微积分上重要知识点总结(五篇范文)

时间:2019-05-14 13:48:35下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《微积分上重要知识点总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《微积分上重要知识点总结》。

第一篇:微积分上重要知识点总结

1、常用无穷小量替换

2、关于邻域:邻域的定义、表示(区间表示、数轴表示、简单表示);左右邻域、空心邻域、有界集。

3、初等函数:正割函数sec是余弦函数cos的倒数;余割函数是正弦函数的倒数;反三角函数:定义域、值域

4、收敛与发散、常数A为数列的极限的定义、函数极限的定义及表示方法、函数极限的几何意义、左右极限、极限为A的充要条件、极限的证明。

5、无穷小量与无穷大量:无穷小量的定义、运算性质、定理(无穷小量与极限的替换)、比较、高阶无穷小与同阶无穷小的表示、等价无穷小、无穷大量于无穷小量的关系。

6、极限的性质:局部有界性、唯一性、局部保号性、不等式性质(保序性)。

7、极限的四则运算法则。

8、夹逼定理(适当放缩)、单调有界定理(单调有界数列必有极限)。

9、两个重要极限及其变形

10、等价无穷小量替换定理

11、函数的连续性:定义(增量定义法、极限定义法)、左右连续

12、函数的间断点:第一类间断点和第二类间断点,左、右极限都存在的是第一类间断点,第一类间断点有跳跃间断点和可去间断点。左右极限至少有一个不存在的间断点是第二类间断点。

13、连续函数的四则运算

14、反函数、复合函数、初等函数的连续性

15、闭区间上连续函数的性质:最值定理、有界性定理、零值定理、介值定理。

16、导数的定义、左右导数、单侧导数、左右导数的表示、可导则连续。

17、求导法则与求导公式:函数线性组合的求导法则、函数积和商的求导法则、反函数的求导法则、复合函数求导法则、对数求导法、基本导数公式18、19、20、21、隐函数的导数。

高阶导数的求法及表示。

微分的定义及几何意义、可微的充要条件是可导。A微分的基本公式与运算法则dy=f’(x0)Δx.1 / 4

22、微分形式的不变性

23、微分近似公式:

24、导数在经济问题中的应用(应用题):

(1)边际(变化率,即导数)与边际分析:

总成本函数与边际成本、总收益函数与边际收益、利润函数与边际利润

(2)弹性(书78页)及其分析、弹性函数及应用、需求量与价格之间的变化关系

25、中值定理:罗尔定理、拉格朗日中值定理及推论、可喜中值定理、26、洛必达法则求极限(89页)

27、函数单调性

28、函数的极值、最值、极值点与驻点及其区别,最大利润、最小平均成本、最大收益问题,经济批量问题。(注意书100页)

29、曲线的凹凸性的定义及判定(二阶导数)、拐点。

/ 4

30、曲线的渐近线:水平渐近线、垂直渐近线、斜渐近线

31、利用函数的单调性、极值、曲线的凹凸性、拐点、渐近线、定义域、奇偶性、根及

/ 4 其他变化趋势作图

32、不定积分(积分号、被积函数、积分变量被积表达式、积分常数)、原函数、连续则有原函数、不定积分的几何意义及性质

33、基本积分表

34、换元积分法:第一换元法(凑微分法)和第二换元法(变量替换法)35、36、分部积分法 有理数的积分

/ 4

第二篇:微积分知识点小结

第一章 函数

一、本章提要

基本概念

函数,定义域,单调性,奇偶性,有界性,周期性,分段函数,反函数,复合函数,基本初等函数,初等函数

第二章 极限与连续

一、本章提要

1.基本概念

函数的极限,左极限,右极限,数列的极限,无穷小量,无穷大量,等价无穷小,在一点连续,连续函数,间断点,第一类间断点(可去间断点,跳跃间断点),第二类间断点.2.基本公式

(1)limsin口口1口口01,(2)lim(1口0)口e(口代表同一变量).3.基本方法

⑴ 利用函数的连续性求极限; ⑵ 利用四则运算法则求极限; ⑶ 利用两个重要极限求极限; ⑷ 利用无穷小替换定理求极限;

⑸ 利用分子、分母消去共同的非零公因子求

00形式的极限;

⑹ 利用分子,分母同除以自变量的最高次幂求形式的极限;

⑺ 利用连续函数的函数符号与极限符号可交换次序的特性求极限; ⑻ 利用“无穷小与有界函数之积仍为无穷小量”求极限.4.定理

左右极限与极限的关系,单调有界原理,夹逼准则,极限的惟一性,极限的保号性,极限的四则运算法则,极限与无穷小的关系,无穷小的运算性质,无穷小的替换定理,无穷小与无穷大的关系,初等函数的连续性,闭区间上连续函数的性质.第三章 导数与微分

一、本章提要

1.基本概念 瞬时速度,切线,导数,变化率,加速度,高阶导数,线性主部,微分.

2.基本公式

基本导数表,求导法则,微分公式,微分法则,微分近似公式.

3.基本方法

⑴ 利用导数定义求导数;

⑵ 利用导数公式与求导法则求导数; ⑶ 利用复合函数求导法则求导数; ⑷ 隐含数微分法; ⑸ 参数方程微分法; ⑹ 对数求导法;

⑺ 利用微分运算法则求微分或导数.

第四章 微分学的应用

一、本章提要 1.基本概念

未定型,极值点,驻点,尖点,可能极值点,极值,最值,曲率,上凹,下凹,拐点,渐近线,水平渐近线,铅直渐近线.

2.基本方法

⑴ 用洛必达法则求未定型的极限; ⑵ 函数单调性的判定; ⑶ 单调区间的求法;

⑷ 可能极值点的求法与极大值(或极小值)的求法; ⑸ 连续函数在闭区间上的最大值及最小值的求法; ⑹ 求实际问题的最大(或最小)值的方法; ⑺ 曲线的凹向及拐点的求法; ⑻ 曲线的渐近线的求法; ⑼ 一元函数图像的描绘方法. 3.定理

柯西中值定理,拉格朗日中值定理,罗尔中值定理, 洛必达法则,函数单调性的判定定理,极值的必要条件,极值的第一充分条件,极值的第二充分条件,曲线凹向的判别法则.

第五章 不定积分

一、本章提要

1.基本概念 原函数,不定积分. 2.基本公式不定积分的基本积分公式(20个);分部积分公式.

3.基本方法

第一换元积分法(凑微分法);第二换元积分法;分部积分法;简单有理函数的积分方法.

第六章 定积分

一、本章提要

1.基本概念

定积分,曲边梯形,定积分的几何意义,变上限的定积分,广义积分,无穷区间上的广义积分,被积函数有无穷区间断点的广义积分.2.基本公式 牛顿-莱布尼茨公式.3.基本方法

积分上限函数的求导方法,直接应用牛顿-莱布尼茨公式计算定积分的方法,借助于换元积分法及分部积分法计算定积分的方法,两类广义积分的计算方法.4.定理

定积分的线性运算性质,定积分对积分区间的分割性质,定积分的比较性质,定积分的估值定理,定积分的中值定理,变上限积分对上限的求导定理.第七章

定积分的应用

一、本章提要

1.基本概念

微元法,面积微元,体积微元,弧微元,功微元,转动惯量微元,总量函数.

2. 基本公式平面曲线弧微元分式.

3.基本方法

(1)用定积分的微元法求平面图形的面积,(2)求平行截面面积已知的立体的体积,(3)求曲线的弧长,(4)求变力所作的功,(5)求液体的侧压力,(6)求转动惯量,(7)求连续函数f(x)在a,b区间上的平均值,(8)求平面薄片的质心,也称重心.

第八章

常微分方程

一、本章提要

1. 基本概念

微分方程,常微分方程,微分方程的阶数,线性微分方程,常系数线性微分方程,通解,特解,初始条件,线性相关,线性无关,可分离变量的方程,齐次线性方程,非齐次线性方程,特征方程,特征根.

2. 基本公式

一阶线性微分方程

yP(x)yQ(x)的通解公式:

yP(x)dxdxCeP(x)dx. Q(x)e3. 基本方法

分离变量法,常数变易法,特征方程法,待定系数法,降阶法. 4. 定理

齐次线性方程解的叠加原理,非齐次线性方程解的结构.

第九章

空间解析几何

一、本章提要

1.基本概念

空间直角坐标系,向量,向量的模,单位向量,自由向量,向径,向量的坐标与分解,向量的方向余弦,向量的点积与叉积,平面的点法式与一般式方程,直线的点向式及一般式方程,球面,柱面,旋转面,二次曲面,空间曲线在坐标面上的投影,失函数的导数,失函数的积分.

2.基本公式

两点间的距离公式,向量模与方向余弦公式,点积与叉积坐标公式,点到平面的距离公

式,平面与直线间的夹角公式. 3.方程

直线的点向式方程,直线的参数方程,直线的一般式方程,平面的点法式方程,平面的一般式方程.

第十章

多元函数微分学

一、本章提要

1.基本概念

多元函数,二元函数的定义域与几何图形,多元函数的极限与连续性,偏导数,二阶偏导数,混合偏导数,全微分,切平面,多元函数的极值,驻点,条件极值,方向导数,梯度.

2.基本方法

二元函数微分法:利用定义求偏导数,利用一元函数微分法求偏导数,利用多元复合函 数求导法则求偏导数.

隐函数微分法:拉格朗日乘数法. 3.定理

混合偏导数与次序无关的条件,可微的充分条件,复合函数的偏导数,极值的必要条件,极值的充分条件.

第十一章

多元函数积分学

一、本章提要

1. 基本概念

二重积分,三重积分,曲线积分,曲面积分,微元法,柱面坐标系,球面坐标系,积分与路径无关. 2. 基本公式

(1)格林公式:PdxQdyLQPxydxdy;

DRdVz(2)高斯公式:PxQyPdydzQdzdxRdxdy.

3. 基本方法

将二重积分化为二次积分,关键是确定积分的上下限:有直角坐标系下的计算方法和极坐标系下的计算方法;计算三重积分,有直角坐标系、柱面坐标系、球面坐标系的计算方法;计算对坐标的曲线积分,有基本法,格林公式法,与路径无关法;计算对坐标的曲面积分,有对坐标的曲面积分法,高斯公式法.

4. 定理

格林公式定理,积分与路径无关定理,高斯公式定理.

第十二章 级数

一、本章提要

1.基本概念

正项级数,交错级数,幂级数,泰勒级数,麦克劳林级数,傅里叶级数,收敛,发散,绝对收敛,条件收敛,部分和,级数和,和函数,收敛半径,收敛区间,收敛域.

2.基本公式

(1)f(x)在xx0处的泰勒级数系数:a0f(x0),akf(k)(x0)k!;

(2)傅里叶系数: an1πππf(x)cosnxdx(n0,1,2,),bn1πππf(x)sinnxdx(n1,2,).

3.基本方法

比较判别法,比值判别法,交错级数判别定理,直接展开法,间接展开法.

4.定理

比较判别定理,比值判别定理,交错级数判别定理,求收敛半径定理,幂级数展开定理,傅里叶级数展开定理.

第三篇:高等数学(上)重要知识点归纳

高等数学(上)重要知识点归纳

第一章 函数、极限与连续

一、极限的定义与性质

1、定义(以数列为例)

limxna0,N,当nN时,|xna|

n

2、性质

f(x)Af(x)A(x),其中(x)为某一个无穷小。(1)limxx0f(x)A0,则0,当xU(x0,)时,(2)(保号性)若limxx0of(x)0。

(3)*无穷小乘以有界函数仍为无穷小。

二、求极限的主要方法与工具

1、*两个重要极限公式

(1)lim0sin1

1(2)lim(1)e 

2、两个准则

(1)*夹逼准则

(2)单调有界准则

3、*等价无穷小替换法 常用替换:当0时

(1)sin~

(2)tan~

(3)arcsin~

(4)arctan~(5)ln(1)~

(6)e1~(7)1cos~

2(8)n11~

12 n 2

4、分子或分母有理化法

5、分解因式法

6用定积分定义

三、无穷小阶的比较*

高阶、同阶、等价

四、连续与间断点的分类

1、连续的定义*

f(x)在a点连续

limy0limf(x)f(a)f(a)f(a)f(a)

x0xa可去型(极限存在)第一类跳跃型(左右极限存在但不相等)

2、间断点的分类 无穷型(极限为无穷大)第二类震荡型(来回波动)其他

3、曲线的渐近线*(1)水平渐近线:若limf(x)A,则存在渐近线:yAx(2)铅直渐近线:若limf(x),则存在渐近线:xaxa

五、闭区间连续函数性质

1、最大值与最小值定理

2、介值定理和零点定理

第二章 导数与微分

一、导数的概念

1、导数的定义* y|xaf(a)dyyf(ax)f(a)f(x)f(a)|xalimlimlimx0x0xadxxxxa

2、左右导数

左导数f(a)limx0yf(x)f(a)limxaxxa右导数f(a)limx0yf(x)f(a)limxaxxa

3、导数的几何意义* y|xa曲线f(x)在点(a,f(a))处的切线斜率k

4、导数的物理意义

若运动方程:ss(t)则s(t)v(t)(速度),s(t)v(t)a(t)(加速度)

5、可导与连续的关系:

可导连续,反之不然。

二、导数的运算

1、四则运算(uv)uv

(uv)uvuv

()uvuvuv

2vdydyduu

2、复合函数求导 设yf[(x)],一定条件下 yuxdxdudx3、反函数求导 设yf(x)和xf1(y)互为反函数,一定条件下:yx1 xy4、求导基本公式*(要熟记)

5、隐函数求导* 方法:在F(x,y)0两端同时对x求导,其中要注意到:y是中间变量,然后再解出y

xx(t)

6、参数方程确定函数的求导* 设,一定条件下

yy(t)y(t)tdyytdyytxtytxtxxt(可以不记)y,yxx3dxxtdxxt(xt)

7、常用的高阶导数公式(1)sin(n)xsin(x),(n0,1,2...)

n(2)cosxcos(x),(n0,1,2...)

2(n)n2(3)ln(1x)(1)(n)n1(n1)!,(n12...)n(1x)1n(1)nn!),(n0,1,2...)(4)(n11x(1x)(5)(莱布尼茨公式)(uv)Cnku(nk)v(k)

(n)k0n

三、微分的概念与运算

1、微分定义 * 若yAxo(x),则yf(x)可微,记dyAxAdx

2、公式:dyf(x)xf(x)dx

3、可微与可导的关系* 两者等价

4、近似计算 当|x|较小时,ydy,f(x)f(xx)f(x)x

第三章 导数的应用

一、微分中值定理*

1、柯西中值定理*(1)f(x)、g(x)在[a,b]上连续(2)f(x)、g(x)在(a,b)内可导(3)g(x)0,则:f()f(b)f(a)(a,b),使得:g()g(b)g(a)当取g(x)x时,定理演变成:

2、拉格朗日中值定理*

(a,b),使得:f()f(b)f(a)f(b)f(a)f()(ba)

ba当加上条件f(a)f(b)则演变成:

3、罗尔定理* (a,b),使得:f()0

4、泰勒中值定理 在一定条件下:

f(n)(x0)f(x)f(x0)f(x0)(xx0)...(xx0)nRn(x)

n!f(n1)()(xx0)n1o((xx0)n),介于x0、x之间.其中Rn(x)(n1)!当公式中n=0时,定理演变成拉格朗日定理.当x00时,公式变成:

f(n)(0)n5、麦克劳林公式 f(x)f(0)f(0)x...xRn(x)

n!

6、常用麦克劳林展开式

x21n(1)e1x...xo(xn)

2!n!xx3x5(1)n12n1xo(x2n)(2)sinxx...3!5!(2n1)!x2x4(1)n2nxo(x2n1)(3)cosx1...2!4!(2n)!x2x3(1)n1n(4)ln(1x)x...xo(xn)

23n

二、罗比达法则* 记住:法则仅能对,型直接用,对于0,,1,00,0,转化后用.幂指函数恒等式*fgeglnf

三、单调性判别*

1、y0y,y0y

2、单调区间分界点:驻点和不可导点.四、极值求法*

1、极值点来自:驻点或不可导点(可疑点).2、求出可疑点后再加以判别.3、第一判别法:左右导数要异号,由正变负为极大,由负变正为极小.4、第二判别法:一阶导等于0,二阶导不为0时,是极值点.正为极小,负为极大.五、闭区间最值求法* 找出区间内所有驻点、不可导点、区间端点,比较大小.00 7

六、凹凸性与拐点*

1、y0y,y0y

2、拐点:曲线上凹凸分界点(x0,y0).横坐标x0不外乎f(x0)0,或f(x0)不存在,找到后再加以判别x0附近的二阶导数是否变号.七、曲率与曲率半径

1、曲率公式K|y|(1y2)

12、曲率半径R

K32

第四章 不定积分

一、不定积分的概念* 若在区间I上,F(x)f(x),亦dF(x)f(x)dx,则称F(x)为f(x)的原函数.称全体原函数F(x)+c为f(x)的不定积分,记为f(x)dx.二、微分与积分的互逆关系

1、[f(x)dx]f(x)df(x)dxf(x)dx

2、f(x)dxf(x)cdf(x)f(x)c

三、积分法*

1、凑微分法*

2、第二类换元法

3、分部积分法* udvuvvdu

4、常用的基本积分公式(要熟记).第五章 定积分

一、定积分的定义 af(x)dxlimf(i)xi x0i

1二、可积的必要条件

有界.三、可积的充分条件

连续或只有有限个第一类间断点或单调.四、几何意义

定积分等于面积的代数和.bn 9

五、主要性质*

1、可加性 aac

2、估值 在[a,b]上,m(ba)af(x)dxM(ba)

3、积分中值定理* 当f(x)在[a,b]上连续时:af(x)dxf()(ba),[a,b]

4、函数平均值:babcbbbf(x)dxba

六、变上限积分函数*

1、若f(x)在[a,b]连续,则F(x)af(t)dt可导,且[af(t)dt]f(x)

2、若f(x)在[a,b]连续,(x)可导,则:[a

七、牛-莱公式* 若f(x)在[a,b]连续,则af(x)dx[f(x)dx]|bF(b)F(a)

axx(x)f(t)dt]f[(x)](x)

b

八、定积分的积分法*

1、换元法

牢记:换元同时要换限

2、分部积分法

audvuv|avdu

babb3、特殊积分(1)aa0,当f(x)为奇函数时f(x)dxa

20f(x)dx,当f(x)为偶函数时(2)当f(x)为周期为T的周期函数时:

aanTf(x)dxn0f(x)dx,nZ

T(3)一定条件下:0xf(sinx)dx0f(sinx)dx

2 10

(n1)!,n是正奇数时(4)02sinnxdx02cosnxdxn!

(n1)!,n是正偶数时!2n!(5)0sinxdx202sinnxdx n

九、反常积分*

1、无穷区间上

a

其他类似 f(x)dxlimaf(t)dtF(x)|aF()F(a)xx2、p积分:ap1时收敛1 dx(a0):pxp1时发散

3、瑕积分:若a为瑕点:

b则af(x)dxlimf(t)dtF(x)|F(b)F(a)

其他类似处理

axaxbb

第六章

定积分应用

一、几何应用

1、面积(1)A(y上-y下)dxaA(x右-x左)dyabb

xx(t),(t),则A|y(t)x(t)|dt(2)C:yy(t)C:(),与,,()围成图形面积(3)12A()d2

2、体积*(1)旋转体体积*Vxay2dx

Vycx2dy

或Vy2axydx(2)截面面积为AA(x)的立体体积为VaA(x)dx

bbdb 11

3、弧长

(1)sa1y2dx(axb)(2)sx2(t)y2(t)dt,(t)(3)s22d,()

二、物理应用

1、变力作功

一般地:先求功元素:再积分waF(x)dx dwF(x)dx,x[a,b],克服重力作功的功元素dw=体积g位移

2、水压力

dP=水深面积g

第七章

微分方程

一、可分离变量的微分方程

dy形式:f(x)g(y)

dxbb二、一阶线性微分方程*

1、线性齐次:yp(x)y0 通解公式*:yCep(x)dx

2、线性非齐次

yp(x)yq(x)通解公式*:ye

p(x)dxp(x)dx[eq(x)dxC)

第四篇:AP微积分BC考试知识点总结

三立教育www.xiexiebang.com

AP微积分BC考试知识点总结

AP微积分BC中用到的高中6大知识点总结,微积分中用到的高中知识主要是函数相关知识,主要有以下几方面内容:

1.函数的定义、函数的图像、分段函数、绝对值函数、定义域和值域等;

2.函数的运算及复合函数,函数图像的对称性;

3.x的n次幂的函数、反比例函数、多项式函数、有理函数、三角函数的定义、性质和图像分析;

4.反函数和反三角函数的图像和性质;

5.指数函数和对数函数;

6.参数方程(只是Calculus BC所要求的内容)

这些基础内容的讲解将主要以做题带动讲解的方式,通过一定数量的例题引导,加速学生对基础知识的回忆,为后面的微积分学习打下一定的坚实基础。

1.函数的基本知识

1.1.Definition

If a variable y depends on a variable x in such a way that each value of x determines exactly one value of y, then we say that y is a function of x.1.2.The vertical line test:

A curve in the xy-plane is the graph of some function f if and only if no vertical line intersects the curve more than once.三立教育www.xiexiebang.com

1.3.The absolute value function

2.函数的运算

2.1.Composition of f with g

Given functions f and g, the composition of f with g, denoted by f ο g, is the function defined by

(f。g)(x)=f(g(x))

The donation of f o g is defined to consist of all x in the domain of g for which g(x)is in the domain of f.2.2.Symmetry Tests

a)A plane curve is symmetric about the y-axis if and only if replacing x by –x in its equation produces an equivalent equation.b)A plane curve is symmetric about the x-axis if and only if replacing y by –y in its equation produces an equivalent equation.c)A plane curve is symmetric about the origin if and only if replacing x by –x and y by –y in its equation produces an equivalent equation

3.常见的函数

3.1.Inverse function

A variable is said to be inversely proportional to a variable x if there is a positive constant k, called the constant of proportionality, such that,3.2.Polynomials 三立教育www.xiexiebang.com

A polynomial in x is a function that is expressible as a sum of finitely many terms of the form cxn, wherec is a constant and n is a nonnegative integar.3.3.Rational function

A function that can be expressed as a ratio of two polynomials is called a rational function.4.反函数

4.1.Inverse function

If the function f and g satisfy the two conditions:

g(f(x))=x for every x in the domain of f

f(g(x))=y for every y in the domain of g

then we say that f is an inverse of g and g is an inverse of f or that f and g are inverse functions.4.2.The Horizontal Line Test

A function has an inverse function if and only if its graph is cut at most once by any horizontal line.5.指数函数、对数函数

5.1.A function of the form f(x)=bx, where b>0, is called an exponential function with base b.5.2.The basic characteristic of exponential function 三立教育www.xiexiebang.com

5.3.The basic characteristic of logarithmic function

5.4.If b>0 and b≠1, then bx and logbx are inverse functions.6.参数方程

6.1.Definition

Suppose that a particle moves along a curve C in the xy-plane in such a way that its x-and y-coordinates, as functions of time, are

x=f(t), y=g(t)

We call these the parametric equations of motion for the particle and refer to C as the trajectory of the particle or the graphs of the equations.The variable t is called the parameter for the equations.上海新托福精讲班多少钱?

一、整体情况

培训对象:英语基础薄弱大学生或未接触过托福考试的高中生

培训目的:通过对托福基础听说读写的巩固及强化训练,帮助学员提高托福基础和应试技巧,顺利通过考试。

目标分数:80-90分

课程时长:根据学员需要而定

课程学费:依照学员学习水平而定

二、课程安排

课程课程:主讲托福词汇、托福语法、托福听力、托福阅读、托福口语、托福写作;

辅导课程:梳理课程知识,解疑答惑,查漏补缺;

测评课程:托福全真模考及考试分析点评; 三立教育www.xiexiebang.com

三、模考安排

第一次:课程中间,安排一次托福全真模拟考试及点评

第二次:课程结束,安排一次托福全真模拟考试及点评

注:除以上安排,学员结课后可根据自己的考试时间自行预约TPO小站模考

【看不懂?更多问题请留言咨询在线备考顾问】

第五篇:微积分总结

第一章知识点

1.极限的定义(ε-δ定义):

(重在理解)2.两边夹法则

先看它是否有明显的界限,再有极限相同入手。

但要注意:夹的时候一定要保证不等关系一直成立 3.在证明不等关系时,二项式定理是一个不错的工具,尤其是涉及到n次幂的问题(P9 例题3)

4.复合函数问题中Df∩Zg≠Φ对于一个复合函数f(g(x)),那么g(x)的值域与f(x)的定义域必须要有交集(小错误)

5.有基本初等函数(反对幂指三)经过有限次变换得到的函数均为初等函数(定理:初等函数在其定义域内均连续)6.邻域均为开区间

7.用ε-ε-δ定义定义证明极限等于某个常数,其关键是找出一个符合要求的δ,并要充分利用lim=n这一条件。P30 例1 8.Limf(x)=∞时,f(x)的极限不存在,只是借用这一符号。在此处有垂直渐近线

9.左右极限存在且相等==> 函数在这一点极限存在 10.函数极限存在则必有唯一性(反证法,与定义矛盾)11.连续可推出极限存在

12.连续性的条件:1.f(x0)有意义

2.f(x0)在此处的极限存在 3.此处limf(x)=f(x0)13.换元要换限,取值范围要跟着变。

14.无穷小性质:

1.有限个无穷小之和与乘积是无穷小

2.有界函数和常数 与无穷小的乘积是无穷小

(用于简化求极限的式子)

15.利用无穷小求极限就是丢掉不影响的无穷小(高阶无穷小),再用等价无穷小替换。

16.若f(x)在x0处可微,则f(x)在处连续,其极限也必定存在 17.可微=左右微商相等

(不等即微商不存在)

18.因此求分段点出的微商的步骤是:先求左微商,再求右微商,再看其等不等。等便存在,不等便不存在

19.连续点处或左右微商:1.先求增量Δy

2.再求Δy/Δx 3.求极限(极限为无穷则称其不可微)20.切线方程,法线方程 21.求极限时注意谁是变量。

22.无穷小等价代换 乘除可换 加减不能

在对无穷小比无穷小求极限的过程中,可以把分子或分母中的某个因子用等价无穷小替换,加减时一般不能用等价无穷小替换,加减时候等价无穷小替换的条件是:lim a/b中极限存在,且极限不等于-1,则a+b中的无穷小a和b可以用它们的等价无穷小替换。

23.间断点类型:第一类间断点:1.左右极限存在且相等但不等与

f(x0)(可取间断点)

2.左右极限不等(跳跃间断点)第二类间断点:

左右极限至少有一个不存在 24.极限比值为常数且分子或分母也为0,则另一个也为0(分子分母为同阶无穷小)25.(1)limsinx1x0x1x比较limxsinx0x(2)lim(1x)x0e或lim(1x1x)ex

26.极限的性质:1.唯一性 2.局部保号性 3.两边夹法则 4.比值极限性质 27.仅个人小小理解,当作总结,若有错误还请及时与我交流,愿大家共同进步!!

下载微积分上重要知识点总结(五篇范文)word格式文档
下载微积分上重要知识点总结(五篇范文).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    锂离子电池重要知识点总结

    锂离子电池重要知识点总结 (1)电解液目前存在的突出问题: 与正负极的相容性。随电压升高,电解质溶液分解产生气体,使内压增大,导致对电池空难性的破坏以及升高电池工作温度时溶剂......

    财务管理重要知识点总结

    《财务管理》重要知识点 第1章 总论 P3 企业财务关系 P5 财务管理的目标 第2章 财务管理的价值观念 2.1 货币时间价值部分的全部计算 可分散风险与不可分散风险的区别(掌握......

    电子商务重要知识点总结

    谈谈信仰 首先我先谈谈自己对信仰一词的初步理解。我认为信仰一般是指人对超自然存在的信奉,比如信神佛或道等。也有将信仰世俗化,比如信奉某种理想或某种学说如共产主义,甚至......

    光纤通信 重要知识点总结[本站推荐]

    光纤通信 重要知识点总结 第一章 1.任何通信系统追求的最终技术目标都是要可靠地实现最大可能的信息传输容量和传输距离。通信系统的传输容量取决于对载波调制的频带宽度,载......

    财务管理重要知识点总结[定稿]

    第1章总论 财务管理的概念 财务管理的特点 财务管理的目标有哪些? 按照国际惯例有哪几种企业组织形式? 短期无风险证券利率=纯利率+通货膨胀补偿(计算应用) 第2章 财务管理的价......

    管理学重要知识点总结

    第一章 管理概述 第一节 管理的概念及性质 考点一:管理的含义 考点二:管理的科学性和艺术性 第二节 管理的职能 考点:管理的四大职能,并能简述其内容。 第三节 管理者及其应具备......

    Unity3D重要知识点总结(★)

    www.xiexiebang.com Unity3D重要知识点总结 学习Untiy3d过程中,你需要知道数据结构和算法很重,要图形学很重要,大的游戏公司看重个人基础,综合能力小公司就看你实际工作能力,看你......

    AP微积分函数知识点总结[共五篇]

    三立教育www.xiexiebang.com AP微积分函数知识点总结 AP微积分的预备知识。实际上,AP微积分就是给咱中国的考生来说就是拿5分准备的啊,真心不难啊,只要具备高中的数学知识(主......