to C as the trajectory of the particle or the graphs of the equations.The variable t is called the parameter for the equations.上海新托福精讲班多少钱?
一、整体情况
培训对象:英语基础薄弱大学生或未接触过托福考试的高中生
培训目的:通过对托福基础听说读写的巩固及强化训练,帮助学员提高托福基础和应试技巧,顺利通过考试。
目标分数:80-90分
课程时长:根据学员需要而定
课程学费:依照学员学习水平而定
二、课程安排
课程课程:主讲托福词汇、托福语法、托福听力、托福阅读、托福口语、托福写作;
辅导课程:梳理课程知识,解疑答惑,查漏补缺;
测评课程:托福全真模考及考试分析点评; 三立教育www.xiexiebang.com
三、模考安排
第一次:课程中间,安排一次托福全真模拟考试及点评
第二次:课程结束,安排一次托福全真模拟考试及点评
备
注:除以上安排,学员结课后可根据自己的考试时间自行预约TPO小站模考
【看不懂?更多问题请留言咨询在线备考顾问】
第五篇:微积分总结
第一章知识点
1.极限的定义(ε-δ定义):
(重在理解)2.两边夹法则
先看它是否有明显的界限,再有极限相同入手。
但要注意:夹的时候一定要保证不等关系一直成立 3.在证明不等关系时,二项式定理是一个不错的工具,尤其是涉及到n次幂的问题(P9 例题3)
4.复合函数问题中Df∩Zg≠Φ对于一个复合函数f(g(x)),那么g(x)的值域与f(x)的定义域必须要有交集(小错误)
5.有基本初等函数(反对幂指三)经过有限次变换得到的函数均为初等函数(定理:初等函数在其定义域内均连续)6.邻域均为开区间
7.用ε-ε-δ定义定义证明极限等于某个常数,其关键是找出一个符合要求的δ,并要充分利用lim=n这一条件。P30 例1 8.Limf(x)=∞时,f(x)的极限不存在,只是借用这一符号。在此处有垂直渐近线
9.左右极限存在且相等==> 函数在这一点极限存在 10.函数极限存在则必有唯一性(反证法,与定义矛盾)11.连续可推出极限存在
12.连续性的条件:1.f(x0)有意义
2.f(x0)在此处的极限存在 3.此处limf(x)=f(x0)13.换元要换限,取值范围要跟着变。
14.无穷小性质:
1.有限个无穷小之和与乘积是无穷小
2.有界函数和常数 与无穷小的乘积是无穷小
(用于简化求极限的式子)
15.利用无穷小求极限就是丢掉不影响的无穷小(高阶无穷小),再用等价无穷小替换。
16.若f(x)在x0处可微,则f(x)在处连续,其极限也必定存在 17.可微=左右微商相等
(不等即微商不存在)
18.因此求分段点出的微商的步骤是:先求左微商,再求右微商,再看其等不等。等便存在,不等便不存在
19.连续点处或左右微商:1.先求增量Δy
2.再求Δy/Δx 3.求极限(极限为无穷则称其不可微)20.切线方程,法线方程 21.求极限时注意谁是变量。
22.无穷小等价代换 乘除可换 加减不能
在对无穷小比无穷小求极限的过程中,可以把分子或分母中的某个因子用等价无穷小替换,加减时一般不能用等价无穷小替换,加减时候等价无穷小替换的条件是:lim a/b中极限存在,且极限不等于-1,则a+b中的无穷小a和b可以用它们的等价无穷小替换。
23.间断点类型:第一类间断点:1.左右极限存在且相等但不等与
f(x0)(可取间断点)
2.左右极限不等(跳跃间断点)第二类间断点:
左右极限至少有一个不存在 24.极限比值为常数且分子或分母也为0,则另一个也为0(分子分母为同阶无穷小)25.(1)limsinx1x0x1x比较limxsinx0x(2)lim(1x)x0e或lim(1x1x)ex
26.极限的性质:1.唯一性 2.局部保号性 3.两边夹法则 4.比值极限性质 27.仅个人小小理解,当作总结,若有错误还请及时与我交流,愿大家共同进步!!