第一篇:617 数学分析
617 数学分析
三、考试形式一)试卷满分及考试时间 本试卷满分为150分,考试时间为180分钟。
(二)答题方式 答题方式为闭卷、笔试。试卷由试题和答题纸组成,所有题目的答案必须写在答题纸相应的位置上。考生不得携带具有存储功能的计算器。
(三)试卷结构 一元函数微积分学、多元函数微积分学、级数理论及其他(隐函数理论、场论等)考核的比例均约为1/3,分值均约为50分。
四、考试内容(一)变量与函数
1、实数:实数的概念、性质,区间,邻域;
2、函数:变量,函数的定义,函数的表示法,几何特征(有界函数、单调函数、奇偶函数、周期函数),运算(四则运算、复合函数、反函数),基本初等函数,初等函数。(二)极限与连续
1、数列极限:定义(-N语言),性质(唯一性,有界性,保号性,不等式性、迫敛性),数列极限的运算,数列极限存在的条件(单调有界准则(重要的数列极限n迫敛性法则,柯西收敛准则);
2、无穷小量与无穷大量:定义,性质,运算,阶的比较;
lim(1n)e1n),3、函数极限:概念(在一点的极限,单侧极限,在无限远处的极限,函数值趋于无穷大的情形(-, -X语言));性质(唯一性,局部有界性,局部保号性,不等式性,迫敛性);函数极限存在的条件(迫敛性法则,归结原则(Heine定理),柯西收敛准则);运算;
sinx11lim(1)xex0xxx4、两个常用不等式和两个重要函数极限(,);
lim5、连续函数:概念(在一点连续,单侧连续,在区间连续),不连续点及其分类;连续函数的性质与运算(局部性质及运算,闭区间上连续函数的性质(有界性、最值性、零点存在性,介值性、一致连续性),复合函数的连续性,反函数的连续性);初等函数的连续性。
(三)实数的基本定理及闭区间上连续函数性质的证明
1、概念:子列,上、下确界,区间套,区间覆盖;
2、关于实数的基本定理:六个等价定理(确界存在定理、单调有界定理、区间套定理、致密性定理、柯西收敛原理、有限覆盖定理);
3、闭区间上连续函数性质的证明:有界性定理的证明,最值性定理的证明,零点存在定理的证明,反函数连续性定理的证明;一致连续性定理的证明。
(四)导数与微分
1、导数:来源背景,定义(在一点导数的定义、单侧导数、导函数),导数的几何意义,简单函数的导数(常数、正弦函数、对数函数、幂函数),求导法则(四则运算,反函数的求导法则,复合函数的求导法则,隐函数的求导法则,参数方程所表示函数的求导法则);
2、微分:定义,运算法则,简单应用;
3、高阶导数与高阶微分:定义,运算法则。
(五)微分学基本定理及导数的应用
1、中值定理:费马(Fermat)定理,中值定理(罗尔(Rolle)中值定理、拉格朗日(Lagrange)中值定理、柯西(Cauchy)中值定理);
2、泰勒公式及应用(近似计算,误差估计);
3、导数的应用:函数的单调性、极值和最值,函数凸性与拐点,平面曲线的曲率,七种待定型与洛必达(L’Hospital)法则;
(六)不定积分
1、不定积分:概念,基本公式,运算法则,计算(换元积分法、分部积分法、有理函数积分法,其他类型积分)。
(七)定积分
1、定积分:来源背景,概念,函数可积的必要条件,达布上、下和,定积分存在的充要条件,可积函数类(闭区间上的连续函数,分段连续函数,单调有界函数),定积分的性质,定积分的计算(基本公式、换元公式、分部积分公式);
2、变上限定积分:定义,性质。
(八)定积分的应用
1、定积分在几何上的应用:平面图形的面积,曲线的弧长,截面已知的立体体积,旋转体的体积,旋转曲面的面积;
2、定积分在物理上的应用:功、压力、引力;
3、微元法。
(九)数项级数
1、预备知识:上、下极限;
2、级数的敛散性:无穷级数收敛、发散等概念,柯西收敛原理,收敛级数的基本性质;
3、正项级数:定义,敛散判别(基本定理,比较判别法,柯西判别法,达朗贝尔判别法,柯西积分判别法);
4、任意项级数:绝对收敛级数与条件收敛级数的概念和性质,交错级数与莱布尼兹判别法,阿贝尔(Abel)判别法与狄利克雷(Dirichlet)判别法。
(十)反常积分
1、反常积分:无穷限的反常积分的概念、性质,敛散判别法(柯西收敛原理,比较判别法,狄利克雷判别法、阿贝尔判别法);无界函数的反常积分的概念、性质,敛散判别法。
(十一)函数项级数、幂级数
1、函数项级数的一致收敛性:函数项级数以及函数列的概念,函数项级数以及函数列一致收敛的概念,一致收敛判别法(柯西收敛原理,优级数判别法,狄利克雷判别法与阿贝尔判别法);一致收敛的函数列与函数项级数的性质(连续性,可积性,可微性);
2、幂级数:阿贝尔第一、第二定理,收敛半径与收敛区间,幂级数的一致收敛性,幂级数和函数的分析性质(连续性,可积性,可微性),泰勒(Taylor)级数与几种常见的初等函数的幂级数展开。
(十二)傅里叶级数
1、傅里叶级数:引进,三角函数系的正性, 傅里叶系数与傅里叶级数,以2为周期的函数的傅里叶级数展开,以2L(L0)为周期的函数的傅里叶级数展开,奇偶函数的傅里叶级数展开,傅里叶级数收敛定理的证明。
(十三)多元函数的极限与连续
1、平面点集:邻域,点列的极限,开集,闭集,区域,平面点集的几个基本定理;
2、二元函数:概念,二重极限和二次极限,连续性(连续的概念、连续函数的局部性质及有界闭区域上连续函数的整体性质)。
(十四)偏导数和全微分
1、偏导数和全微分:偏导数的概念,几何意义;全微分的概念;二元函数的连续性、可微性,偏导存在的关系;复合函数微分法(链式法则);由方程组所确定的函数(隐函数)的求导法;
2、偏导数的应用:空间曲线的切线与法平面,曲面的切平面与法线;方向导数与梯度;泰勒公式。
(十五)极值和条件极值
1、极值:概念,判别(必要条件、充分条件),应用,最小二乘法;
2、条件极值:概念,拉格朗日乘数法,应用。(十六)隐函数存在定理
1、隐函数:概念,存在定理;
2、隐函数组:隐函数组存在定理,反函数组与坐标变换,雅可比行列式。(十七)含参变量积分与含参变量广义积分
1、含参变量的正常积分:定义,性质(连续性、可微性、可积性);
2、含参变量的反常积分:定义,一致收敛的定义,一致收敛积分的判别法(柯西收敛原理、魏尔斯特拉斯判别法、阿贝尔判别法、狄立克雷判别法),一致收敛积分的性质(连续性、可微性、可积性);
3、欧拉积分:函数和函数的定义、性质。(十八)重积分的计算及应用
1、二重积分:二重积分的概念,性质,计算(化二重积分为二次积分,换元法(极坐标变换,一般变换);
2、三重积分:计算(化三重积分为三次积分, 换元法(一般变换,柱面坐标变换,球面坐标变换));
3、重积分的应用:立体体积,曲面的面积,物体的质心,矩,引力,转动惯量;(十九)曲线积分与曲面积分
1、曲线积分:第一型曲线积分及第二型曲线积分的来源背景、概念、性质、应用与计算,两类曲线积分的联系;
2、曲面积分:第一型曲面积分及第二型曲面积分的来源背景、概念、性质、应用与计算,两类曲面积分的联系。
(二十)各种积分间的联系和场论初步
1、各种积分间的联系公式:格林(Green)公式,高斯(Gauss)公式,斯托克斯(Stokes)公式;
2、曲线积分与路径无关性:四个等价条件。
3、场论初步:场的概念,梯度,散度和旋度,保守场,哈密顿算子(算子)。856 高等代数
三、考试形式
(一)试卷满分及考试时间 本试卷满分为150分,考试时间为180分钟。
(二)答题方式
答题方式为闭卷、笔试。试卷由试题和答题纸组成,所有题目的答案必须写在答题纸相应的位置上。考生不得携带具有存储功能的计算器。
(三)试卷结构
基本概念理解与计算考核的比例约为16.7%,分值为25分; 分析判断考核的比例约为23.3%,分值为35分; 综合运用考核的比例约为60%,分值为90分。
四、考试内容
(一)多项式理论
1、一元多项式的一般理论 概念、运算、导数及基本性质;
2、整除理论
整除的概念、最大公因式、互素的概念与性质;
3、因式分解理论
不可约多项式、因式分解、重因式、实系数与复系数多项式的因式分解、有理系数多项式不可约的判定等;
4、根的理论
多项式函数、多项式的根、有理系数多项式的有理根的求法、根与系数的关系等;
5、多元多项式的一般理论 多元多项式概念、对称多项式。
(二)矩阵理论
1、行列式理论与计算
行列式的概念、性质以及计算;Cramer法则。
2、线性方程组
向量、向量组的线性关系;线性方程组的解的结构。
3、矩阵
矩阵的各种运算及运算规律,逆矩阵的求法,分块矩阵的相应运算及性质。4.二次型
二次型基本概念,配方法、合同法化二次型为标准形,正定二次型与正定矩阵的判定与证明。
(三)线性空间论
1、线性空间
线性空间的定义与性质;线性相关性及有关结论;秩与极大线性无关组;线性空间的基与维数;基变换与坐标变换公式;线性子空间;子空间的和与直和;线性空间的同构。
2、线性变换
线性变换及其基本性质;线性变换的运算;线性变换的矩阵;相似矩阵;矩阵的特征值与特征向量;线性变换的特征值与特征向量;哈密顿凯莱定理;相似对角化;线性变换的值域与核;不变子空间;不变子空间与线性变换的矩阵的化简;若尔当标准形;最小多项式。
3、矩阵
矩阵的概念; 矩阵的等价; 矩阵在初等变换下的标准形、不变因子与行列式因式; 矩阵的初等因子;求 矩阵的标准形的方法;矩阵相似的充分必要条件;若尔当标准形;有理标准形。
4、欧几里得空间
内积和欧几里得空间;长度、夹角与正交;度量矩阵;标准正交基;正交矩阵;欧氏空间的同构;正交变换;正交子空间与正交补;实对称矩阵的标准形;对称变换;向量到子空间的距离;最小二乘法。
第二篇:数学分析
360《数学分析》考试大纲
一. 考试要求:掌握函数,极限,微分,积分与级数等内容。
二. 考试内容:
第一篇 函数
一元与多元函数的概念,性质,若干特殊函数,连续性。第二篇 极限
数列极限,一元与多元函数极限的概念及其性质,实数的连续性(确界原理,单调有界原理,区间套定理,聚点定理,有限覆盖定理等)。
第三篇 微分
一元与多元函数导数(偏导数)与微分的概念,性质,公式,法则及应用;函数的单调性与凸性,极值与拐点,渐进线,函数作图;隐函数。
第三篇 积分
不定积分的概念,性质,公式,法则;定积分的概念,性质,公式,法则及应用;反常积分与含参积分;重积分与曲线曲面积分。第四篇 级数
数项级数,函数项级数,幂级数与傅立叶级数的概念,性质,公式,法则及应用。
参考书目:华东师范大学数学系,数学分析(上,下,第三版),高等教育出版社,2001年。
第三篇:数学分析
《数学分析》考试大纲
一、本大纲适用于报考苏州科技学院基础数学专业的硕士研究生入学考试。主要考核数学分析课程的基本概念、基本理论、基本方法。
二、考试内容与要求
(一)实数集与函数
1、实数:实数的概念,实数的性质,绝对值与不等式;
2、数集、确界原理:区间与邻域,有界集与无界集,上确界与下确界,确界原理;
3、函数概念:函数的定义,函数的表示法(解析法、列表法、和图象法),分段函数;
4、具有某些特征的函数:有界函数,单调函数,奇函数与偶函数,周期函数。
要求:了解数学的发展史与实数的概念,理解绝对值不等式的性质,会解绝对值不等式;弄清区间和邻域的概念, 理解确界概念、确界原理,会利用定义证明一些简单数集的确界;掌握函数的定义及函数的表示法,了解函数的运算;理解和掌握一些特殊类型的函数。
(二)数列极限
1、极限概念;
2、收敛数列的性质:唯一性,有界性,保号性,单调性;
3、数列极限存在的条件:单调有界准则,迫敛性法则,柯西准则。
要求:逐步透彻理解和掌握数列极限的概念;掌握并能运用-N语言处理极限问题;掌握收敛数列的基本性质和数列极限的存在条件(单调有界函数和迫敛性定理),并能运用;了解数列极限柯西准则,了解子列的概念及其与数列极限的关系;了解无穷小数列的概念及其与数列极限的关系.(三)函数极限
1、函数极限的概念,单侧极限的概念;
2、函数极限的性质:唯一性,局部有界性,局部保号性,不等式性,迫敛性;
3、函数极限存在的条件:归结原则(Heine定理),柯西准则;
4、两个重要极限;
5、无穷小量与无穷大量,阶的比较。
要求:理解和掌握函数极限的概念;掌握并能应用-, -X语言处理极限问题;了解函数的单侧极限,函数极限的柯西准则;掌握函数极限的性质和归结原则;熟练掌握两个重要极
限来处理极限问题。
(四)函数连续
1、函数连续的概念:一点连续的定义,区间连续的定义,单侧连续的定义,间断点及其分类;
2、连续函数的性质:局部性质及运算,闭区间上连续函数的性质(最大最小值性、有界性、介值性、一致连续性),复合函数的连续性,反函数的连续性;
3、初等函数的连续性。
要求:理解与掌握一元函数连续性、一致连续性的定义及其证明,理解与掌握函数间断点及其分类,连续函数的局部性质;理解单侧连续的概念;能正确叙述和简单应用闭区间上连续函数的性质;了解反函数的连续性,理解复合函数的连续性,初等函数的连续性。
(五)导数与微分
1、导数概念:导数的定义、单侧导数、导函数、导数的几何意义;
2、求导法则:导数公式、导数的运算(四则运算)、求导法则(反函数的求导法则,复合函数的求导法则,隐函数的求导法则,参数方程的求导法则);
3、微分:微分的定义,微分的运算法则,微分的应用;
4、高阶导数与高阶微分。
要求:理解和掌握导数与微分概念,了解它的几何意义;能熟练地运用导数的运算性质和求导法则求函数的导数;理解单侧导数、可导性与连续性的关系,高阶导数的求法;了解导数的几何应用,微分在近似计算中的应用。
(六)微分学基本定理
1、中值定理:罗尔中值定理、拉格朗日中值定理、柯西中值定理;
2、几种特殊类型的不定式极限与罗比塔法则;
3、泰勒公式。
要求:掌握中值定理的内容、证明及其应用;了解泰勒公式及在近似计算中的应用,能够把某些函数按泰勒公式展开;能熟练地运用罗必达法则求不定式的极限
(七)导数的应用
1、函数的单调性与极值;
2、函数凹凸性与拐点.要求:了解和掌握函数的某些特性(单调性、极值与最值、凹凸性、拐点)及其判断方法,能利用函数的特性解决相关的实际问题。
(八)实数完备性定理及应用
1、实数完备性六个等价定理:闭区间套定理、单调有界定理、柯西收敛准则、确界存在定理、聚点定理、有限覆盖定理;
2、闭区间上连续函数整体性质的证明:有界性定理的证明,最大小值性定理的证明,介值性定理的证明,一致连续性定理的证明;
3、上、下极限。
要求:了解实数连续性的几个定理和闭区间上连续函数的性质的证明;理解聚点的概念,上、下极限的概念。
(九)不定积分
1、不定积分概念;
2、换元积分法与分部积分法;
3、几类可化为有理函数的积分;
要求:理解原函数和不定积分概念;熟练掌握换元积分法、分部积分法、有理式积分法、简单无理式和三角有理式积分法。
(十)定积分
1、定积分的概念:概念的引入、黎曼积分定义,函数可积的必要条件;
2、可积性条件:可积的必要条件和充要条件,达布上和与达布下和,可积函数类(连续函数,只有有限个间断点的有界函数,单调函数);
3、微积分学基本定理:可变上限积分,牛顿-莱布尼兹公式;
4、非正常积分:无穷积分收敛与发散的概念,审敛法(柯西准则,比较法,狄利克雷与阿贝尔判别法);瑕积分的收敛与发散的概念,收敛判别法。
要求:理解定积分概念及函数可积的条件;熟悉一些可积分函数类,会一些较简单的可积性证明;掌握定积分与可变上限积分的性质;能较好地运用牛顿-莱布尼兹公式,换元积分法,分部积分法计算一些定积分。掌握广义积分的收敛、发散、绝对收敛与条件收敛等概念;能用收敛性判别法判断某些广义积分的收敛性。
(十一)定积分的应用
1、定积分的几何应用:平面图形的面积,微元法,已知截面面积函数的立体体积,旋转体的体积平面曲线的弧长与微分,曲率;
2、定积分在物理上的应用:功、液体压力、引力。
要求:重点掌握定积分的几何应用;掌握定积分在物理上的应用;在理解并掌握“微元法”。
(十二)数项级数
1、级数的敛散性:无穷级数收敛,发散等概念,柯西准则,收敛级数的基本性质;
2、正项级数:比较原理,达朗贝尔判别法,柯西判别法,积分判别法;
3、一般项级数:交错级数与莱布尼兹判别法,绝对收敛级数与条件收敛级数及其性质,阿贝尔判别法与狄利克雷判别法。
要求:理解无穷级数的收敛、发散、绝对收敛与条件收敛等概念;掌握收敛级数的性质;能够应用正项级数与任意项级数的敛散性判别法判断级数的敛散性;熟悉几何级数调和级数与p级数。
(十三)函数项级数
1、一致收敛性及一致收敛判别法(柯西准则,优级数判别法,狄利克雷与阿贝尔判别法);
2、一致收敛的函数列与函数项级数的性质(连续性,可积性,可微性)。
要求:掌握收敛域、极限函数与和函数一致敛等概念;掌握极限函数与和函数的分析性质(会证明);能够比较熟练地判断一些函数项级数与函数列的一致收敛。
(十四)幂级数
1、幂级数:阿贝尔定理,收敛半径与收敛区间,幂级数的一致收敛性,幂级数和函数的分析性质;
2、几种常见初等函数的幂级数展开与泰勒定理。
要求:了解幂级数,函数的幂级数及函数的可展成幂级数等概念;掌握幂级数的性质;会求幂级数的收敛半径与一些幂级数的收敛域;会把一些函数展开成幂级数,包括会用间接展开法求函数的泰勒展开式
(十五)付里叶级数
1、付里叶级数:三角函数与正交函数系, 付里叶级数与傅里叶系数, 以2 为周期函数的付里叶级数, 收敛定理;
2、以2L为周期的付里叶级数;
3、收敛定理的证明。
要求:理解三角函数系的正交性与函数的傅里叶级数的概念;掌握傅里叶级数收敛性判别法;能将一些函数展开成傅里叶级数;了解收敛定理的证明。
(十六)多元函数极限与连续
1、平面点集与多元函数的概念;
2、二元函数的极限、累次极限;
3、二元函数的连续性:二元函数的连续性概念、连续函数的局部性质及初等函数连续性。要求:理解平面点集、多元函数的基本概念;理解二元函数的极限、累次极限、连续性概念,会计算一些简单的二元函数极限;了解闭区间套定理,有限覆盖定理,多元连续函数的性质。(十七)多元函数的微分学
1、可微性:偏导数的概念,偏导数的几何意义,偏导数与连续性;全微分概念;连续性与可微性,偏导数与可微性;
2、多元复合函数微分法及求导公式;
3、方向导数与梯度;
4、泰勒定理与极值。
要求:理解并掌握偏导数、全微分、方向导数、高阶偏导数及极值等概念及其计算;弄清全微分、偏导数、连续之间的关系;了解泰勒公式;会求函数的极值、最值。
(十八)隐函数定理及其应用
1、隐函数:隐函数的概念,隐函数的定理,隐函数求导举例;
2、隐函数组:隐函数组存在定理,反函数组与坐标变换,雅可比行列式;
3、几何应用:平面曲线的切线与法线,空间曲线的切线与法平面,曲面的切平面和法线;条件极值:条件极值的概念,条件极值的必要条件。
要求:了解隐函数的概念及隐函数的存在定理,会求隐函数的导数;了解隐函数组的概念及隐函数组定理,会求隐函数组的偏导数;会求曲线的切线方程,法平面方程,曲面的切平面方程和法线方程;了解条件极值概念及求法。
(十九)重积分
1、二重积分概念:二重积分的概念,可积条件,可积函数,二重积分的性质;
2、二重积分的计算:化二重积分为累次积分,换元法(极坐标变换,一般变换);
3、含参变量的积分;
4、三重积分计算:化三重积分为累次积分, 换元法(一般变换,柱面坐标变换,球坐标变换);
5、重积分应用:立体体积,曲面的面积,物体的重心,转动惯量;
6、含参量非正常积分概念及其一致敛性:含参变量非正常积分及其一致收敛性概念,一致收敛的判别法(柯西准则,与函数项级数一致收敛性的关系,一致收敛的M判别法),含参变量非正常积分的分析性质;
7、欧拉积分:格马函数及其性质,贝塔函数及其性质。
要求:了解含参变量定积分的概念与性质;熟练掌握二重、三重积分的概念、性质、计算及基本应用;了解含参变量非正常积分的收敛与一致收敛的概念;理解含参变量非正常积分一致收敛的判别定理,并掌握它们的应用;了解欧拉积分。
(二十)曲线积分与曲面积分
1、第一型曲线积分的概念、性质与计算,第一型曲面积分的的概念、性质与计算;
2、第二型曲线积分的概念、性质与计算,变力作功,两类曲线积分的联系;
3、格林公式,曲线积分与路线的无关性, 全函数;
4、曲面的侧,第二型曲面积分概念及性质与计算,两类曲面积分的关系;
5、高斯公式,斯托克斯公式,空间曲线积分与路径无关性;
6、场论初步:场的概念,梯度,散度和旋度。
要求:掌握两类曲线积分与曲面积分的概念、性质及计算;了解两类曲线积分的关系和两类曲面积分的关系;熟练掌握格林公式的证明及其应用,会利用高斯公式、斯托克斯公式计算一些曲面积分与曲线积分;了解场论的初步知识。
三、主要参考书
《数学分析》(第三版),华东师范大学数学系编,高等教育出版社,2004年。《数学分析中的典型问题与方法》,裴礼文,高等教育出版社,1993年。
四、主要题型:
填空题,选择题,计算题,解答题,证明题,应用题。
第四篇:数学分析教案
《数学分析Ⅲ》教案编写目录(1—16周,96学时)
课时教学计划(教案21-1)
课题:§21-1二重积分的概念
一、教学目的:
1.理解二重积分的概念,其中包括二重积分的定义、几何意义和存在性。2.理解二重积分的7条性质。
二、教学重点:二重积分的概念;二重积分的存在性和性质。
三、教学难点:二重积分的定义;二重积分的存在性。
四、教学方法:多媒体、问题讨论与黑板讲解穿插教学。
五、教学用具:黑板、CAI课件及硬件支持
六、教学过程:
[引例]:
(约5min,语言表述)
由平面图形的面积和曲顶柱体的体积引出二重积分的概念。平面图形的面积
(约40min,投影、图示与黑板讲解)
1.平面图形面积的定义;
2.平面图形可求面积的充分必要条件;
二重积分的定义及其存在性
1.2. 二重积分的定义;
二重积分存在的充分条件和必要条件。
二重积分的性质
(约25min,图示与黑板讲解)
结合二重积分的定义讲解二重积分的7条性质。
补充例子:
(约10min,黑板讲解)
1.根据二重积分的定义计算二重积分; 2.根据二重积分的性质证明不等式。
七、课程小结:
(约5min,黑板讲解)
二重积分的定义;二重积分性质。
八、作业:P217习题
1,2,3,4,5,6,8。
课时教学计划(教案21-2)
课题:§21-2直角坐标系下二重积分的计算
一、教学目的:
掌握在直角坐标系下二重积分的计算方法。
二、教学重点:直角坐标系下二重积分的计算方法。
三、教学难点:定理21.8,21.9。
四、教学方法:多媒体、问题讨论与黑板讲解穿插教学。
五、教学用具:黑板、CAI课件及硬件支持
六、教学过程:
[引例]:
由曲顶柱体的体积引出二重积分计算的直观概念。 定理21.8,21.9的证明
X型、y型区域的讲解及其定理21.10的证明
直角坐标系下二重积分的计算举例
教材中例1—例4。
补充例子:
利用二重积分计算体积;
七、课程小结:
直角坐标系下二重积分的计算。
八、作业:P222习题
1,2,3,4,5,6,8。
(约5min,语言表述)
15min,投影、图示与黑板讲解)
(约25min,图示与黑板讲解)
(约30min,图示与黑板讲解)
(约20min,黑板讲解)
(约5min,黑板讲解)
(约
课时教学计划(教案21-3)
课题:二重积分的概念与计算习题课
一、教学目的:
1.巩固二重积分的概念,其中包括二重积分的定义、几何意义和存在性。2.巩固在直角坐标系下二重积分的计算方法。
二、教学重点:直角坐标系下二重积分的计算方法。
三、教学难点:直角坐标系下二重积分的计算方法。
四、教学方法:多媒体、问题讨论与黑板讲解穿插教学。
五、教学用具:黑板、CAI课件及硬件支持
六、教学过程:
二重积分的概念与性质
(约95min,投影、图示与黑板讲解)
1.二重积分的概念复习; 2.二重积分的性质复习。
二重积分的计算
1.2.利用二重积分的定义和限制计算二重积分和某些不等式; 在直角坐标系下计算二重积分。
七、课程小结:
(约5min,黑板讲解)
二重积分的定义;二重积分性质;二重积分的计算。
八、作业:P278
总练习题
1,2。
课时教学计划(教案21-4)
课题:§21-3格林公式、曲线积分与路线的无关性
一、教学目的:
1.理解格林公式;
2.掌握格林公式在计算二重积分和曲线积分的方法。3.掌握曲线积分与路线无关的条件和应用方法。
二、教学重点:格林公式的理解和方法。
三、教学难点:定理21.11,21.12。
四、教学方法:多媒体、问题讨论与黑板讲解穿插教学。
五、教学用具:黑板、CAI课件及硬件支持
六、教学过程:
格林公式,定理21.11的证明
例1—例3的讲解
曲线积分与路线的无关性,定理21.12的证明
例4的讲解。
补充例子:
利用二重积分计算曲线积分。
七、课程小结:
格林公式与曲线积分与路径无关的概念。
八、作业:P231习题
1,2,3,4,5,6,8。
15min,投影、图示与黑板讲解)
(约25min,图示与黑板讲解)
(约30min,图示与黑板讲解)
(约20min,黑板讲解)
(约5min,黑板讲解)
(约
课时教学计划(教案21-5)
课题:§21-4二重积分的变量变换
一、教学目的:
1.理解二重积分的变量变换的基本思想;
2.3.掌握二重积分变量变换的方法特别是极坐标变换。掌握在极坐标系下计算二重积分的方法。
二、教学重点:二重积分的变量变换。
三、教学难点:引理和定理21.13,21.14。
四、教学方法:多媒体、问题讨论与黑板讲解穿插教学。
五、教学用具:黑板、CAI课件及硬件支持
六、教学过程:
二重积分的变量变换公式
(约15min,投影、图示与黑板讲解)
引理证明,定理21.13证明,例1,例2讲解
(约25min,图示与黑板讲解)
用极坐标计算二重积分,定理21.14证明
(约20min,图示与黑板讲解)二重积分在极坐标系下化为累次积分,例3,例4,例5,例6讲解
(约35min,图示与黑板讲解)
七、课程小结:
(约5min,黑板讲解)
二重积分的变量变换,在极坐标系下计算二重积分的方法。
八、作业:P242习题
1,2,3,4,5。
课时教学计划(教案21-6)
课题:格林公式、曲线积分与路线的无关性
及积分变换习题课
一、教学目的:
1.2.巩固格林公式、曲线积分与路线的无关性及积分变换;
巩固格林公式、曲线积分与路线的无关性及积分变换的计算方法。
二、教学重点:格林公式、曲线积分与路线的无关性及积分变换
三、教学难点:格林公式、曲线积分与路线的无关性及积分变换
四、教学方法:多媒体、问题讨论与黑板讲解穿插教学。
五、教学用具:黑板、CAI课件及硬件支持
六、教学过程:
讲解格林公式、曲线积分与路线的无关性的计算题
(约95min,投影、图示与黑板讲解)
讲解积分变换的计算题
七、课程小结:
(约5min,黑板讲解)
二重积分的定义;二重积分性质;二重积分的计算。
八、作业:P243
总练习题
7,8 6
课时教学计划(教案21-7)
课题:§21-5 三重积分
一、教学目的:
1.2.3.理解三重积分的概念;
掌握化三重积分为累次积分的方法; 掌握三重积分换元法。
二、教学重点:三重积分换元法
三、教学难点:定义和定理21.15
四、教学方法:多媒体、问题讨论与黑板讲解穿插教学。
五、教学用具:黑板、CAI课件及硬件支持
六、教学过程:
三重积分的定义
(约15min,投影、图示与黑板讲解)
定理21.15证明,例1,例2讲解
(约25min,图示与黑板讲解)
三重积分还原公式,柱面坐标变换,球面坐标变换(约20min,图示与黑板讲解)例3,例4,例5讲解
(约35min,图示与黑板讲解)
七、课程小结:
(约5min,黑板讲解)
三重积分的定义,在直角坐标、柱面坐标、球面坐标下计算三重积分的方法。
八、作业:P251习题
1,2,3,4,5。
课时教学计划(教案21-8)
课题:§21-6 重积分的应用
一、教学目的:
1.2.3.掌握重积分在求曲面面积的应用; 了解重积分在重心的应用; 了解重积分在转动惯量的应用。
二、教学重点:重积分求曲面面积
三、教学难点:运用重积分公式求解曲面面积
四、教学方法:多媒体、问题讨论与黑板讲解穿插教学。
五、教学用具:黑板、CAI课件及硬件支持
六、教学过程:
[引例]:
(约5min,语言表述)
由曲面的面积引出重积分的应用。
建立曲面面积的计算公式
(约40min,图示与黑板讲解)
例1讲解
(约35min,图示与黑板讲解)简单介绍重积分在重心、转动惯量的应用
(约15min,图示与黑板讲解)
七、课程小结:
(约5min,黑板讲解)
曲面面积的概念,重积分在计算曲面面积、重心、转动惯量中的应用。
八、作业:P259 1,2。
课时教学计划(教案21-9)
课题:§21-8 反常二重积分
一、教学目的:
掌握反常二重积分及其计算
二、教学重点:反常二重积分及其计算
三、教学难点:反常二重积分及其计算
四、教学方法:多媒体、问题讨论与黑板讲解穿插教学。
五、教学用具:黑板、CAI课件及硬件支持
六、教学过程:
无界区域上的二重积分
(约10min,图示与黑板讲解)
定理21.16,定理21.17的证明
(约40min,图示与黑板讲解)例1的讲解
(约15min,图示与黑板讲解)定理21.18,定理21.19
(约15min,图示与黑板讲解)无界函数上的二重积分及定理21.20
(约15min,图示与黑板讲解)
七、课程小结:
(约5min,黑板讲解)
曲面面积的概念,重积分在计算曲面面积、重心、转动惯量中的应用。
八、作业:P272 1,2,3。
课时教学计划(教案21-10)
课题:三重积分及重积分的应用习题课
一、教学目的:
1.巩固三重积分的概念,其中包括三重积分的定义、几何意义和存在性。2.巩固在直角坐标系下三重积分的计算方法。3.巩固化三重积分为累次积分的方法。4.巩固三重积分换元法。
二、教学重点:直角坐标系下三重积分的计算方法。
三、教学难点:三重积分换元法
四、教学方法:多媒体、问题讨论与黑板讲解穿插教学。
五、教学用具:黑板、CAI课件及硬件支持
六、教学过程:
二重积分的概念与性质
1.三重积分的概念复习; 2.三重积分的性质复习。
三重积分的计算
1.化三重积分为累次积分;
2.在柱面坐标、球面坐标下计算三重积分; 3.计算曲面面积。
七、课程小结:
三重积分的定义;三重积分性质;三重积分的计算。
八、作业:P278
总练习题
15min,投影、图示与黑板讲解)
(约80min,投影、图示与黑板讲解)
(约5min,黑板讲解)
(约
课时教学计划(教案22-1)
课题:§22-1第一型曲面积分
一、教学目的:
1.2.第一型曲面积分的概念。第一型曲面积分的计算。
二、教学重点:第一型曲面积分计算
三、教学难点:第一型曲面积分计算
四、教学方法:多媒体、问题讨论与黑板讲解穿插教学。
五、教学用具:黑板、CAI课件及硬件支持
六、教学过程:
[引例]:
(约5min,语言表述)
由求曲面的质量引出第一型曲面积分的概念。
第一型曲面积分的概念
(约25min,投影、图示与黑板讲解)
第一型曲面积分的计算
1.2.定理22.1第一型曲面积分计算公式
(约30min,投影、图示与黑板讲解)例1,例2的求解
(约35min,投影、图示与黑板讲解)
七、课程小结:
(约5min,黑板讲解)
第一型曲面积分的定义;第一型曲面积分的计算。
八、作业:P282 1,2,3,4
课时教学计划(教案22-2)
课题:§22-2第二型曲面积分
一、教学目的:
1.2.第二型曲面积分的概念。第二型曲面积分的计算。
二、教学重点:第二型曲面积分计算
三、教学难点:第二型曲面积分计算
四、教学方法:多媒体、问题讨论与黑板讲解穿插教学。
五、教学用具:黑板、CAI课件及硬件支持
六、教学过程:
[引例]:
(约5min,语言表述)
由求流量问题引出第二型曲面积分的概念。
第二型曲面积分的概念
(约25min,投影、图示与黑板讲解)
第二型曲面积分的计算
1.2.3.定理22.2第二型曲面积分计算公式
(约30min,投影、图示与黑板讲解)例1,例2的求解
(约35min,投影、图示与黑板讲解)
简单介绍两类曲面积分的联系
七、课程小结:
(约5min,黑板讲解)
第二型曲面积分的定义;第二型曲面积分的计算。
八、作业:P289 1,2 12 课时教学计划(教案22-3)
课题:第一、二型曲面积分复习课
一、教学目的:
1.2.巩固第一型曲面积分、第二型曲面积分的概念。巩固第一型曲面积分、第二型曲面积分的计算。
二、教学重点:第一、二型曲面积分计算
三、教学难点:第一、二型曲面积分计算
四、教学方法:多媒体、问题讨论与黑板讲解穿插教学。
五、教学用具:黑板、CAI课件及硬件支持
六、教学过程:
第一、二型曲面积分的概念
(约10min,投影、图示与黑板讲解)
第一、二型曲面积分的计算
1.2.习题巩固第一、二型曲面积分计算公式
(约75min,投影、图示与黑板讲解)简单介绍两类曲面积分的联系
(约10min,投影、图示与黑板讲解)
七、课程小结:
(约5min,黑板讲解)
第一、二型曲面积分的定义;第一、二型曲面积分的计算。
八、作业:P305 1,2
课时教学计划(教案22-4)
课题:§22-3高斯公式与斯托克斯公式
一、教学目的:
1.2.掌握高斯公式 掌握斯托克斯公式
二、教学重点:高斯公式与斯托克斯公式
三、教学难点:高斯公式与斯托克斯公式
四、教学方法:多媒体、问题讨论与黑板讲解穿插教学。
五、教学用具:黑板、CAI课件及硬件支持
六、教学过程:
高斯公式的重要意义
(约5min,投影、图示与黑板讲解)
高斯公式
1.2. 定理22.3证明
(约25min,投影、图示与黑板讲解)例1的求解
(约15min,投影、图示与黑板讲解)
斯托克斯公式的重要意义
(约5min,投影、图示与黑板讲解)
斯托克说公式
1.2.3.定理22.4证明
(约15min,投影、图示与黑板讲解)例2的求解
(约10min,投影、图示与黑板讲解)
定理22.5及例3
(约20min,投影、图示与黑板讲解)
七、课程小结:
(约5min,黑板讲解)
高斯公式与斯托克斯公式;高斯公式与斯托克斯公式的计算
八、作业:P296 1,2,3,4 14 课时教学计划(教案22-5)
课题:§22-4场论初步
一、教学目的:
1.2.了解场的概念 掌握梯度场、散度场
二、教学重点:梯度场、散度场
三、教学难点:梯度场、散度场
四、教学方法:多媒体、问题讨论与黑板讲解穿插教学。
五、教学用具:黑板、CAI课件及硬件支持
六、教学过程:
场的概念、向量场线
(约15min,投影、图示与黑板讲解)
梯度场的定义及其基本性质
(约20min,投影、图示与黑板讲解)
例1求解
(约15min,投影、图示与黑板讲解)
散度场的定义及其基本性质
(约20min,投影、图示与黑板讲解)
例2求解
(约15min,投影、图示与黑板讲解)
了解其他场
(约10min,投影、图示与黑板讲解)
七、课程小结:
(约5min,黑板讲解)
场的概念;梯度场、散度场。
八、作业:P296 1,2,3,4。
课时教学计划(教案22-6)
课题:高斯公式与斯托克斯公式和场论初步复习课
一、教学目的:
1.2.巩固高斯公式与斯托克斯公式 巩固梯度场、散度场
二、教学重点:高斯公式与斯托克斯公式
三、教学难点:高斯公式与斯托克斯公式
四、教学方法:多媒体、问题讨论与黑板讲解穿插教学。
五、教学用具:黑板、CAI课件及硬件支持
六、教学过程:
高斯公式与斯托克斯公式
(约15min,投影、图示与黑板讲解)
高斯公式与斯托克斯公式的计算
(约65min,投影、图示与黑板讲解)
复习场论知识
(约15min,黑板讲解)
七、课程小结:
(约5min,黑板讲解)
高斯公式与斯托克斯公式;高斯公式与斯托克斯公式的计算; 场的概念;梯度场、散度场。
八、作业:P305 3,4。
第五篇:2013数学分析考点
数学分析(2)期终考点
一、不作考试要求的知识点:
近似计算、应用问题、带*号的内容、第十、十五章。
二、考试题型:
选择题、填空题、判断题、计算题、证明题。
三、考试知识点:
第九章 定积分
1、理解定积分概念、性质和可积条件。
2、理解积分上限函数的概念、有关定理及其应用;会求积分上限函数的导数、极限。
3、会用微积分基本公式和换元积分法与分步积分法求定积分。
第十一章反常积分
1、理解无穷限的反常积分和无界函数的反常积分的概念。
2、理解反常积分绝对收敛和条件收敛的概念。
3、掌握两类p—积分的收敛性。会计算反常积分的值。
4、掌握反常积分的比较原则(柯西判别法)。
5、掌握反常积分的狄利克雷(Dirichlet)判别法和阿贝尔(Abel)判别法。第十二章数项级数
1、理解数项级数收敛的概念及性质;会用定义及等比级数求数项级数的和。
2、理解数项级数绝对收敛和条件收敛的概念。
3、掌握正项级数收敛判别法(比较原则、比式判别法或根式判别法)、交错级数收敛的莱布尼茨判别法;会用级数收敛的必要条件判别级数发散。
4、熟记等比级数、p—级数、调和级数的敛散性。
第十三章函数列与函数项级数
1、理解函数列与函数项级数一致收敛的概念。
2、理解一致收敛函数项级数的性质:连续性,逐项求积,逐项求导。第十四章 幂级数
1、理解幂级数的概念及性质。
2、熟悉阿贝耳定理,会求幂级数的收敛半径、收敛域。
3、熟记常用函数的幂级数展开式。
4、会利用逐项求积,逐项求导求幂级数的和函数。
第十六章 多元函数的极限与连续
1、会计算二重极限,累次极限。
2、理解二元函数连续的概念,重极限与连续的关系。
第十七章 多元函数微分学
1、理解偏导数、全微分的定义,可偏导、可微、连续的关系,可微的必要条件和充分条件,会用定义证明函数的可微性、连续性、可偏导。
2、掌握复合函数求导法则及应用;会求函数的全微分。
3、掌握高阶导数求导法;会求复合函数的高阶偏导数。
6、会求方向导数和梯度。