第一篇:河南专升本高数总共分为十二个章节
河南专升本高数总共分为十二个章节,下面耶鲁小编把每个章节的考点为大家整理出来,希望大家都能在明年的河南专升本考试中取得一个满意的好成绩。
第一章、函数、极限和连续
考点一:求函数的定义域
考点二:判断函数是否为同一函数
考点三:求复合函数的函数值或复合函数的外层函数
考点四:确定函数的奇偶性、有界性等性质的问题
考点五:有关反函数的问题
考点六:有关极限概念及性质、法则的题目
考点七:简单函数求极限或极限的反问题
考点八:无穷小量问题
考点九:分段函数求待定常数或讨论分段函数的连续性
考点十:指出函数间断点的类型
考点十一:利用零点定理确定方程根的存在性或证明含有 的等式
考点十二:求复杂函数的极限
第二章、导数与微分
考点一:利用导数定义求导数或极限
考点二:简单函数求导数
考点三:参数方程确定函数的导数
考点四:隐函数求导数
考点五:复杂函数求导数
考点六:求函数的高阶导数
考点七:求曲线的切线或法线方程或斜率问题
考点八:求各种函数的微分
第三章、导数的应用
考点一:指出函数在给定区间上是否满足罗尔定理、拉格朗日定理或 满足定理求定理中 的值
考点二:利用罗尔定理证明方程根的存在性或含有 的等式
考点三:利用拉格朗日定理证明连体不等式
考点四:洛必达法则求极限
考点五:求函数的极值或极值点
考点六:利用函数单调性证明单体不等式
考点七:利用函数单调性证明方程根的唯一性
考点八:求曲线的凹向区间
考点九:求曲线的拐点坐标
考点十:求曲线某种形式的渐近线
考点十一:一元函数最值得实际应用问题
第四章、不定积分
考点一:涉及原函数与不定积分的关系,不定积分性质的题目
考点二:求不定积分的方法
考点三:求三种特殊函数的不定积分
第五章、定积分
考点一:定积分概念、性质和几何意义等题目
考点二:涉及变上限函数的题目
考点三:求定积分的方
考点四:求几种特殊函数的定积分
考点五:积分等式的证明
考点六:判断广义积分收敛或发散
第六章、定积分的应用
考点:直角坐标系下已知平面图形,求面积及这个平面图形绕坐标走旋转一周得到的旋转体的体积
第七章、向量代数与空间解析几何
考点一:有关向量之间的运算问题
考点二:求空间平面或直线方程
考点三:确定直线与直线,直线与平面,平面与平面的位置关系;或已知位置关系求待定系数
考点四:由方程识别空间曲面或曲线的类型
考点五:写出旋转曲面方程和投影柱面方程
第八章、多元函数的微分及应用
考点一:求二元函数定义域
考点二:求二元函数的复合函数或求复合函数的外层函数
考点三:求多元函数的极限
考点四:求简单函数的偏导数或某点导数
考点五:求简单函数全微分或高阶偏导数
考点六:复杂函数(特别是含符号f)的求偏导数或全微分或高阶导数
考点七:隐函数的求偏导数或全微分
考点八:求空间曲面的切平面或法线方程;求空间曲线的切线和法线方程
考点九:求函数的方向倒数和梯度
考点十:求二元函数的极值或极值点、驻点
考点十一:多元函数有关概念的问题
考点十二:二元函数最值的实际应用问题
第九章、二重积分
考点一:利用二重积分性质和几何意义等基本问题
考点二:直角坐标系下计算二重积分
考点三:直角坐标系下两种累次积分次序互换
考点四:在极坐标系下计算二重积分
考点五:两种坐标系下二重积分互换
第十章、曲线积分
考点一:计算对弧长的曲线积分
考点二:计算对坐标的曲线积分
第十一章、无穷级数
考点一:有关级数收敛定义和性质的题目
考点二:指出数项级数的收敛、发散、条件收敛、绝对收敛
考点三:确定幂级数在某点处是否收敛或发散
考点四:求幂级数的收敛域或收敛区间
考点五:利用公式把简单函数展开成幂级数
考点六:求数项级数的和或幂级数的和函数
第十二章、常微分方程
考点一:涉及微分方程有关概念的基本问题
考点二:求可分离变量的微分方程的通解和特解
考点三:涉及可变量微分方程的实际应用问题
考点四:求齐次微分方程的通解或特解
考点五:求一阶线性微分方程通解
考点六:求 通解或特解
考点七:求 通解或特解
考点八:设出 通解或特解
考点九:求 通解或特解
高数的复习知识点比较多,逻辑性比较强,大家在复习的时候一定要按照以上老师总结的考点重点的加以复习备考。
高等数学纲要
本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。
复习考试内容
一、函数、极限和连续
(一)函数
1、知识范围
(1)函数的概念
函数的定义 函数的表示法 分段函数 隐函数
(2)函数的性质
单调性 奇偶性 有界性 周期性
(3)反函数
反函数的定义 反函数的图像
(4)基本初等函数
幂函数 指数函数 对数函数 三角函数 反三角函数
(5)函数的四则运算与复合运算
(6)初等函数
2、要求
(1)理解函数的概念。会求函数的表达式、定义域及函数值。会求分段函数的定义域、函数值,会作出简单的分段函数的图像。
(2)理解函数的单调性、奇偶性、有界性和周期性。
(3)了解函数 与其反函数 之间的关系(定义域、值域、图像),会求单调函数的反函数。
(4)熟练掌握函数的四则运算与复合运算。
(5)掌握基本初等函数的性质及其图像。
(6)了解初等函数的概念。
(7)会建立简单实际问题的函数关系式。
(二)极限
1、知识范围
(1)数列极限的概念
数列 数列极限的定义
(2)数列极限的性质
唯一性 有界性 四则运算法则 夹逼定理 单调有界数列极限存在定理
(3)函数极限的概念
函数在一点处极限的定义 左、右极限及其与极限的关系 趋于无穷 时函数的极限 函数极限的几何意义
(4)函数极限的性质
唯一性 四则运算法则 夹通定理
(5)无穷小量与无穷大量
无穷小量与无穷大量的定义 无穷小量与无穷大量的关系 无穷小量的性质 无穷小量的阶
(6)两个重要极限
2、要求
(1)理解极限的概念(对极限定义中“ ”、“ ”、“ ”等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解极限的有关性质,掌握极限的四则运算法则。
(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。
(4)熟练掌握用两个重要极限求极限的方法。
(三)连续
1、知识范围
(1)函数连续的概念
函数在一点处连续的定义 左连续与右连续 函数在一点处连续的充分必要条件 函数的间断点及其分类
(2)函数在一点处连续的性质
连续函数的四则运算 复合函数的连续性 反函数的连续性
(3)闭区间上连续函数的性质
有界性定理 最大值与最小值定理 介值定理(包括零点定理)
(4)初等函数的连续性
2、要求
(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。
(2)会求函数的间断点及确定其类型。
(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限。二、一元函数微分学
(一)导数与微分
1、知识范围
(1)导数概念
导数的定义 左导数与右导数 函数在一点处可导的充分必要条件 导数的几何意义与物理意义 可导与连续的关系
(2)求导法则与导数的基本公式
导数的四则运算 反函数的导数 导数
(二)定积分
1、知识范围
(1)定积分的概念
定积分的定义及其几何意义 可积条件
(2)定积分的性质
(3)定积分的计算
变上限积分 牛顿—莱布尼茨(Newton-Leibniz)公式 换元积分法 分部积分法
(4)无穷区间的广义积分
(5)定积分的应用
平面图形的面积 旋转体体积 物体沿直线运动时变力所作的功
2、要求
(1)理解定积分的概念及其几何意义,了解函数可积的条件。
(2)掌握定积分的基本性质。
(3)理解变上限积分是变上限的函数,掌握对变上限定积分求导数的方法。
(4)熟练掌握牛顿—莱布尼茨公式。
(5)掌握定积分的换元积分法与分部积分法。
(6)理解无穷区间的广义积分的概念,掌握其计算方法。
(7)掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体体积。
会用定积分求沿直线运动时变力所作的功。
四、向量代数与空间解析几何
(一)向量代数
1、知识范围
(1)向量的概念
向量的定义 向量的模 单位向量 向量在坐标轴上的投影 向量的坐标表示法 向量的方向余弦
(2)向量的线性运算
向量的加法 向量的减法 向量的数乘
(3)向量的数量积
二向量的夹角 二向量垂直的充分必要条件
(4)二向量的向量积 二向量平行的充分必要条件
2、要求
(1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。
(2)熟练掌握向量的线性运算、向量的数量积与向量积的计算方法。
(3)熟练掌握二向量平行、垂直的充分必要条件。
(二)平面与直线
1、知识范围
(1)常见的平面方程
点法式方程 一般式方程
(2)两平面的位置关系(平行、垂直和斜交)
(3)点到平面的距离
(4)空间直线方程
标准式方程(又称对称式方程或点向式方程)一般式方程 参数式方程
(5)两直线的位置关系(平行、垂直)
(6)直线与平面的位置关系(平行、垂直和直线在平面上)
2、要求
(1)会求平面的点法式方程、一般式方程。会判定两平面的垂直、平行。会求两平面间的夹角。
(2)会求点到平面的距离。
(3)了解直线的一般式方程,会求直线的标准式方程、参数式方程。会判定两直线平行、垂直。
(4)会判定直线与平面间的关系(垂直、平行、直线在平面上)。
(三)简单的二次曲面
1、知识范围
球面 母线平行于坐标轴的柱面 旋转抛物面 圆锥面 椭球面
2、要求
了解球面、母线平行于坐标轴的柱面、旋转抛物面、圆锥面和椭球面的方程及其图形。
五、多元函数微积分学
(一)多元函数微分学
1、知识范围
(1)多元函数
多元函数的定义 二元函数的几何意义 二元函数极限与连续的概念
(2)偏导数与全微分
偏导数 全微分 二阶偏导数
(3)复合函数的偏导数
(4)隐函数的偏导数
(5)二元函数的无条件极值与条件极值
2、要求
(1)了解多元函数的概念、二元函数的几何意义。会求二次函数的表达式及定义域。了解二元函数的极限与连续概念(对计算不作要求)。
(2)理解偏导数概念,了解偏导数的几何意义,了解全微分概念,了解全微分存在的必要条件与充分条件。
(3)掌握二元函数的一、二阶偏导数计算方法。
(4)掌握复合函数一阶偏导数的求法。
(5)会求二元函数的全微分。
(6)掌握由方程 所确定的隐函数 的一阶偏导数的计算方法。
(7)会求二元函数的无条件极值。会用拉格朗日乘数法求二元函数的条件极值。
(二)二重积分
1、知识范围
(1)二重积分的概念
二重积分的定义二重积分的几何意义
(2)二重积分的性质
(3)二重积分的计算
(4)二重积分的应
第二篇:专升本高数考试大纲
高等数学复习大纲参考书:
高等数学(本科少学时类型)上下册同济大学应用数学系编
高等教育出版社
要
求:
一、函数与极限
考试内容:函数的概念基表示法、函数的有界性、单调性、周期性和函数的奇偶性、复合函数、反函数、分段函数和隐函数、数列的极限、函数的极限、无穷小与无穷大、极限的运算法则、极限的存在准则及两个重要极限、无穷小的比较、函数的连续与间断点、连续函数的运算与初等函数的连续性、闭区间上连续函数的性质(最大值与最小值定理、介值定理).
考试要求:①理解复合函数及分段函数的概念;②了解极限的概念,掌握函数左极限与右极限的概念及极限存在与左、右极限之间的关系。③掌握极限的四则运算法则;④了解极限存在的两个准则,掌握利用两个重要极限求极限的方法;⑤理解无穷小、无穷大的概念,了解无穷小的比较方法,会用等价无穷小求极限;⑥掌握函数连续性的概念,会判别函数间断点的类型;⑦了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质
(最大值和最小值定理、介值定理)。二、一元函数微分学
考试内容:导数的概念、导数的几何意义、函数的可导性与连续性之间的关系、函数和、差、积、商的求导法则、复合函数求导法则、初等函数的求导问题、二阶导数、隐函数的导数、由参数议程所确定函数的导数、函数的微分及其简单应用。中值定理与导数的应用、中值定理、罗必塔法则、函数和曲线性态的研究、函数单调性的判别、函数的极值及其求法、曲线的凸凹性的判别与拐点的求法、函数最大值和最小值的求法及简单应用。
考试要求:①理解导数的概念,掌握导数与微分的关系,掌握导数的几何意义,会求平面曲线的切线方程和法线方程;②掌握用洛必达法则求未定式极限的方法;③掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式,了解微分的四则运算法则,会求函数的微分,了解微分在近似计算中的应用;④了解高阶导数概念,会求显函数、由隐函数和由参数方程所确定函数的一阶、二阶导数;⑤了解罗尔定理、拉格朗日中值定理、柯西中值定理;⑥掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用;⑦会用导数判断函数图形的凹凸性和拐点,会求函数图形的水平、铅直渐近线。三、一元函数积分学
考试内容:原函数和不定积分的概念、不定积分的基本性质、基本积分公式、定积分的概念和基本性质、微积分基本公式(牛顿一莱布尼茨公式)、不定积分和定积分的换元积分法与分部积分法、有理函数、三角函数的有理式和简单无理函数的积分、定积分的简单应用。
考试要求:①理解原函数概念,了解不定积分和定积分的概念;②掌握不定积分基本公式,了解不定积分和定积分的性质,掌握换元积分法与分部积分法;③会求简单的有理函数、三角函数有理式及简单无理函数的积分;④了解变上限函数的定义,会求它的导数,掌握牛顿一莱布尼茨公式;⑤会利用定积分表达和计算一些几何量(平面图形面积、旋转体体积)。
四、微分方程
考试内容:常微分方程的概念、微分方程的解、阶、通解、初始条件和特解、可分离变量的微分方程、齐次方程、一阶线性方程、二阶常系数齐次线性微分方程、二阶常系数非齐次线性微分方程。
考试要求:①了解微分方程及其解、阶、通解、初始条件和特解等概念;②掌握可分离变量的微分方程及一阶线性方程的解法;③掌握齐次方程的解法;④掌握二阶常系数齐次线性微分方程的解法;⑤会求二阶常系数非齐次线性微分方程的解。
五、向量代数与空间解析几何
考试内容:空间直坐标系、向量及其加减法、向量与数量的乘法、向量的坐标、数量积、向量积、平面及其方程、空间直线及其方程、曲面及其方程、空间曲线及其方程。
考试要求:①理解空间直角坐标系,理解向量的概念及其表示;②掌握向量的运算(线性运算、数量积、向量积),掌握两个向量垂直、平行的条件;③了解单位向量、模长与方向余弦、向量的坐标表达式的概念,掌握用坐标表达式进行向量运算的方法;④会求简单的平面方程和直线方程,会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题;⑤了解曲面及方程的概念,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程;⑥了解空间曲线的参数方程和一般方程.
六、多元函数微分学
考试内容:多元函数、偏导数、全微分、全导数的基本概念及全微分存在的必要条件和充分条件、多元复合函数的求导法则、隐函数的导数、偏导数在几何上的应用、空间曲线的切线和法平面、曲面的切平面和法线,多元函数的极值与最值。
考试要求:①理解多元函数的概念、理解二元函数的几何意义;·②了解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件;③会求多元复合函数(包括抽象函数)的一阶偏导数;④会求隐函数(仅限于一个方程的情形)的一阶偏导数;⑥会求曲线的切线议程和法平面方程及曲面的切平面方程和法线方程;⑥了解多元函数极值和条件极值的概念,了解二元函数极值存在的必要条件及二元函数极值存在的充分条件,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。
姑v才他同时就会被个个讴歌飞头发有点少数人
第三篇:2013年重庆专升本高数试题答案
2013年重庆普通专升本高等数学试题答案
一、CBADCB
3xcosxsinx2k;
8、;
9、;
10、;
11、;
12、a0[0,)13552x1e
三、13、(1)(,2];(2),1;(3)(,0)(0,2](4)2;
14、;
4211822
15、(ln21);
16、1x(arcsinx)C;
17、(1);(2)y4x2
二、7、22x218、114;
19、y2(12e2);20、4125
2四、用零点定理证明
3011122 1122
第四篇:2010成人高考专升本高数试题及答案
贺新郎 1923 挥手从兹去。更那堪凄然相向,苦情重诉。眼角眉梢都似恨,热泪欲零还住。知误会前翻书语。过眼滔滔云共雾,算人间知己吾与汝。人有病,天知否? 今朝霜重东门路,照横塘半天残月,凄清如许。汽笛一声肠已断,从此天涯孤旅。凭割断愁思恨缕。要似昆仑崩绝壁,又恰像台风扫环宇。重比翼,和云翥。沁园春 长沙 1925 独立寒秋,湘江北去,橘子洲头。看万山红遍,层林尽染;漫江碧透,百舸争流。鹰击长空,鱼翔浅底,万类霜天竞自由。怅寥廓,问苍茫大地,谁主沉浮。携来百侣曾游,忆往昔峥嵘岁月稠。恰同学少年,风华正茂;书生意气,挥斥方遒。指点江山,激扬文字,粪土当年万户侯。曾记否,到中流击水,浪遏飞舟。菩萨蛮 黄鹤楼 1927 春
茫茫九派流中国,沉沉一线穿南北。烟雨莽苍苍,龟蛇锁大江。黄鹤知何去?剩有游人处。把酒酹滔滔,心潮逐浪高!
西江月 秋收起义 1927.09 军叫工农革命,旗号镰刀斧头。匡庐一带不停留,要向潇湘直进。地主重重压迫,农民个个同仇。秋收时节暮云愁,霹雳一声暴动。
西江月 井冈山 1928 秋
山下旌旗在望,山头鼓角相闻。敌军围困万千重,我自岿然不动。早已森严壁垒,更加众志成城。黄洋界上炮声隆,报道敌军宵遁。
清平乐 蒋桂战争 1929 秋
风云突变,军阀重开战。洒向人间都是怨,一枕黄梁再现。红旗跃过汀江,直下龙岩上杭。收拾金瓯一片,分田分地真忙。
采桑子 重阳 1929.10 人生易老天难老,岁岁重阳。今又重阳,战地黄花分外香。一年一度秋风劲,不似春光。胜似春光,寥廓江天万里霜。
如梦令 元旦 1930.01 宁化、清流、归化,路隘林深苔滑。今日向何方,直指武夷山下。山下山下,风展红旗如画。
减字木兰花 广昌路上 1930.02 漫天皆白,雪里行军情更迫。头上高山,风卷红旗过大关。此行何去?赣江风雪迷漫处。命令昨颁,十万工农下吉安。
蝶恋花 从汀州向长沙 1930.07 六月天兵征腐恶,万丈长缨要把鲲鹏缚。赣水那边红一角,偏师借重黄公略。百万工农齐踊跃,席卷江西直捣湘和鄂。国际悲歌歌一曲,狂飙为我从天落。渔家傲 反第一次大“围剿” 1931 春 万木霜天红烂漫,天兵怒气冲霄汉。雾满龙冈千嶂暗,齐声唤,前头捉了张辉瓒。二十万军重入赣,风烟滚滚来天半。唤起工农千百万,同心干,不周山下红旗乱。
渔家傲 反第二次大“围剿” 1931 夏 白云山头云欲立,白云山下呼声急,枯木朽株齐努力。枪林逼,飞将军自重霄入。七百里驱十五日,赣水苍茫闽山碧,横扫千军如卷席。有人泣,为营步步嗟何及!
菩萨蛮 大柏地 1933 夏
赤橙黄绿青蓝紫,谁持彩练当空舞?雨后复斜阳,关山阵阵苍。当年鏖战急,弹洞前村壁。装点此关山,今朝更好看。
清平乐 会昌 1934 夏
东方欲晓,莫道君行早。踏遍青山人未老,风景这边独好。会昌城外高峰,颠连直接东溟。战士指看南粤,更加郁郁葱葱。
忆秦娥 娄山关 1935.02 西风烈,长空雁叫霜晨月。霜晨月,马蹄声碎,喇叭声咽。雄关漫道真如铁,而今迈步从头越。从头越,苍山如海,残阳如血。十六字令 三首 1934-35 山,快马加鞭未下鞍。惊回首,离天三尺三。山,倒海翻江卷巨澜。奔腾急,万马战犹酣。山,刺破青天锷未残。天欲堕,赖以拄其间。
【原注】民谣:“上有骷髅山,下有八宝山,离天三尺三。人过要低头,马过要下鞍。”
七律 长征 1935.10 红军不怕远征难,万水千山只等闲。五岭逶迤腾细浪,乌蒙磅礴走泥丸。金沙水拍云崖暖,大渡桥横铁索寒。更喜岷山千里雪,三军过后尽开颜。
念奴娇 昆仑 1935.10 横空出世,莽昆仑,阅尽人间春色。飞起玉龙三百万,搅得周天寒彻。夏日消溶,江河横溢,人或为鱼鳖。千秋功罪,谁人曾与评说? 而今我谓昆仑:不要这高,不要这多雪。安得倚天抽宝剑,把汝裁为三截?一截遗欧,一截赠美,一截还东国。太平世界,环球同此凉热。
清平乐 六盘山 1935.10 天高云淡,望断南飞雁。不到长城非好汉,屈指行程二万。六盘山上高峰,红旗漫卷西风。今日长缨在手,何时缚住苍龙? 沁园春 雪 1936.02 北国风光,千里冰封,万里雪飘。望长城内外,惟馀莽莽;大河上下,顿失滔滔。山舞银蛇,原驰蜡象,欲与天公试比高。须晴日,看红妆素裹,分外妖娆。江山如此多娇,引无数英雄竞折腰。惜秦皇汉武,略输文采;唐宗宋祖,稍逊风骚。一代天骄,成吉思汗,只识弯弓射大雕。俱往矣,数风流人物,还看今朝。【原注】“原”指高原,即秦晋高原。
临江仙 赠丁玲 1936.12 壁上红旗飘落照,西风漫卷孤城。保安人物一时新。洞中开宴会,招待出牢人。纤笔一支谁与似,三千毛瑟精兵。阵图开向陇山东。昨天文小姐,今日武将军。七律 人民解放军占领南京 1949.04 钟山风雨起苍黄,百万雄师过大江。虎踞龙盘今胜昔,天翻地覆慨而慷。宜将剩勇追穷寇,不可沽名学霸王。天若有情天亦老,人间正道是沧桑。
七律 和柳亚子先生 1949.04.29 饮茶粤海未能忘,索句渝州叶正黄。三十一年还旧国,落花时节读华章。牢骚太盛防肠断,风物长宜放眼量。莫道昆明池水浅,观鱼胜过富春江。
【附】 柳亚子原诗《感事呈毛主席一首》
开天辟地君真健,说项依刘我大难。夺席谈经非五鹿,无车弹铗怨冯□。〔□:灌换马旁,huan1〕头颅早悔平生贱,肝胆宁忘一寸丹!安得南征驰捷报,分湖便是子陵滩。
浣溪沙 和柳亚子先生 1950.10 一九五零年国庆观剧,柳亚子先生即席赋《浣溪沙》,因步其韵奉和。
长夜难明赤县天,百年魔怪舞翩跹,人民五亿不团圆。一唱雄鸡天下白,万方乐奏有于阗,诗人兴会更无前。
【附】 柳亚子原词
火树银花不夜天,弟兄姐妹舞翩跹,歌声唱彻月儿圆。不是一人能领导,那容百族共骈阗,良宵盛会喜空前。
浪淘沙 北戴河 1954 夏
大雨落幽燕,白浪滔天,秦皇岛外打鱼船。一片汪洋都不见,知向谁边? 往事越千年,魏武挥鞭,东临碣石有遗篇。萧瑟秋风今又是,换了人间。
水调歌头 游泳 1956.06 才饮长江水,又食武昌鱼。万里长江横渡,极目楚天舒。不管风吹浪打,胜似闲庭信步,今日得宽余。子在川上曰:逝者如斯夫!风樯动,龟蛇静,起宏图。一桥飞架南北,天堑变通途。更立西江石壁,截断巫山云雨,高峡出平湖。神女应无恙,当今世界殊。蝶恋花 答李淑一 1957.05.11 我失骄杨君失柳,杨柳轻扬直上重霄九。问讯吴刚何所有,吴刚捧出桂花酒。寂寞嫦娥舒广袖,万里长空且为忠魂舞。忽报人间曾伏虎,泪飞顿作倾盆雨。【附】 李淑一原词《菩萨蛮·惊梦》
兰闺索莫翻身早,夜来触动离愁了。底事太难堪,惊侬晓梦残。征人何处觅,六载无消息。醒忆别伊时,满衫清泪滋。
七律二首 送瘟神 1958.07.01 读六月三十日《人民日报》,余江县消灭了血吸虫。浮想联翩,夜不能寐。微风拂晓,旭日临窗,遥望南天,欣然命笔。
绿水青山枉自多,华佗无奈小虫何!千村薜荔人遗矢,万户萧疏鬼唱歌。坐地日行八万里,巡天遥看一千河。牛郎欲问瘟神事,一样悲欢逐逝波。
春风杨柳万千条,六亿神州尽舜尧。红雨随心翻作浪,青山着意化为桥。天连五岭银锄落,地动三河铁臂摇。借问瘟君欲何往,纸船明烛照天烧。
七律 到韶山 1959.06 一九五九年六月二十五日到韶山。离别这个地方已有三十二年了。
别梦依稀咒逝川,故园三十二年前。红旗卷起农奴戟,黑手高悬霸主鞭。为有牺牲多壮志,敢教日月换新天。喜看稻菽千重浪,遍地英雄下夕烟。
七律 登庐山 1959.07.01 一山飞峙大江边,跃上葱茏四百旋。冷眼向洋看世界,热风吹雨洒江天。云横九派浮黄鹤,浪下三吴起白烟。陶令不知何处去,桃花源里可耕田? 七绝 为女民兵题照 1961.02 飒爽英姿五尺枪,曙光初照演兵场。中华儿女多奇志,不爱红装爱武装。七律 答友人 1961 九嶷山上白云飞,帝子乘风下翠微。斑竹一枝千滴泪,红霞万朵百重衣。洞庭波涌连天雪,长岛人歌动地诗。我欲因之梦寥廓,芙蓉国里尽朝晖。七绝 为李进同志题所摄庐山仙人洞照 1961.09.09 暮色苍茫看劲松,乱云飞渡仍从容。天生一个仙人洞,无限风光在险峰。七律 和郭沫若同志 1961.11.17 一从大地起风雷,便有精生白骨堆。僧是愚氓犹可训,妖为鬼蜮必成灾。金猴奋起千钧棒,玉宇澄清万里埃。今日欢呼孙大圣,只缘妖雾又重来。
【附】 郭沫若原诗《看孙悟空三打白骨精》
人妖颠倒是非淆,对敌慈悲对友刁。咒念金箍闻万遍,精逃白骨累三遭。千刀当剐唐僧肉,一拔何亏大圣毛。教育及时堪赞赏,猪犹智慧胜愚曹。卜算子 咏梅 1961.12 读陆游咏梅词,反其意而用之。
风雨送春归,飞雪迎春到。已是悬崖百丈冰,犹有花枝俏。俏也不争春,只把春来报。待到山花烂漫时,她在丛中笑。
【附】 陆游原词《卜算子·咏梅》
驿外断桥边,寂寞开无主。已是黄昏独自愁,更著风和雨。无意苦争春,一任群芳妒。零落成泥辗作尘,只有香如故。
七律 冬云 1962.12.26 雪压冬云白絮飞,万花纷谢一时稀。高天滚滚寒流急,大地微微暖气吹。独有英雄驱虎豹,更无豪杰怕熊罴。梅花欢喜漫天雪,冻死苍蝇未足奇。
满江红 和郭沫若同志 1963.01.09 小小寰球,有几个苍蝇碰壁。嗡嗡叫,几声凄厉,几声抽泣。蚂蚁缘槐夸大国,蚍蜉撼树谈何易。正西风落叶下长安,飞鸣镝。多少事,从来急;天地转,光阴迫。一万年太久,只争朝夕。四海翻腾云水怒,五洲震荡风雷激。要扫除一切害人虫,全无敌。
【附】 郭沫若原词
沧海横流,方显出英雄本色。人六亿,加强团结,坚持原则。天垮下来擎得起,世披靡矣扶之直。听雄鸡一唱遍寰中,东方白。太阳出,冰山滴;真金在,岂销铄?有雄文四卷,为民立极。桀犬吠尧堪笑止,泥牛入海无消息。迎东风革命展红旗,乾坤赤。
七律 吊罗荣桓同志 1963.12 记得当年草上飞,红军队里每相违。长征不是难堪日,战锦方为大问题。斥□每闻欺大鸟,昆鸡长笑老鹰非。〔□:晏鸟〕君今不幸离人世,国有疑难可问谁? 贺新郎 读史 1964 春
人猿相揖别。只几个石头磨过,小儿时节。铜铁炉中翻火焰,为问何时猜得?不过几千寒热。人世难逢开口笑,上疆场彼此弯弓月。流遍了,郊原血。一篇读罢头飞雪,但记得斑斑点点,几行陈迹。五帝三皇神圣事,骗了无涯过客。有多少风流人物。盗跖庄□流誉后,更陈王奋起挥黄钺。〔□:足乔〕歌未竟,东方白。
水调歌头 重上井冈山 1965.05 久有凌云志,重上井冈山。千里来寻故地,旧貌变新颜。到处莺歌燕舞,更有潺潺流水,高路入云端。过了黄洋界,险处不须看。风雷动,旌旗奋,是人寰。三十八年过去,弹指一挥间。可上九天揽月,可下五洋捉鳖,谈笑凯歌还。世上无难事,只要肯登攀。
念奴娇 鸟儿问答 1965 秋
鲲鹏展翅,九万里,翻动扶摇羊角。背负青天朝下看,都是人间城郭。炮火连天,弹痕遍地,吓倒蓬间雀。怎么得了,哎呀我要飞跃。借问君去何方,雀儿答道:有仙山琼阁。不见前年秋月朗,订了三家条约。还有吃的,土豆烧熟了,再加牛肉。不须放屁!试看天地翻覆。
第五篇:九江学院专升本高数真题
1.已知f(x1)x23x,则f(sinx)______.1xsin,x02.已知f(x)在R上连续,则a_____.xax2,x03.极限lim(x1x2x)_________.x4.已知yln(x1x2),则y'_____.xy5.已知函数ze,则此函数在(2,1)处的全微分dz_____________.1.设f(x)二阶可导,a为曲线yf(x)拐点的横坐标,且f(x)在a处的二阶导数等于零,则在a的两侧()
A.二阶导数同号 B.一阶导数同号 C.二阶导数异号 D.一阶导数异号 2.下列无穷级数绝对收敛的是()
A.(1)n1n11n11n11n1 B.(1)C.(1)D.(1)n nn2nn1n1n13.变换二次积分的顺序
dy022yy2f(x,y)dx()
4xA.dx02xx2f(x,y)dy B.dxxf(x,y)dy
02 C.dx042xx2f(x,y)dy D.dx04x2xf(x,y)dy
4.已知f(x)(etdt)2x20x0edt2t2,则limf(x)()
xA.1 B.-1 C.0 D.+
5.曲面ezxy3在点(2,1,0)处的切平面方程为()
A.x2y40 B.2xy40 C.xy20 D.2xy40
三、计算下列各题(每小题7分,共35分)1.求极限lim(x0z11x)xe122.求不定积分xcosxdx 3.已知siny2exy0,求x2dy dx4.求定积分1251x1dx
5.求二重积分(3x2y)d,其中D是由两坐标轴及直线xy3所围成的闭区域。
D
四、求幂级数n1(x3)nn的收敛半径和收敛域。(9分)
2z
五、已知zf(xy,xy),且f具有二阶连续偏导数,试求。(9分)
xy
六、求二阶微分方程y''5y'6yxex的通解。(9分)
七、设ba0,证明不等式lnblna
ba。(8分)ab
九江学院2008年“专升本”高等数学试卷
注:
1.请考生将试题答案写在答题纸上,在试卷上答题无效.2.凡在答题纸密封线以外有姓名、班级学号、记号的,以作弊论.3.考试时间:120分钟
一、填空题(每题3分,共15分)
2x(1x),x01. 设函数f(x)在x0处连续,则参数k__________.k,x02. 过曲线yx上的点(1,1)的切线方程为_______________.3. 设yarccosx,则y'|x0_______________.4. 设f'(x)1,且f(0)0,则2f(x)dx_______________.2y5. 设zxe,则z的全微分dz_______________.二、选择题(每题3分,共15分)
1.设yf(x)的定义域为(0,1],(x)1lnx,则复合函数f[(x)]的定义域为()A.(0,1)
B.[1,e]
C.(1,e]
D.(0,+)2.设f(x)13x2x2,则f(x)的单调增加区间是()3A.(-,0)
B.(0,4)
C.(4, +)
D.(-,0)和(4, +)
3.函数f(x)|x|a(a为常数)在点x0处()
A.连续且可导
B.不连续且不可导
C.连续且不可导
D.可导但不连续 4.设函数f(x)x3,则lim23x0f(x2x)f(x)等于()
x2A.6x
B.2x
C.0
D.3x 5.幂级数(n1x1n)的收敛区间为()2A.[-1,3]
B.(-1,3]
C.(-1,3)
D.[-1,3)
三、计算题(每题7分,共42分)1.limx0xsinx 3x2.xsinxdx
txdy0asinudu(a为非零常数)3.已知,求
dxyasint24.求直线xy2和曲线yx及x轴所围平面区域的面积.5.计算二重积分
22D,其中是由所围平面区域.xy,yxydxdyD6.求微分方程xy'yx的通解.lnx
四、设二元函数zln(x2y2),试验证xzzy2(7分)xy
五、讨论曲线yx2x1的凹凸性并求其拐点.(7分)
六、求幂级数431n1x的收敛域,并求其和函数.(9分)n1nx
七、试证明:当x0时,e1x(5分)
九江学院2007年“专升本”高等数学试卷
一、填空题(每小题3分,共15分)
2xa,x01.已知f(x)x在R上连续,则a_______.e,x01kx)_______.xx3dy_______.3.已知yex,则dx2.极限lim(14.f(x)sinx在[0,]上的平均值为_______.5.过椭球x22y23z26上的点(1,1,1)的切平面为_______.二、选择题(每小题3分,共15分)1.若级数a2n和b2n都收敛,则级数
(1)nanbn()
A.一定条件收敛
B.一定绝对收敛
C.一定发散
D.可能收敛,也可能发散 2.微分方程y''y'的通解为()
A.yc1c2e
B.yc1xc2e
C.yc1c2x
D.yc1c2x xx213xx21,则f(x)的拐点的横坐标是()A.x
1B.x0
C.x
2D.x0和x2 3.已知f(x)4.设f'(x0)存在,则limx0f(x0x)f(x0x)=()
x
A.f'(x0)
B.2f'(x0)
C.f'(x0)
D.
sin3x等于()
x0x1
A.0
B.C.1
D.3
35.lim
三、计算(每小题7分,共35分)1. 求微分方程yy''(y')0的通解.2.计算xarctanxdx 3.计算
2D,其中是由抛物线yx和直线yx2所围成的闭区域.xyd2D4.将函数f(x)1展开成(x1)的幂级数.x24x3dy.dx5.求由方程(cosx)y(siny)x所确定的隐函数yf(x)的导数
四、求极限limnnn20071xsindx(n2)(9分)
x
五、设f(x)在[0,1]上连续,证明:
0xf(sinx)dx20f(sinx)dx,并计算0xsinxdx.(10分)21cosx
六、设连续函数f(x)满足方程f(x)220f(t)dtx2,求f(x).(10分)
七、求极限limx[lnarctan(x1)lnarctanx].(6分)
x
九江学院2006年“专升本”高等数学试卷
一、填空题(每小题3分,共15分)1.极限lim(1x2x)___________.x32.设f(x)x,x[0,1],则满足拉格朗日中值定理的___________.23.函数zln(xy)在点(1,1)的全微分是___________.4.设f(x)2dt1t2x2,已知g(y)是f(x)的反函数,则g(y)的一阶导数g'(y)___.5.中心在(1,-2,3)且与xoy平面相切的球面方程是_________.二、选择题(每小题3分,共15分)
1.下列各对函数中表示同一函数的是()
A.f(x)x2,g(x)x
B.f(x)elnx,g(x)x
x,x0x21,g(x)xD.f(x)C.f(x),g(x)|x| x1x,x02.当x0时,下列各对无穷小是等价的是()
A.1cosx;x
B.e1;2x
C.ln(1x);x
D.1x1;x 2x3.已知函数的一阶导数f'(cos2x)sin2x,则f(x)()
x2x2C
A.cosx
B.sinxC
C.x
D.x22224.过点(1,-2,0)且与平面3xyz20垂直的直线方程是()
A.x1y2zx1y2z
B.311311 C.3(x1)(y2)0x3y1z1
D. 120z0(1)n5.幂级数(2x)2n的收敛区间为()
n12n
A.(2,2)
B.(111,)
C.(1,1)
D.(2,)22
2三、计算题(每小题5分,共40分)1.求极限limx0tanxsinx
x32.求摆线x2(tsint)在t处的切线方程.2y2(1cost)xy3.方程xyee0确定了一个隐函数yf(x),求y'|x0.ex)dx 4.求不定积分e(12cosxx5.求定积分20xcos2xdx
2y2所围成图形的面积.22(xy)dxdy D26.求由抛物线yx与半圆x227.设D为:xy4,求二重积分8.求常系数线性齐次微分方程y''3y'4y'0满足初始条件y(0)0,y'(0)5的特解.四、求函数f(x)1t01t2dt的极值.(7分)x
五、求幂级数(2n1)2nx的和函数.(7分)n!n0xln(1x)x(x0)(7分)1x
六、应用中值定理证明不等式:
七、求微分方程y''6y'9y(x1)e3x的通解.(9分)