2011数学分析报告

时间:2019-05-14 03:04:12下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2011数学分析报告》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2011数学分析报告》。

第一篇:2011数学分析报告

高崖学区2011—2012学年度第一学期期末 质量监测六年级语、数、外卷面分析报告

分析人:贺成贵

根据《高崖学区2011—2012学年度第二学期工作计划》和《高崖学区2011—2012学年度第二学期教研工作计划》,学区决定2012年3月8日把本学期各学校六年级的任课教师召集到一起来,共同探讨、交流目前我们六年级各科教学中存在的问题,希望大家积极交流,互相学习,共同提高。

一、在分析之前我首先在这里说四个感谢:

1、感谢上级领导的正确领导和大力支持,以及大家的精诚团结。

2、感谢上届毕业班各位任课教师们的辛勤耕耘和无私奉献。

3、感谢已经走向中学的那401名同学的刻苦学习和努力。

4、感谢今天在座的各位校长、教务主任和以老岳为首的接任、顺任的各位毕业班教师们。和往年相比本届毕业班在任课教师的配置上阵容之强大是空前的(我学区六年级有10个教学班,其中任课教师里有5位校长、5位教务主任和若干名年轻骨干教师)大家每天辛苦在教育第一线,面对上学期的“创强”和本学期党的阳光政策“营养计划”所带来的大家在工作中精力和时间上的分配问题,但你们在完成以上工作的同时,依然有条不紊的、加班加点的进行着毕业班的教学,这里向大家道一声:你们辛苦了!

二、下面我就上学期期末六年级各科统一质量监测的试卷及成绩,结合上届毕业班在接受海原县教育体育局2011年7月质量监测时的具体成绩和各学校的实际情况分学科做以下简单分析

(一)语文

1试卷分析:上学期六年级期末监测时语文试卷的从整体上来说试卷的内容较多涉及和涵盖了小学人教版语文第十一册的教材内容,题型较新颖,题量不是太大,试卷中没有过偏、过难的试题出现。整个试卷的试题组成就是由基础知识、阅读、作文等组成。基本符合我学区六年级学生的学习水平。

2成绩分析:上学期期末监测时我学区六年级学生语文的平均成绩是76.04分(不含附加分),其中最高的班成绩是79.26分(高出平均成绩3.22分)最低的班成绩是69.42分(低于平均成绩6.62分),10个教学班中有3个班级低于学区平均分。我学区上届毕业生在接受教育局统一质量监测时的语文平均成绩是69.04分,居全县乡镇学区第14名。通过以上数据的分析我们不难发现:目前我学区六年级学生的语文教学和学习水平很接近,各班之间差距不大。那么,在目前的教学和学习水平上要想再突破、再提高,给大家几点建议:(1)继续加强学生对1—6年级基础知识的牢固掌握(基础知识在每年的试题中占 40%的比例,要想再突破,基础知识的平均得分率必须在90%左右)。

(2)有计划、有目的的拓宽学生的阅读视野,加大学生的课外阅读量,让他们“见多识广”,同时要着力培养和训练学生在答阅读题时语言的精准性,尽可能做到言简意赅。(阅读知识一般占试题的30%的比例,由一个课内阅读和一个课外阅读组成,阅读知识的平均得分率应在80%左右)。

(3)科学引导和指导学生多写多练,要求学生写日记、周记,熟知小学作文的类型和要求。(作文一般占试题的30%的比例,平均得分率应在75%--80%之间)。

(4)培养学生答卷时的书写认真。

(二)数学

1试卷分析:1试卷分析:上学期六年级期末监测时数学试卷从整体上来说试卷的内容大量涉及和涵盖了小学人教版数学第十一册的教材内容,题型新颖,题量不是太大,试卷中没有过偏、过难的试题出现。整个试卷的试题组成就是由基本概念、计算、数学的应用等组成。基本符合我学区六年级学生的学习水平。

2成绩分析:上学期期末监测时我学区六年级学生数学平均成绩是73.92分(不含附加分),其中最高的班成绩是87.51分(高出平均成绩13.59分),最低的班成绩是55.59分(低于平均成绩18.33分),10个教学班中有4个班级低于学区平均分。我学区上届毕业生在接受教育局统一质量监测时的数学平均成绩是69.41分,居全县乡镇学区第16名。和我学区在全县乡镇学区中的总名次一样。通过以上数据的分析我们可以发现:目前我学区六年级学生的数学教学和学习水平不是很接近,各班之间差距相对较大。可见我们的数学教学相对来说有着很大的教学潜力。那么,在目前的教学和学习水平上要想再突破、再提高,给大家几点建议:(1)继续加强学生对1—6年级数学概念的牢固掌握和理解(概念知识在每年的试题中占 40%左右的比例,部分班级要想再突破,概念知识的平均得分率必须在85%---90%左右)。

(2)继续保持和提高学生的计算能力,目前来看本届毕业班学生的计算能力较往年相比优于以往,但我们不能骄傲,要继续加强训练和指导,尤其是学生的速算能力(计算题一般占试题的30%左右,计算题的平均得分率应在90%以上)。

(3)分类别、有目的的对学生进行应用题的专项训练。应用题在小学数学教学阶段是难点也是重点,训练时应该由简到难,循循善诱,逐步渗透。(应用题在试题中占30%左右的比例,应用题的平均得分率应该在80%左右)。

(4)通过学习提高课堂效益,建议部分学校的数学教师在面对自己的课堂教学所产生的教学效益或者学生的实际成绩,应该到其他教师的课堂中去学习这些教师高效的教学方法和对作业、练习的布置,以及他们对差生的辅导。希望大家以谦虚的教学胸怀,积极地去学习和交流,以便我们数学教学的共同提高。

(三)英语

成绩分析和建议:上学期期末监测时我学区六年级学生英语平均成绩是90.81分(不含附加分),其中最高的班成绩是98.11分(高出平均成绩7.3分),最低的班成绩是80.70分(低于平均成绩10.11分),10个教学班中有3个班级低于学区平均分。我学区上届毕业生综合学科在接受教育局统一质量监测时的平均成绩是32.65分,(其中英语平均成绩是10.67分,思品平均成绩是13.56分,科学平均成绩是8.42分)居全县乡镇学区第11名。高于我学区在全县乡镇学区中语文、数学的名次。通过以上数据的分析我们发现:目前我学区六年级学生的英语教学和学习水平很不错,各班之间差距相对不大。可见我们的英语教学相对来说有着很好的势头。希望各任课教师再接再厉,继续保持和发扬目前的教学方式,个别班级应该积极跟进,以求共同提高。同时建议和要求任思品、科学的教师一定要吸取去年的教训,应该科学、合理的对思品和科学的教学,指导学生在学习和复习中不可以拘泥于固定的模式中,尤其是科学(上届毕业生的平均成绩8.42分)。应该多渠道引导学生全面、系统地掌握小学3—6年级的相关知识,以达到我们整体提高的教学目的。

二0一二年三月六日

第二篇:数学分析

360《数学分析》考试大纲

一. 考试要求:掌握函数,极限,微分,积分与级数等内容。

二. 考试内容:

第一篇 函数

一元与多元函数的概念,性质,若干特殊函数,连续性。第二篇 极限

数列极限,一元与多元函数极限的概念及其性质,实数的连续性(确界原理,单调有界原理,区间套定理,聚点定理,有限覆盖定理等)。

第三篇 微分

一元与多元函数导数(偏导数)与微分的概念,性质,公式,法则及应用;函数的单调性与凸性,极值与拐点,渐进线,函数作图;隐函数。

第三篇 积分

不定积分的概念,性质,公式,法则;定积分的概念,性质,公式,法则及应用;反常积分与含参积分;重积分与曲线曲面积分。第四篇 级数

数项级数,函数项级数,幂级数与傅立叶级数的概念,性质,公式,法则及应用。

参考书目:华东师范大学数学系,数学分析(上,下,第三版),高等教育出版社,2001年。

第三篇:数学分析

《数学分析》考试大纲

一、本大纲适用于报考苏州科技学院基础数学专业的硕士研究生入学考试。主要考核数学分析课程的基本概念、基本理论、基本方法。

二、考试内容与要求

(一)实数集与函数

1、实数:实数的概念,实数的性质,绝对值与不等式;

2、数集、确界原理:区间与邻域,有界集与无界集,上确界与下确界,确界原理;

3、函数概念:函数的定义,函数的表示法(解析法、列表法、和图象法),分段函数;

4、具有某些特征的函数:有界函数,单调函数,奇函数与偶函数,周期函数。

要求:了解数学的发展史与实数的概念,理解绝对值不等式的性质,会解绝对值不等式;弄清区间和邻域的概念, 理解确界概念、确界原理,会利用定义证明一些简单数集的确界;掌握函数的定义及函数的表示法,了解函数的运算;理解和掌握一些特殊类型的函数。

(二)数列极限

1、极限概念;

2、收敛数列的性质:唯一性,有界性,保号性,单调性;

3、数列极限存在的条件:单调有界准则,迫敛性法则,柯西准则。

要求:逐步透彻理解和掌握数列极限的概念;掌握并能运用-N语言处理极限问题;掌握收敛数列的基本性质和数列极限的存在条件(单调有界函数和迫敛性定理),并能运用;了解数列极限柯西准则,了解子列的概念及其与数列极限的关系;了解无穷小数列的概念及其与数列极限的关系.(三)函数极限

1、函数极限的概念,单侧极限的概念;

2、函数极限的性质:唯一性,局部有界性,局部保号性,不等式性,迫敛性;

3、函数极限存在的条件:归结原则(Heine定理),柯西准则;

4、两个重要极限;

5、无穷小量与无穷大量,阶的比较。

要求:理解和掌握函数极限的概念;掌握并能应用-, -X语言处理极限问题;了解函数的单侧极限,函数极限的柯西准则;掌握函数极限的性质和归结原则;熟练掌握两个重要极

限来处理极限问题。

(四)函数连续

1、函数连续的概念:一点连续的定义,区间连续的定义,单侧连续的定义,间断点及其分类;

2、连续函数的性质:局部性质及运算,闭区间上连续函数的性质(最大最小值性、有界性、介值性、一致连续性),复合函数的连续性,反函数的连续性;

3、初等函数的连续性。

要求:理解与掌握一元函数连续性、一致连续性的定义及其证明,理解与掌握函数间断点及其分类,连续函数的局部性质;理解单侧连续的概念;能正确叙述和简单应用闭区间上连续函数的性质;了解反函数的连续性,理解复合函数的连续性,初等函数的连续性。

(五)导数与微分

1、导数概念:导数的定义、单侧导数、导函数、导数的几何意义;

2、求导法则:导数公式、导数的运算(四则运算)、求导法则(反函数的求导法则,复合函数的求导法则,隐函数的求导法则,参数方程的求导法则);

3、微分:微分的定义,微分的运算法则,微分的应用;

4、高阶导数与高阶微分。

要求:理解和掌握导数与微分概念,了解它的几何意义;能熟练地运用导数的运算性质和求导法则求函数的导数;理解单侧导数、可导性与连续性的关系,高阶导数的求法;了解导数的几何应用,微分在近似计算中的应用。

(六)微分学基本定理

1、中值定理:罗尔中值定理、拉格朗日中值定理、柯西中值定理;

2、几种特殊类型的不定式极限与罗比塔法则;

3、泰勒公式。

要求:掌握中值定理的内容、证明及其应用;了解泰勒公式及在近似计算中的应用,能够把某些函数按泰勒公式展开;能熟练地运用罗必达法则求不定式的极限

(七)导数的应用

1、函数的单调性与极值;

2、函数凹凸性与拐点.要求:了解和掌握函数的某些特性(单调性、极值与最值、凹凸性、拐点)及其判断方法,能利用函数的特性解决相关的实际问题。

(八)实数完备性定理及应用

1、实数完备性六个等价定理:闭区间套定理、单调有界定理、柯西收敛准则、确界存在定理、聚点定理、有限覆盖定理;

2、闭区间上连续函数整体性质的证明:有界性定理的证明,最大小值性定理的证明,介值性定理的证明,一致连续性定理的证明;

3、上、下极限。

要求:了解实数连续性的几个定理和闭区间上连续函数的性质的证明;理解聚点的概念,上、下极限的概念。

(九)不定积分

1、不定积分概念;

2、换元积分法与分部积分法;

3、几类可化为有理函数的积分;

要求:理解原函数和不定积分概念;熟练掌握换元积分法、分部积分法、有理式积分法、简单无理式和三角有理式积分法。

(十)定积分

1、定积分的概念:概念的引入、黎曼积分定义,函数可积的必要条件;

2、可积性条件:可积的必要条件和充要条件,达布上和与达布下和,可积函数类(连续函数,只有有限个间断点的有界函数,单调函数);

3、微积分学基本定理:可变上限积分,牛顿-莱布尼兹公式;

4、非正常积分:无穷积分收敛与发散的概念,审敛法(柯西准则,比较法,狄利克雷与阿贝尔判别法);瑕积分的收敛与发散的概念,收敛判别法。

要求:理解定积分概念及函数可积的条件;熟悉一些可积分函数类,会一些较简单的可积性证明;掌握定积分与可变上限积分的性质;能较好地运用牛顿-莱布尼兹公式,换元积分法,分部积分法计算一些定积分。掌握广义积分的收敛、发散、绝对收敛与条件收敛等概念;能用收敛性判别法判断某些广义积分的收敛性。

(十一)定积分的应用

1、定积分的几何应用:平面图形的面积,微元法,已知截面面积函数的立体体积,旋转体的体积平面曲线的弧长与微分,曲率;

2、定积分在物理上的应用:功、液体压力、引力。

要求:重点掌握定积分的几何应用;掌握定积分在物理上的应用;在理解并掌握“微元法”。

(十二)数项级数

1、级数的敛散性:无穷级数收敛,发散等概念,柯西准则,收敛级数的基本性质;

2、正项级数:比较原理,达朗贝尔判别法,柯西判别法,积分判别法;

3、一般项级数:交错级数与莱布尼兹判别法,绝对收敛级数与条件收敛级数及其性质,阿贝尔判别法与狄利克雷判别法。

要求:理解无穷级数的收敛、发散、绝对收敛与条件收敛等概念;掌握收敛级数的性质;能够应用正项级数与任意项级数的敛散性判别法判断级数的敛散性;熟悉几何级数调和级数与p级数。

(十三)函数项级数

1、一致收敛性及一致收敛判别法(柯西准则,优级数判别法,狄利克雷与阿贝尔判别法);

2、一致收敛的函数列与函数项级数的性质(连续性,可积性,可微性)。

要求:掌握收敛域、极限函数与和函数一致敛等概念;掌握极限函数与和函数的分析性质(会证明);能够比较熟练地判断一些函数项级数与函数列的一致收敛。

(十四)幂级数

1、幂级数:阿贝尔定理,收敛半径与收敛区间,幂级数的一致收敛性,幂级数和函数的分析性质;

2、几种常见初等函数的幂级数展开与泰勒定理。

要求:了解幂级数,函数的幂级数及函数的可展成幂级数等概念;掌握幂级数的性质;会求幂级数的收敛半径与一些幂级数的收敛域;会把一些函数展开成幂级数,包括会用间接展开法求函数的泰勒展开式

(十五)付里叶级数

1、付里叶级数:三角函数与正交函数系, 付里叶级数与傅里叶系数, 以2 为周期函数的付里叶级数, 收敛定理;

2、以2L为周期的付里叶级数;

3、收敛定理的证明。

要求:理解三角函数系的正交性与函数的傅里叶级数的概念;掌握傅里叶级数收敛性判别法;能将一些函数展开成傅里叶级数;了解收敛定理的证明。

(十六)多元函数极限与连续

1、平面点集与多元函数的概念;

2、二元函数的极限、累次极限;

3、二元函数的连续性:二元函数的连续性概念、连续函数的局部性质及初等函数连续性。要求:理解平面点集、多元函数的基本概念;理解二元函数的极限、累次极限、连续性概念,会计算一些简单的二元函数极限;了解闭区间套定理,有限覆盖定理,多元连续函数的性质。(十七)多元函数的微分学

1、可微性:偏导数的概念,偏导数的几何意义,偏导数与连续性;全微分概念;连续性与可微性,偏导数与可微性;

2、多元复合函数微分法及求导公式;

3、方向导数与梯度;

4、泰勒定理与极值。

要求:理解并掌握偏导数、全微分、方向导数、高阶偏导数及极值等概念及其计算;弄清全微分、偏导数、连续之间的关系;了解泰勒公式;会求函数的极值、最值。

(十八)隐函数定理及其应用

1、隐函数:隐函数的概念,隐函数的定理,隐函数求导举例;

2、隐函数组:隐函数组存在定理,反函数组与坐标变换,雅可比行列式;

3、几何应用:平面曲线的切线与法线,空间曲线的切线与法平面,曲面的切平面和法线;条件极值:条件极值的概念,条件极值的必要条件。

要求:了解隐函数的概念及隐函数的存在定理,会求隐函数的导数;了解隐函数组的概念及隐函数组定理,会求隐函数组的偏导数;会求曲线的切线方程,法平面方程,曲面的切平面方程和法线方程;了解条件极值概念及求法。

(十九)重积分

1、二重积分概念:二重积分的概念,可积条件,可积函数,二重积分的性质;

2、二重积分的计算:化二重积分为累次积分,换元法(极坐标变换,一般变换);

3、含参变量的积分;

4、三重积分计算:化三重积分为累次积分, 换元法(一般变换,柱面坐标变换,球坐标变换);

5、重积分应用:立体体积,曲面的面积,物体的重心,转动惯量;

6、含参量非正常积分概念及其一致敛性:含参变量非正常积分及其一致收敛性概念,一致收敛的判别法(柯西准则,与函数项级数一致收敛性的关系,一致收敛的M判别法),含参变量非正常积分的分析性质;

7、欧拉积分:格马函数及其性质,贝塔函数及其性质。

要求:了解含参变量定积分的概念与性质;熟练掌握二重、三重积分的概念、性质、计算及基本应用;了解含参变量非正常积分的收敛与一致收敛的概念;理解含参变量非正常积分一致收敛的判别定理,并掌握它们的应用;了解欧拉积分。

(二十)曲线积分与曲面积分

1、第一型曲线积分的概念、性质与计算,第一型曲面积分的的概念、性质与计算;

2、第二型曲线积分的概念、性质与计算,变力作功,两类曲线积分的联系;

3、格林公式,曲线积分与路线的无关性, 全函数;

4、曲面的侧,第二型曲面积分概念及性质与计算,两类曲面积分的关系;

5、高斯公式,斯托克斯公式,空间曲线积分与路径无关性;

6、场论初步:场的概念,梯度,散度和旋度。

要求:掌握两类曲线积分与曲面积分的概念、性质及计算;了解两类曲线积分的关系和两类曲面积分的关系;熟练掌握格林公式的证明及其应用,会利用高斯公式、斯托克斯公式计算一些曲面积分与曲线积分;了解场论的初步知识。

三、主要参考书

《数学分析》(第三版),华东师范大学数学系编,高等教育出版社,2004年。《数学分析中的典型问题与方法》,裴礼文,高等教育出版社,1993年。

四、主要题型:

填空题,选择题,计算题,解答题,证明题,应用题。

第四篇:数学分析习作读书报告格式

云 南 大 学

数学分析习作课(1)读书报告

题 目:

学 院: 专 业: 姓名、学号: 任课教师: 时 间:

摘 要

关键词:

以下为正文部分:小标题四号宋体字,其余均为小四号宋体字。撰写时请删除!

参考文献

[1] 数学分析习题集解,吉米多维奇原著,费定晖等编著,山东大学出版社,2005.[2] 论如何加强数学人才在求职中的优势,杨汉春,张 庆,高等理科教育,No.4(2003):22-26.

第五篇:数学分析习作读书报告格式

云 南 大 学

数学分析习作课读书报告

题 目: 一元函数与二元函数连续性的对比

学 院: 数学与统计学院

专 业: 数学与应用数学 姓名、学号: 任课教师: 时 间:

摘 要

讨论一元、二元函数连续性的对比,首先我们要讨论一元函数与二元函数的连续性的联系,从函数连续性的定义和一些性质中找出与一元函数与二元函数连续性的关系,再从函数连续性与极限、导数、微分的联系来分析一元函数与二元函数连续性的不同。如同极限一样,二元函数的连续性问题要比一元函数要求更高,处理起来也更复杂,但是,一切从基本概念出发,熟知连续性的定义和定理,参考一元函数连续性问题的解决方法,二元函数连续性问题就不难解决。

关键词:

函数在一点的连续性 函数的左、右连续 间断点 导数 极限 偏导数 积分

以下为正文部分:小标题四号宋体字,其余均为小四号宋体字。撰写时请删除!

一、函数的连续性 函数在一点的连续性

(一)函数在x。连续,满足三个条件:(1)函数ƒ(x)在x。点点某领域U(x。,δ)内有定义(2)limƒ(x)存在△x→x。

(3)limƒ(x)=ƒ(x。)△x→x。

用增量形式表示连续性:lim[ƒ(x。+△x)-ƒ(x。)]=lim△y=0 △x→0 △x→0

定义:设ƒ(x)在x。及其领域内有定义,如果对于任意的ε﹥0,都有δ=δ(x。,ε)﹥0,使当|x-x。|﹤δ时,有|ƒ(x)-ƒ(x。)|﹤ε成立,即limƒ(x)= ƒ(x。),则称函数ƒ(x)在x=x。(或点x。)处连续。x→x。

ƒ(x)在点x。出处有定义,且ƒ(x)在分界点x。的极限limƒ(x)存在 x→x。limƒ(x)=(x。)x→x。

所有初等函数在它的定义域内都连续

一个连续而另一个不连续的函数,其和、差一定不连续,但其积不然

例1. 例 设函数ƒ(x)在(a,b)内每一点处的左、右极限都存在,又x,y∈(a,b),有ƒ(xy2)≤[ƒ(x)+ ƒ(y)](1)21证明 ƒ在(a,b)内连续

分析 若想证明ƒ(x)在(a,b)内连续,由题设即证  x。∈(a,b),limƒ(x)= limƒ(x)= ƒ(x。)(2)x→x-。x→x+。

即可,在式(1)中先令某一变量为x。(这是想当然的,因为定要考察ƒ在x。处的情况,不妨设x=x。),则得

ƒ(x。y2)≤[ƒ(x。)+ ƒ(y)](3)

21如果y在x0的左侧,即y

y﹤即y与x。y2x。y2x。y2﹤x。

x。y2均在x。的左侧。如此,y →x-。时,→x-。亦成立。在式(3)中自然要想到令y →x-。,则得

limƒ()≤[ƒ(x。)+ limƒ(y)](4)y →x-。y →x-。令

A= limƒ(y)y →x-。

limƒ(x。y2)=A y →x-。则式(4)表明

A≤ƒ(x。)(5)

同样,若在式(3)中令y →x+。,则当记B=limƒ(y)时,便有不等式 y →x-。

B≤12ƒ(x。)+

21在式(1)中如果想办法令

2xyBB≤ƒ(x。)(6)

=x。,这样x。便成为x与y中间的点了,在式(1)中令xx。、yy。,便会得到另一个不等式,为此,不妨令x=x。-h,y=y。+h,h>0.则式(1)成为

ƒ(x。)≤[ƒ(x。-h)+ ƒ(x。+h)](7)

21令h0.则式(7)成为

ƒ(x。)≤联立式(5)、(6)、(8)便得

A=B= ƒ(x。)问题获证。

(二)、函数在一点的左(右)连续

1、函数ƒ(x)在点x。左连续, 满足三个条件:

12ƒ(A+B)(8)

(1)函数ƒ(x)在x。点点某领域Uˉ(x。,δ)=(x。-δ,x。)内有定义(2)limƒ(x)存在△x→x-。(3)limƒ(x)=ƒ(x。)△x→x-。

用增量形式表示左连续性:lim[ƒ(x。+△x)-ƒ(x。)]=lim△y=0 △x→0-△x→0-

2、函数ƒ(x)在点x。右连续, 满足三个条件:(1)函数ƒ(x)在x。点点某领域U+(x。+δ,x。)有定义(2)limƒ(x)存在△x→x+。(3)limƒ(x)=ƒ(x。)△x→x+。

用增量形式表示连续性:lim[ƒ(x。+△x)-ƒ(x。)]=lim△y=0 △x→0+ △x→0+ 分段函数是刻画左右连续的最好例证 例2 设

sin2x,xf(x)23x2xk,limx0,x0,问k为何值时,ƒ(x)在其定义域内事连续的? 解:当x。0时,xx。ƒ(x)= ƒ(x。),所以,在x0处,ƒ(x)是连续的。当x0时,由于ƒ(0)=k;且

limlim ƒ(x)= x0x0limx0f(x)limx0(3xsin2xx22;

2xk)k,所以,令k=2, 则ƒ(x)在x0处连续。

(三)、间断点及其分类

1、函数ƒ(x)在x。间断,必出现如下三种情形之一;

(1)ƒ(x)在x。点无定义(2)limƒ(x)不存在 x→x。

(3)ƒ(x)在x。点有定义,且limƒ(x)存在,但limƒ(x)≠ƒ(x。)x→x。x→x。

2、间断点分两类

(1)第一类间断点;函数在该点处的左、右极限都存在 ①可去间断点,limƒ(x)存在,但ƒ(x)在x。点间断 x→x。

②跳跃间断点,ƒ(x)在x。点的左右侧极限存在,但limƒ(x)≠limƒ(x)x→x+。x→x-。

(2)第二类间断点;函数ƒ在点x。的左右极限至少有一个不存在 ①振动间断点,如y=sin(x=0)②无穷间断点,如ƒ(x)=

xsinx1x

(x/sinx)(x=n)下面我们看一下关于这些的例题

0,f(x)3x1,2x3,x0,0x2, x2,例3 设函数求ƒ(x)的间断点和连续区间。

解:该分段函数在区间(-∞,0),(0,2),(2,+∞)内分别都是多项式函数,因此,如果该函数有间断点,其间断点只可能是分段点x=0,x=2.由于ƒ(0)=1, ƒ(2)=7, 且limƒ(x)=lim 0=0, limƒ(x)=lim(3x+1)=1, x→0-x→0-x→0+ x→0+ limƒ(x)=lim(3x+1)=7, limƒ(x)=lim(x3)=7 x→2-x→2-x→2+ x→2+ 所以,x= 0是ƒ(x)的跳跃间断点,x=2是ƒ(x)的连续点,其连续区间是(-∞,0)和(0,+∞)例4 求函数ƒ(x)=sinxsin

1x2的简断点,并说明这些间断点是哪类间断点。若是可

去间断点,则补充定义,使函数连续。

解:因为ƒ(x)在x=0处没有定义,所以x=0是ƒ(x)的间断点。因为lim sinxsin x→0 所以x=0是ƒ(x)的可去间断点,补充定义ƒ(0)=0,即令 ƒ1sinxsin,(x)=x0,x0,x0,1x=0

则ƒ(x)在x=0处连续。

数学分析名师导学(上册)《大学数学名师导学丛书》编写组 编 本册编写 杨万利 中国水利水电出版社 2005 P102~105

定理5.ƒ(x)在x。处连续的充分必要条件为ƒ(x)即为左连续,又为右连续 定义6.(函数在闭区间上连续)函数ƒ(x)在[a,b]上连续是指:对任意x。(a,b), ƒ(x)在x。处连续,且ƒ(x)在 a处右连续,在b处左连续。

性质8.若ƒ(x),g(x)在x。处连续且ƒ(x。)>g(x。),则在x。的领域U,使ƒ(x)﹥g(x),xU 性质9.连续函数的和、差、积、商(分母不为0)仍然连续

sinx例5 证明ƒ(x)={x,x0x0 在x=0处连续。

cosx,证 首先,ƒ(0)=cos0=1.当x>0时,ƒ(x)= sinxx1(x0)

5

又当x﹤0时,x2x20(x0)︳ƒ(x)-1︳=︳cosx-1︳=2sin故知limƒ(x)=1 x→x-。

222从而,ƒ(x)既为左连续又为右连续,即ƒ(x)在0处连续。

数学分析 龚怀云主编 刘跃武 陈红斌 向淑晃 西安交通大学出版社 2000 P52~53 二、二元函数的连续性

二元函数连续的定义:若f(M)在M。有定义,limƒ(M)存在,且二者相等,即

M→M。

limf(M)=f(M。)

M→M。

时,则称f(M)在点M。连续。

二元函数f(M)在点M。连续的“ε-δ”定义可叙述为: 任意的ε>0,存在δ>0时,r(M,M。)<δ时,有 |f(M)-f(M。)|<ε.(一)、若二元函数ƒ(x,y)定义在点集点集D上,点P(a,b)∈D,并且并且P(a,b)是是D的聚点,若

limxaybf(x,y)f(a,b)

则称二元函数f(x,y)在点P(a,b)连续。

二元函数f(x,y)在点P(a,b)连续的“ε-δ”定义可叙述为:limxaybf(x,y)f(a,b)

当且仅当任意的ε>0,存在δ>0时,使得任意的(x,y)∈D:|x-a|<δ, |y-b|<δ,恒有

|f(x,y)-f(a,b)|<ε.f(a,y)在y=b处连续,f(x,b)在x=a处连续。

(二)、若点集点集D的任意点都是D的聚点,并且 二元函数f(x,y)在任意一点一点P(x,y)∈D都连续,则称f(x.y)在D连续.(2)若二元函数f(x,y)在点P(a,b)不连续,则称点P(a,b)是二元函数的不连续点或间断点。

例6 设函数f(x,y)在域D内对变量x是连续的,并对变量y满足李卜希兹条件,即任意的(x,y'),(x,y“)D,有f(x,y')f(x,y”)Ly'y“,其中其中L是常数。证明:f(x,y)在D上连续。证明:任意的(x。,y。)D,由于f(x,y)对x连续,则f(x,y)在x。连续,任意的ε>0,存在1(x。,y。)>0,使得当|x-a|<δ1时,有|f(x,y)-f(x。,y。)|<ε/2.取2/(2L)0,则当yy。时,由条件有

f(x,y)f(x,y。)Lyy。L/(2L)/2。故取min1,2,则当xx。, yy。,且U((x。,y。),)D时,有,f(x,y)f(x。,y。)f(x,y)f(x,y。)f(x,y。)f(x。,y。)/2/2即知f(x,y)在点(x。,y。由(x。,y。)连续,)的任意性知,f(x,y)在D上连续。三、二元连续函数的四则运算定理和复合运算定理与一元函数的情形基本相似。

(一)若二元函数f(x,y)与g(x,y)在点P(a,b)处都是连续的,则二元函数f(x,y)g(x,y),f(x,y)g(x,y),f(x,y)g(x,y)(g(x,y)0)在点点P(a,b)也都连续。

(二)若二元函数u(x,y),v(x,y)在点点P(a,b)连续,并且二元函数f(u,v)在点(,)((a,b),(a,b))连续,则复合函数f((x,y),(x,y))在点连续P(a,b)连续.二元连续函数经过有限次的四则运算和复合运算所得到的函数仍是连续的二元函数。若一元函数zf(x)在区间(a,b)连续,将它看作是二元函数函数zf(x)在区域D(x,y)x(a,b),yR也是连zf(x,y)f(x)时,续的。

数学分析(下册)主编 朱培勇 黄家琳 副主编 张利平唐再良 陈顺清 曾意 王良成 四川大学出版社 2002、8 P53∽P54

四、可导与连续的关系

可导必连续,连续不一定可导。

函数ƒ(x)在x= x。处连续,仅仅是函数ƒ(x)在x= x。处可导弹必要条件,而不是充分条件。

ƒ(x。+△x)-ƒ(x。)lim△y= lim[ƒ(x。+△x)-ƒ(x。)]= lim——————————· △x △x→0 △x→0 △x→0 △x = ƒ′(x。)·0=0

所以ƒ(x)在x。处可导。

单侧倒数

由于倒数的定义是借助于极限来给出的,则由单侧极限的概念出发

lim、x)f(x。)f(x。f(x。),右导数,x0x lim、x)f(x。)f(x。f(x。),左导数。x0x、、、f(x。)存在f(x。)f(x。)

分段函数是解释、处理单侧倒数的较好模型。

函数ƒ(x)在点x。可导,则ƒ(x)在x。点连续,一般有、f(x。)存在f、(x。)存在ƒ(x)在点x。点右连续

ƒ(x)在x。点左连续

称ƒ(x)在[a,b]上可导,是指x。∈(a,b),ƒ(x)在x。可导,且x。=a或b时,ƒ(x)在x。的右、左导数存在。

例6 讨论分段函数ƒ

x,x0;(x)=︱x︱=在分界点x= 0

x,x0.处的连续性与可导性。

解:先讨论ƒ(x)在x= 0处的连续性,由于

左极限:limƒ(x)=lim(-x)=0=右极限:limƒ(x)=lim(+x),x→0-x→0-x→0+ x→0+

所以,极限值limƒ(x)==0=函数值ƒ(0),因此分段函数ƒ(x)=︱x︱在 x→0

分段点x= 0处是连续的。

再讨论ƒ(x)在x= 0处的可导性,在x。=0处左极限值

limlim、f(0x)f(0)(0x)01 f(x。)x0x0xx在x。=0处右极限值

limlim、f(0x)f(0)(0x)01 f(x。)x0x0xx分段函数ƒ(x)=︱x︱在分段点x= 0处是不可导的

所以,可导一定连续,连续不一定可导。

数学分析名师导学(上册)《大学数学名师导学丛书》编写组 编 本册编写 杨万利 中国水利水电出版社 2005 P129~130 P132

五、可微、偏导数与连续之间的关系

偏导数的定义: 设函数f(x,y)定义在D上,若(x。,y。)D,且f(x,y)在x。的某领域内有定义,则称极限(x。,y。)关于x

limx0f(x。x,y。)f(x。,y。)x(x。,y。)或x为函数f(x,y)在点 的偏导数,记作ffx.xx。类似地,定义极限

limy0f(x。,y。y)f(x。,y。)y

为函数f(x,y)在点(x。,y。)关于y的偏导数.若函数f(x,y)在D上每一点(x,y)都存在关于x(或y)的偏导函数,记作

fx(x,y),fy(x,y);fxy,f;简记为fx,z.x9

设u但fxf(x,y),fx(x,y)存在f(x,y)在(x,y)点关于x连续

点关于(x,y)连续。(x,y),fy(x,y)都存在,不能推出f(x,y)在(x,y)22例7 xy2xyf(x,y)0,,2xy0

xy220x0limf(0x,0)f(0,0)x000解:fx(0,0)limy0xylimx0x2x.fy(0,0)'xf(0,y0)f(0,0)'y20.f(0,0)f(0,0)0 y2y12limf(x,y)limxyy0y02

limf(x,y)x0y0不存在

所以f(x,y)在o(0,0)不连续.函数f(x,y)在点P。(x。,y。)连续,则z=f(x,y)在点P。(x。,y。)的偏导数不一定存在。反之,函数f(x,y)在点P。(x。,y。)的偏导数存在也不能确定函数f(x,y)在点P。(x。,y。)连续。

对于二元函数来说,偏导数存在不一定连续,而连续函数也不一定有偏导数,这与一元函数的情形(可导必连续)有些不同。

函数在一点可微,则在该点也一定存在偏导数。可微必连续,连续不一定可微。10

定理 若fx(x,y)及fy(x,y)在点(x,y及其某一领域内存在,且在这一点他们连续,则函数在zf(x,y)該点可微。

若函数f(x,y)在点P。(x。,y。)可微,则f(x,y)在点(x。,y。)的偏导数必存在,因为f(x,y)在点(x。,y。)偏导数存在是f(x,y)在点P。(x。,y。)可微的必要条件,且df(x。,y。)fx(x。,y。)dxfy(x。,y。)dy.但反过来不一定成立。

若函数f(x,y)在点P。(x。,y。)的某领域内偏导数存在,且导数在点P。(x。,y。)连续,则哈、函数在点P。(x。,y。)可微。但偏导数在点P。(x。,y。)连续不是函数可微的必要条件。

二元函数f(x,y)在点(x。,y。)的可微、连续、极限与偏导数存在之间有如下关系:

偏导数存在极限存在连续 偏导数连续

可微

函数在一点可微,则在该点也一定存在偏导数。二元函数的不连续点函数仍可能可微。偏导数连续是可微的充分条件,而不是充要条件。f(x,y)0,(x22y)sinx12y2,x2y20,例8

x2y20,讨论f(x,y)在点(0,0):(1)偏导数是否存在;(2)偏导数是否连续;(3)是否可微。解:(1)由定义知

f(0,0)limx0limy0f(x,0)f(0,0)xlimx02limy011

xsin(1x)x20,22x

0,fy(0,0)f(0,y)f(0,0)yysin(1y)y

所以f(x,y)在点(0,0)偏导数存在。

(2)因为当xy0时,f(x,y)偏导数存在,故

12xsin2fxyx0,12ysin2fxyy0,1,x2y22221x2cos22y20,yx2

xy20,21x2cos2yx21,x2y22y20,xy20,limfxlimfy而x0y0与x0y0不存在,故偏导数在点(0,0)不连续。

221,(3)z(x)(y)sin22(x)(y)zflim0(0,0)xfx2(0,0)yy2lim0sin10,2(x)(y)所以f(x,y)在点(0,0)可微,且全微分dz=0.数学分析(下册)主编 朱培勇 黄家琳 副主编 张利平唐再良 陈顺清 曾意 王良成 四川大学出版社 2002、8 P57∽P59,P63∽P65 数学分析 内容、方法与技巧(下)孙清华 孙昊 华中科技大学出版社 2003、11 P259∽264

六、可积与连续的之间内的关系

定理1.1如果函数f(x)在区间I上连续,那么在区间I上一定存在可导函数F(x),使对任一xI,都有F'(x)f(x).即连续函数一定存在原函数。

定积分存在的第二充要条件可以证明若有界函数f(x)在[a,b] 内具有无穷多个不连续点,但这些不连续点存在一个极限点,那么f(x)在[a,b]上可积。(1)[a,b]上的连续函数在[a,b]上必可积。

证明:在闭区间上连续的函数必定是一致连续的,所以对任意的ε>0,存在δ>0,对于[a,b]上任意两点x',x”,只要x'x“,就有f(x')f(x”)一分法ax。xxx12n1ba。只要对[a,b]的任,在每一个部分区

xnmaxb满足xii间x,x(i1,2,3,,n)上ii1niba。所以ssxi1iiba(ba)这就证明了连续函数一定可积。

(2)只有有限个第一类不连续点点函数是可积的,即分段连续函数是可积的。

定理

1、(积分第一中值定理)若f(x)在[a,b]上连续,g(x)在[a,b]上不变号,且在[a,b]上可积,则在[a,b]中存在一点,使 baf(x)g(x)dxf()g(x)dx。

ab定理

2、设f(x)在[a,b]上可积,作函数F(x)xa则F(x)是[a,b]上的f(t)dt(axb),连续函数。

证明:设x是[a,b]上任一点,由于f(x)在[a,b]上可积,所以f(x)有界,设f(x)M(M为常数),于是 F(xx)F(x)xxxxxxxaf(t)dtaf(t)dtxf(t)dtxf(t)dtMx,从而当x0时,F(xx)F(x)0,这就证明了F(x)的连续性。

例9 设f(x)在[a,b]连续,f(x)f(x)0,f(x)不恒为零,求证:f(x)dx0。

ab[a,b], 证明:f(x)0,f(x)不恒为零,x。f(x)在x。点连续,s.tf(x)0,12对。f(x。),0。

当x[x。,x。]时,有f(x)f(x。)。f(x)于是12f(x。),12bf(x。)f(x)dxax。af(x)dxx。x。f(x)dxbx。f(x)dx0x。xf(x)dxx。12x。f(x。)dxf(x。)当x。a时,闭区间[a,a].当x。b时,闭区间[b,b].结论成立

注;去掉连续性,结论未必成立。定理1 若f(x)在[a,b]上连续,则函数G(x)G'(x)f(x)。

xaf(t)dt必在[a,b]上可导,且基本公式 设f(x)在[a,b]上连续,F(x)是f(x)的任意一个原函数,即F'(x)f(x),那么f(x)dxF(b)F(a)。

ab定理2 设f(x)在[a,b]上连续,作代换x(t),其中(t)在闭区间[α,β]上有连续导数'(t),当t时,a(t)b,且()a,()b,则f(x)dxabf[(t)]'(t)dt。

定理12.1.1 若函数

f(x,y)在有界闭区域D连续,则f(x,y)在D可积(即f(x,y)在D内二重积分存在)。

定理12.1.9 若函数f(x,y)在有界闭区域D连续,则至少存在一点

(,)D,使得Df(x,y)df(,)D,其中,D是区域D的面积。

定理12.2.1若f(x,y)在D=[a,b]x[c,d]连续,则

Df(x,y)dxdybadxf(x,y)dy。

cd若f(x,y)在D=[a,b]x[c,d]连续,则

Df(x,y)dxdydcdyf(x,y)dx。

ab

这个定理证明;二重积分可化成两个定积分来进行计算。

定理12.2.2 若f(x,y)在D(x,y)y(x)yy(x),axb12y(x),y(x)在[a,b]连续,则

12连

Df(x,y)dxdybadxy(x)2y(x)1f(x,y)dy。形如D的区域称为x形区域。

若f(x,y)在D(x,y)x(x)xx(x),cyd连12 x(x),x(x)在[c,d]连续,则f(x,y)dxdy12Ddcdyx(x)2f(x,y)dxx(x)1。形如D的区域称为x形区域。

数学分析(下册)主编 朱培勇 黄家琳 副主编 张利平唐再良 陈顺清 曾意 王良成 四川大学出版社 2002、8 P105∽P108 数学分析(上册)第三版 复旦大学数学系 欧阳光中 朱学炎 金福临 陈传璋编 高等教育出版社 2007、4 P296 P303∽P304 P306∽P307 P312∽P313

总结

综上所述,一元函数的连续性与二元函数的连续性虽有相同,但也有不同,二者相比可知,一元函数连续与极限、导数和微分都有一定的联系,二元函数与之也有些联系,从定义出发,若无极限就没有函数的连续,也无导数、微分,从定理、性质来看,没有函数的连续也就没有导数微分的存在,与一元函数不同的是二元函数与偏导数之间的关系,函数连续偏导数不一定存在,偏导数存在不一定连续,相同的也有连续可积,可积不一定连续。关于极限的性质和运算法则以及连续函数的运算法则,二元函数与一元函数的情形是完全相似的,并且其证明也大体相同,只要把一元函数中的0xx。改为M。点的圆领域或正方形领域即可。又由连续函数的运算法则和基本初等函数的连续性也可找到多元函数的不连续点。二重积分和定积分一样,在一定区域连续,则在这个区域就可积。但也有不同,定积分中积分区域是数轴上的区间,被积函数是一元函数,而二重积分中的积分区域是平面区域,被积函数是二元函数。

参考文献

[1] 数学分析习题集解,吉米多维奇原著,费定晖等编著,山东大学出版社,2005.[2] 论如何加强数学人才在求职中的优势,杨汉春,张 庆,高等理科教育,No.4(2003):22-26.[1]数学分析名师导学(上)《大学数学名师导学丛书》编写组 编 本册编写 杨万利 中国水利水电出版社 2005 [2] 数学分析 龚怀云主编 刘跃武 陈红斌 向淑晃 西安交通大学出版社 2000 [3]高等数学(全一册)高等数学练习册(全一册)教育部普通高等学校少数民族预科教材编写委员会 编 国家行政学院出版社 红旗出版社

[4]数学分析(下册)主编 朱培勇 黄家琳 副主编 张利平唐再良 陈顺清 曾意 王良成 四川大学出版社 2002、8 P53∽P54 [5]数学分析(下册)主编 朱培勇 黄家琳 副主编 张利平唐再良 陈顺清 曾意 王良成 四川大学出版社 2002、8 P57∽P59,P63∽P65 [6]数学分析 内容、方法与技巧(下)孙清华 孙昊 华中科技大学出版社 2003、11 P259∽264 [7]数学分析(下册)主编 朱培勇 黄家琳 副主编 张利平唐再良 陈顺清 曾意 王良成 四川大学出版社 2002、8 P105∽P108 [8]数学分析(上册)第三版 复旦大学数学系 欧阳光中 朱学炎 金福临 陈传璋编 高等教育出版社 2007、4 P296 P303∽P304 P306∽P307 P312∽P313

下载2011数学分析报告word格式文档
下载2011数学分析报告.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数学分析教案

    《数学分析Ⅲ》教案编写目录(1—16周,96学时) 课时教学计划(教案21-1) 课题:§21-1二重积分的概念 一、教学目的: 1.理解二重积分的概念,其中包括二重积分的定义、几何意义和存在性。......

    2013数学分析考点

    数学分析(2)期终考点 一、不作考试要求的知识点: 近似计算、应用问题、带*号的内容、第十、十五章。 二、考试题型: 选择题、填空题、判断题、计算题、证明题。 三、考试知识点:......

    四年级数学分析

    新寨小学2016学年一年级下学期数学期末试卷分析 袁昌荣 本次期末测试主要是一年级下册教材全部内容,出题主要依据《课标》的基本理念和所规定的教学内容为依据,努力体现数学的......

    数学分析 教案

    第九章空间解析几何 教学目标: 1.理解空间直角坐标系的概念,掌握两点间的距离公式. 2.理解向量的概念、向量的模、单位向量、零向量与向量的方向角、方向余弦概念. 3.理解向量......

    数学分析3

    数学分析3第十六章 多元函数的极限和连续一、本章重难点1、 本章重点:(1)开集,闭集;(2)R2上的完备定理;(3)多元函数的定义,重极限和二次极限,多元函数的连续及性质。2、 本章难点:(1)R2上的......

    数学分析试题库

    数学分析(三)试题(第1套)一、填空题(每小题3分,共15分) f(x,y)x2y21函数2曲面:z21ln(x2y2)的定义域为(). x2y2在点M(3,4,5)处的切平面方程是().3D{(x,y,z)|0x,y,z1},则(x2y3z)dxdydz=D( ).4设f(x,y)是......

    《数学分析》教案

    《数学分析》教案 S F 01 ( 数 ) C h0 数学分析课程简介 C h 1 实数集与函数计划课时: Ch 0 2时Ch 1 6时 P 1—8 说 明: 1.这是给数学系2001届学生讲授《数学分析》课编......

    数学分析学习心得

    数学分析学习心得 数学分析是数学中最重要的一门基础课,是几乎所有后继课程的基础,在培养具有良好素养的数学及其应用方面起着特别重要的作用。从近代微积分思想的产生、发展......