第一篇:2018考研数学线性代数六大必考知识点
凯程考研辅导班,中国最权威的考研辅导机构
2018考研数学线性代数六大必考知识点
一、行列式部分,强化概念性质,熟练行列式的求法
行列式对应的是一个数值,是一个实数,明确这一点可以帮助我们检查一些疏漏的低级错误;行列式的计算方法中常用的是定义法,比较重要的是加边法,数学归纳法,降阶法,利用行列式的性质对行列式进行恒等变形,化简之后再按行或列展开。另外范德蒙行列式也是需要掌握的;行列式的考查方式分为低阶的数字型矩阵和高阶抽象行列式的计算、含参数的行列式的计算等。
二、矩阵部分,重视矩阵运算,掌握矩阵秩的应用
通过历年真题分类统计与考点分布,矩阵部分的重点考点集中在逆矩阵、伴随矩阵及矩阵方程,其内容包括伴随矩阵的定义、性质、行列式、逆矩阵、秩,在课堂辅导的时候会重点强调.此外,伴随矩阵的矩阵方程以及矩阵与行列式的结合也是需要同学们熟练掌握的细节。涉及秩的应用,包含矩阵的秩与向量组的秩之间的关系,矩阵等价与向量组等价,对矩阵的秩与方程组的解之间关系的分析,备考需要在理解概念的基础上,系统地进行归纳总结,并做习题加以巩固。
三、向量部分,理解相关无关概念,灵活进行判定
向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。如何掌握这部分内容呢?首先在于对定义概念的理解,然后就是分析判定的重点,即:看是否存在一组全为零的或者有非零解的实数对。基础线性相关问题也会涉及类似的题型:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。
四、线性方程组部分,判断解的个数,明确通解的求解思路
线性方程组解的情况,主要涵盖了齐次线性方程组有非零解、非齐次线性方程组解的判定及解的结构、齐次线性方程组基础解系的求解与证明以及带参数的线性方程组的解的情况。为了使考生牢固掌握线性方程组的求解问题,博研堂专家对含参数的方程通解的求解思路进行了整理,希望对考研同学有所帮助。通解的求法有两种,若为齐次线性方程组,首先求解方程组的矩阵对应的行列式的值,在特征值为零和不为零的情况下分别进行讨论,为零说明有解,带入增广矩阵化简整理;不为零则有唯一解直接求出即可。若为非齐次方程组,则按照对增广矩阵的讨论进行求解。
五、矩阵的特征值与特征向量部分,理解概念方法,掌握矩阵对角化的求解
矩阵的特征值、特征向量部分可划分为三给我板块:特征值和特征向量的概念及计算、凯程考研辅导班,中国最权威的考研辅导机构
方阵的相似对角化、实对称矩阵的正交相似对角化。相关题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、有关实对称矩阵的问题。六、二次型部分,熟悉正定矩阵的判别,了解规范性和惯性定理
二次型矩阵是二次型问题的一个基础,且大部分都可以转化为它的实对称矩阵的问题来处理。另外二次型及其矩阵表示,二次型的秩和标准形等概念、二次型的规范形和惯性定理也是填空选择题中的不可或缺的部分,二次型的标准化与矩阵对角化紧密相连,要会用配方法、正交变换化二次型为标准形;掌握二次型正定性的判别方法等等。
页 共 2 页
第二篇:考研数学必考题型
进了六月份,这个一年中最热的季节,考研备考者的复习也进行得如火如荼。虽然天气炎热,虽然备考压力巨大,但复习中一定要保持清楚的头脑,特别对于考研数学的复习。数学不仅需要严密的逻辑思维,还需要灵活的处理手法,更需要善于总结的习惯。考研数学专业老师分析了近年考试真题与大纲,深入研究了硕士教育对于考生数学素养的要求,总结出2012考研高等数学考试会重点考查的六大题型,供备考者复习参考。
第一:求极限。
无论数学
一、数学二还是数学三,求极限是高等数学的基本要求,所以也是每年必考的内容。区别在于有时以4分小题形式出现,题目简单;有时以大题出现,需要使用的方法综合性强。比如大题可能需要用到等价无穷小代换、泰勒展开式、洛比达法则、分离因子、重要极限等中的几种方法,有时考生需要选择其中简单易行的组合完成题目。另外,分段函数个别点处的导数,函数图形的渐近线,以极限形式定义的函数的连续性、可导性的研究等也需要使用极限手段达到目的,须引起注意!
第二:利用中值定理证明等式或不等式,利用函数单调性证明不等式。
证明题虽不能说每年一定考,但也基本上十年有九年都会涉及。等式的证明包括使用4个微分中值定理,1个积分中值定理;
不等式的证明有时既可使用中值定理,也可使用函数单调性。这里泰勒中值定理的使用是一个难点,但考查的概率不大。第三:一元函数求导数,多元函数求偏导数。
求导数问题主要考查基本公式及运算能力,当然也包括对函数关系的处理能力。一元函数求导可能会以参数方程求导、变限积分求导或应用问题中涉及求导,甚或高阶导数;多元函数(主要为二元函数)的偏导数基本上每年都会考查,给出的函数可能是较为复杂的显函数,也可能是隐函数(包括方程组确定的隐函数)。另外,二元函数的极值与条件极值与实际问题联系极其紧密,是一个考查重点。极值的充分条件、必要条件均涉及二元函数的偏导数。
第四:级数问题。
常数项级数(特别是正项级数、交错级数)敛散性的判别,条件收敛与绝对收敛的本质含义均是考查的重点,但常常以小题形式出现。函数项级数(幂级数,对数一来说还有傅里叶级数,但考查的频率不高)的收敛半径、收敛区间、收敛域、和函数等及函数在一点的幂级数展开在考试中常占有较高的分值。第五:积分的计算。
积分的计算包括不定积分、定积分、反常积分的计算,以及二重积分的计算,对数学考生来说常主要是三重积分、曲线积分、曲面积分的计算。这是以考查运算能力与处理问题的技巧能力为主,以对公式的熟悉及空间想像能力的考查为辅的。需要注意在复习中对一些问题的灵活处理,例如定积分几何意义的使用,重心、形心公式的反用,对称性的使用等。
第六:微分方程问题。
解常微分方程方法固定,无论是一阶线性方程、可分离变量方程、齐次方程还是高阶常系数齐次与非齐次方程,只要记住常用形式,注意运算准确性,在考场上正确运算都没有问题。但这里需要注意:研究生考试对微分方程的考查常有一种反向方式,即平常给出方程求通解或特解,现在给出通解或特解求方程。这需要考生对方程与其通解、特解之间的关系熟练掌握。
这六大题型可以说是考试的重点考查对象,考生可以根据自己的实际情况围绕重点题型复习,争取达到高分甚至满分!
第三篇:《线性代数》知识点归纳整理
《线性代数》知识点
归纳整理
学生
编
01、余子式与代数余子式
02、主对角线
03、转置行列式
04、行列式的性质
05、计算行列式
06、矩阵中未写出的元素
07、几类特殊的方阵
08、矩阵的运算规则
09、矩阵多项式
10、对称矩阵
11、矩阵的分块
12、矩阵的初等变换
13、矩阵等价
14、初等矩阵
15、行阶梯形矩阵
与
行最简形矩阵
16、逆矩阵
17、充分性与必要性的证明题
18、伴随矩阵
19、矩阵的标准形:
20、矩阵的秩:
21、矩阵的秩的一些定理、推论
22、线性方程组概念
23、齐次线性方程组与非齐次线性方程组(不含向量)
24、行向量、列向量、零向量、负向量的概念
25、线性方程组的向量形式
26、线性相关
与
线性无关的概念
27、向量个数大于向量维数的向量组
必然线性相关
28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩
这三者的关系及其例题
29、线性表示
与
线性组合的概念
30、线性表示;非齐次线性方程组的解;矩阵的秩
这三者的关系其例题
31、线性相关(无关)与线性表示的3个定理
32、最大线性无关组与向量组的秩
33、线性方程组解的结构
01、余子式与代数余子式
(1)设三阶行列式D=,则
①元素,的余子式分别为:M11=,M12=,M13=
对M11的解释:划掉第1行、第1列,剩下的就是一个二阶行列式,这个
行列式即元素的余子式M11。其他元素的余子式以此类推。
②元素,的代数余子式分别为:A11=(-1)1+1M11,A12=(-1)1+2M12,A13=(-1)1+3M13
.对Aij的解释(i表示第i行,j表示第j列):Aij=(-1)i+j
M
ij
.(N阶行列式以此类推)
(2)填空题求余子式和代数余子式时,最好写原式。比如说,作业P1第1题:
M31=,A31=(-1)3+1
(3)例题:课本P8、课本P21-27、作业P1第1题、作业P1第3题
02、主对角线
一个n阶方阵的主对角线,是所有第k行第k列元素的全体,k=1,2,3…
n,即从左上到右下的一条斜线。与之相对应的称为副对角线或次对角线,即从右上到左下的一条斜线。
03、转置行列式
即元素与元素的位置对调(i表示第i行,j表示第j列),比如说,与的位置对调、与的位置对调。
04、行列式的性质
详见课本P5-8(性质1.1.1~
1.1.7)
其中,性质1.1.7可以归纳为这个:
++
…
+
(i表示第i行,k表示第k列)
熟练掌握行列式的性质,可以迅速的简化行列式,方便计算。
例题:作业P1第2题
05、计算行列式
(1)计算二阶行列式:
①方法(首选):=(即,左上角×右下角-右上角×左下角)
②方法:==
例题:课本P14
(2)计算三阶行列式:
==(-1)1+1M11
+(-1)1+2M12
+(-1)1+3M13
N阶行列式的计算以此类推。通常先利用行列式的性质对行列式进行转化,0元素较多时方便计算.(r是row,即行。c是column,即列)
例题:课本P5、课本P9、课本P14、作业P1第4题、作业P2第3小题
(3)n阶上三角行列式(0元素全在左下角)与n阶下三角行列式(0元素全在右上角):
D=…(主对角线上元素的乘积)
例题:课本P10、作业P3第4小题
有的题可以通过“从第二行起,将各行的元素对应加到第一行”转化成上三角行列式
例题:课本P11
(4)范德蒙行列式:详见课本P12-13
(5)有的题可以通过“从第二行起,将各行的元素对应加到第一行”提取出“公因式”,得到
元素全为1的一行,方便化简行列式。
例题:作业P2第1小题、作业P2第2小题
06、矩阵中未写出的元素
课本P48下面有注明,矩阵中未写出的元素都为007、几类特殊的方阵
详见课本P30-32
(1)上(下)三角矩阵:类似上(下)三角行列式
(2)对角矩阵:除了主对角线上的元素外,其他元素都为0
(3)数量矩阵:主对角线上的元素都相同
(4)零矩阵:所有元素都为0,记作O
(5)单位矩阵:主对角线上的元素都为1,其他元素全为0,记作E或En
(其行列式的值为1)
08、矩阵的运算规则
(1)矩阵的加法(同型的矩阵才能相加减,同型,即矩阵A的行数与矩阵B的行数相同;
矩阵A的列数与矩阵B的列数也相同):
①课本P32“A+B”、“A-B”
②加法交换律:A+B=B+A
③加法结合律:A+(B+C)=(A+B)+C
(2)矩阵的乘法(基本规则详见课本P34阴影):
①数与矩阵的乘法:
I.课本P33“kA”
II.=kn(因为k只等于用数k乘以矩阵A的一行或一列后得到的矩阵的行列式)
②同阶矩阵相乘(高中理科数学选修矩阵基础):
×=
描述:令左边的矩阵为①,令右边的矩阵为②,令计算得到的矩阵为,则
A的值为:①中第1行的每个元素分别乘以②中第1列的每个元素,并将它们相加。
即A=×+×
B的值为:①中第1行的每个元素分别乘以②中第2列的每个元素,并将它们相加。
即B=×+×
C的值为:①中第2行的每个元素分别乘以②中第1列的每个元素,并将它们相加。
即C=×+×
D的值为:①中第2行的每个元素分别乘以②中第2列的每个元素,并将它们相加。
即D=×+×.×=
描述:令左边的矩阵为①,令右边的矩阵为②,令计算得到的矩阵为,则
A的值为:①中第1行的每个元素分别乘以②中第1列的每个元素,并将它们相加。
即A=×+×+×
B、C、D、E、F、G、H、I的值的求法与A类似。
③数乘结合律:k(lA)=(kl)A,(kA)B=A(kB)=k(AB)
④数乘分配律:(k+l)A=kA+lA,k(A+B)=kA+kB
⑤乘法结合律:(AB)C=A(BC)
⑥乘法分配律:A(B+C)=AB+AC,(A+B)C=AC+BC
⑦需注意的:
I.课本P34例题两个不等于零的矩阵的乘积可以是零矩阵
II.课本P34例题数乘的消去律、交换律不成立
III.一般来讲,(AB)k
≠
A
k
B
k,因为矩阵乘法不满足交换律
IV.课本P40习题第2题:(A+B)2不一定等于A2+2AB+B2,(A+B)2不一定等于A2+2AB+B2,(A+B)(A-B)不一定等于A2-B2
.当AB=BA时,以上三个等式均成立
(3)矩阵的转置运算规律:
①
(AT)T=A
②
(A±B)T=A
T±B
T
③
(kA)T=kAT
④
(AB)T=B
TAT
⑤
(ABC)T=CTB
TAT
⑥
(ABCD)T=DTCTB
TAT
(4)同阶方阵相乘所得的方阵的行列式等于两个方阵的行列式的乘积:(详见课本P46)
=
(5)例题:课本P35、课本P36-37、课本P40第4大题、课本P40第5大题、课本P51第1
大题、课本P51第4大题、课本P60第4大题、作业P5全部、作业P5第3大题、作业
P5第4大题
09、矩阵多项式
详见课本P3610、对称矩阵
(1)对称矩阵、实对称矩阵、反对称矩阵的概念(详见课本P37)
(2)①同阶对称(反对称)矩阵的和、差仍是对称(反对称)矩阵
②数
与
对称(反对称)矩阵的乘积仍是对称(反对称)矩阵
③对称(反对称)矩阵的乘积不一定是对称(反对称)矩阵
11、矩阵的分块
线代老师说这部分的内容做了解即可。
详见课本P38-4012、矩阵的初等变换
三种行变换与三种列变换:详见课本P
例题:作业P6全部
13、矩阵等价
若矩阵A经过若干次初等变换后变成矩阵B,则称矩阵A与矩阵B等价,记为AB14、初等矩阵
(1)是由单位矩阵经由一次初等变换而得到的矩阵。详见课本P48-49
(2)设A为m×n矩阵,则对A施行一次初等行变换相当于在A的左边乘上一个相应的m阶初等矩阵;A施行一次初等列变换相当于在A的右边乘上一个相应的n阶初等矩阵.详见课本P50-51
(3)课本P51第3大题
15、行阶梯形矩阵
与
行最简形矩阵
(1)对任意一个非零矩阵,都可以通过若干次初等行变换(或对换列)化为行阶梯型矩阵
(2)行阶梯形矩阵与行最简形矩阵:
若在矩阵中可画出一条阶梯线,线的下方全为0,每个台阶只有一行(台阶数即是非零行的行数),阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元素,也就是非零行的第一个非零元素,则称该矩阵为行阶梯矩阵。在此基础上,若非零行的第一个非零元素为都为1,且这些非零元素所在的列的其他元素都为0,则称该矩阵为行最简形矩阵。例题:课本P45、作业P6全部、课本P51第2大题
16、逆矩阵
(1)设A为n阶方阵,如果存在n阶方阵B,使得AB=BA=E,则称方阵A是可逆的,并称B为A的逆矩阵.(由逆矩阵的定义可知,非方阵的矩阵不存在逆矩阵)
(2)如果方阵A可逆,则A的逆矩阵是唯一的,并将A的逆矩阵记作A-1,AA-1=E
(3)n阶方阵A可逆的充要条件为≠0,并且,当A可逆时,A-1=
(证明详见课本P54)
例题:课本P59第1大题
(4)可逆矩阵也称为非奇异方阵(否则称为奇异方阵)
(5)性质:设A,B都是n阶的可逆方阵,常数k≠0,那么
①
(A-1)-1=A
②
AT也可逆,并且(AT)-1=(A-1)T
③
kA也可逆,并且
(kA)-1=A-1
④
AB也可逆,并且(AB)
-1=B-1A-1
⑤
A+B不一定可逆,而且即使A+B可逆,一般(A+B)-1≠A-1+B-1
⑥
AA-1=E
AA-1=E=1
AA-1=1
A-1=
例题:课本P58例2.3.7、作业P7第1题
(6)分块对角矩阵的可逆性:课本P57
(7)由方阵等式求逆矩阵:课本P58例2.3.6
(8)单位矩阵、所有初等矩阵都是可逆的(初等矩阵是由单位矩阵经由一次初等变换而得到的,即初等矩阵可以通过初等变换再变回单位矩阵,而单位矩阵的行列式=1≠0可逆,所
以初等矩阵可逆)
(9)初等矩阵的逆矩阵也是初等矩阵
(10)任一可逆方阵都可以通过若干次初等行变换化成单位矩阵
(11)方阵A可逆的充要条件是:A可以表示为若干个初等矩阵的乘积(证明:课本P67)
(12)利用初等行变换求逆矩阵:A-1(例题:课本P68、课本P71)
(13)形如AX=B的矩阵方程,当方阵A可逆时,有A-1
AX=A-1B,即X=A-1B.此时有:
矩阵方程的例题:课本P35、课本P69、课本P41第6大题、课本P56、课本P58、课本P59第3大题、课本P60第5大题、课本P60第7大题、课本P71第3大题
矩阵方程计算中易犯的错误:课本P56“注意不能写成……”
17、充分性与必要性的证明题
(1)必要性:由结论推出条件
(2)充分性:由条件推出结论
例题:课本P41第8大题、作业P5第5大题
18、伴随矩阵
(1)定义:课本P52
定义2.3.2
(2)设A为n阶方阵(n≥2),则AA*=A*A=En(证明详见课本P53-54)
(3)性质:(注意伴随矩阵是方阵)
①
A*=A-1
②
(kA)*
=
·(kA)-1
=
k
n·A-1
=
k
n
·A-1
=
k
n-1A*(k≠0)
③
|A*|
=
|
A-1
|
=n·|
A-1|
=
n·(因为存在A-1,所以≠0)=
n-1
④
(A*)*
=
(A-1)*
=
|
A-1
|·(A-1)-1
=
n
|
A-1|·(A-1)-1
=
n·A
=
n-2A
(因为AA-1
=
E,所以A-1的逆矩阵是A,即(A-1)-1)
⑤
(AB)
*=B*A*
⑥
(A*)-1=(A-1)
*=
(4)例题:课本P53、课本P55、课本P58、课本P60第6大题、作业P7第2题、作业P8全部
19、矩阵的标准形:
(1)定义:课本P61-62
(2)任何一个非零矩阵都可以通过若干次初等变换化成标准形
20、矩阵的秩:
(1)定义:课本P63
(2)性质:设A是m×n的矩阵,B是p×q的矩阵,则
①
若k是非零数,则R
(kA)=R
(A)
②
R
(A)=R
(AT)
③
等价矩阵有相同的秩,即若AB,则R
(A)=R
(B)
④
0≤R
(Am×n)≤min
⑤
R
(AB)≤min
⑥
设A与B都是m×n矩阵,则R
(A+B)≤R
(A)+R
(B)
(3)n阶方阵A可逆的充要条件是:A的秩等于其阶数,即R
(A)=n
(4)方阵A可逆的充要条件是:A可以表示为若干个初等矩阵的乘积。(证明:P67)
(5)
设A是m×n矩阵,P、Q分别是m阶与n阶可逆方阵,则R
(A)=R
(PA)=R
(AQ)=R
(PAQ)
(6)例题:课本P64、课本P66、课本P71、作业P7第3题、作业P9全部
21、矩阵的秩的一些定理、推论
线代老师说这部分的内容做了解即可。详见课本P7022、线性方程组概念
线性方程组是各个方程关于未知量均为一次的方程组。
线性方程组经过初等变换后不改变方程组的解。
23、齐次线性方程组与非齐次线性方程组(不含向量)
(1)定义:课本P81
(2)方程组的解集、方程组的通解、同解方程组:课本P81
(3)系数矩阵A、增广矩阵、矩阵式方程:课本P82
(4)矛盾方程组(方程组无解):课本P85例题
(5)增广矩阵的最简阶梯形:课本P87
(6)系数矩阵的最简阶梯形:课本P87
(7)课本P87下面有注明:交换列只是交换两个未知量的位置,不改变方程组的解。为了方
便叙述,在解方程组时不用交换列。
(8)克莱姆法则:
①初步认知:
已知三元线性方程组,其系数行列式D=.当D≠0时,其解为:x1=,x2=,x3=.(其中D1=,D2=,D3=)(Dn以此类推)
②定义:课本P15
③使用的两个前提条件:课本P18
④例题:课本P3、课本P16-17、课本P18、作业P3第7题
(9)解非齐次线性方程组(方程组施行初等变换实际上就是对增广矩阵施行初等行变换)例题:
课本P26、课本P42、课本P82、课本P84、课本P85、课本P86第1大题、课本P88、课本P91、作业P10第1题
(10)解齐次线性方程组例题:课本P17、课本P18、课本P85、课本P86、课本P90、课本
P91、作业P1第5题、作业P10第2题
(11)n元非齐次线性方程组AX=b的解的情况:(R
(A)
不可能>
R
())
R
(A)
<
R
()
无解
<
n
有无穷多个解
R
(A)
=
R
()
有解
=
n
有唯一解
特别地,当A是
≠0
有唯一解
n阶方阵时,可
R
(A)
<
R
()
无解
由行列式来判断
R
(A)
=
R
()
有解
当=0
有无穷多个解
例题:课本P86第2大题、课本P88、课本P92、作业P11第三题
(12)n元齐次线性方程组AX=O的解的情况:(只有零解和非零解两种情况,有唯一解的充
要条件是只有零解,有无穷多个解的充要条件是有非零解)
R
(A)
=
n
只有零解(有唯一解,为0)
R
(A)
<
n
有非零解(有无穷多个解)
特别地,当A是n阶方阵
≠0
只有零解(有唯一解,为0)
时,可由行列式来判断
=0
有非零解(有无穷多个解)
例题:课本P24、课本P90-91、作业P11全部
24、行向量、列向量、零向量、负向量的概念
详见课本P92-93
将列向量组的分量排成矩阵计算时,计算过程中只做行变换,不做列变换。
初等行变换与初等行列变换的使用情况:矩阵、线性方程组、向量涉及行变换;列变换只在矩
阵中用。(行列式的性质包括行与列的变换)
手写零向量时不必加箭头。
25、线性方程组的向量形式
详见课本P9326、线性相关
与
线性无关的概念
详见课本P93-94
例题:课本P101第6大题、作业P14第五大题
27、向量个数大于向量维数的向量组
必然线性相关
线代老师课上提到的结论。
28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩
这三者的关系及其例题
详见课本P94
定理3.3.1、定理3.3.2
例题:课本P94-95
例3.3.2、课本P101第3大题、课
22本P101第5大题、作业P12第3小题、作业P12第二大题、作业P13第三大题、作业P13第四大题
29、线性表示
与
线性组合的概念
详见课本P9530、线性表示;非齐次线性方程组的解;矩阵的秩
这三者的关系其例题
详见课本P95-96
定理3.3.3
例题:课本P95-96
例3.3.431、线性相关(无关)与线性表示的3个定理
详见课本P96
定理3.3.4、课本P97定理3.3.5、课本P98定理3.3.632、最大线性无关组与向量组的秩
详见课本P98-100
定义3.3.5、定义3.3.6、定3.3.7
单位列向量,即“只有一个元素为1,且其余元素都为0”的一列向量(求最大线性无关组
用)
例题:课本P100
例3.3.5、课本P101第4大题、作业P14第六大题
33、线性方程组解的结构
看此内容之前,最好先复习下“n元非齐次线性方程组AX=b的解的情况”与“n元齐次线性
方程组AX=O的解的情况”。
(1)n元齐次线性方程组AX=O解的结构
①
定理3.4.1:详见课本P101-102
②
定义3.4.1(并理解“基础解系、通解、结构式通解、向量式通解”):详见课本P102
③
定理3.4.2:详见课本P102
④
解题步骤(“注”为补充说明)(以课本P104例3.4.1为例):
(I)A
=
…
…
注:往“行最简形矩阵”方向转化(因为在解方程组时不用列变换,所以一般没法
真正转化成行最简形矩阵,所以说“往……方向转化”)。
(II)得到同解方程组
注:由得到同解方程组
(III)∴
此方程组的一组解向量为:=,=,=
注:在草稿纸上写成以下形式,其中未写出的系数有的是1有的是0,一看便知
(IV)显然,线性无关。
注:根据课本P93-94
定义3.3.3
得出线性无关,注意,下面分别是:、、,令它们分别为、、,则显然=0×+0×,=0×+0×,=0×+0×,可想而知,线性无关。
(V)∴,为方程组的基础解系,方程组的通解为:k1+k2+k3(k1,k2,k3可取任意值)
注:根据课本P102
定义3.4.1
得出该方程组的通解。
⑤
其他例题:课本P109
第1大题、课本P109第3大题、课本P109第4大题、作业
P15第一大题第1小题、作业P15第一大题第3小题
(2)n元非齐次线性方程组AX=b解的结构
①
导出方程组:非齐次线性方程组AX=b对应的齐次线性方程组AX=O(详见课本P105)
②
定理3.4.3:详见课本P105
③
定义3.4.4:详见课本P105
④
定义3.4.5:详见课本P105
⑤
课本P105
“上述定理表明,……(3.4.6)的形式”这段内容
⑥
解题步骤(“注”为补充说明,做题时不用写在卷上)(以课本P106例3.4.2为例):
(I)=
……
…
…
(II)得到同解方程组
注:由
得到同解方程组
(III)令=0,得到原方程组的特解X0=
注:在草稿纸上写成以下形式,其中未写出的系数有的是1有的是0,一看便知。得到原方程组的特解即以下形式的常数部分。
(IV)导出方程组的同解方程为:
注:导出方程组,即非齐次线性方程组AX=b对应的齐次线性方程组AX=O,即步骤(III)“注”的“形式”的系数部分。
(V)令=1,得到方程组的基础解系=,则原方程组的通解为:
X0
+
k(k可取任意值)
⑦
其他例题:
(I)课本P107
例3.4.3(之前先复习“n元非齐次线性方程组AX=b的解的情况”)
要将含有参数的式子作为分母时,得注意该式子是否≠0
(II)课本P109
第2大题、作业P15第一大题第4小题、作业P15第二大题、作业P16第三大题、作业P15第一大题第2小题、作业P15第一大题第3小题
第四篇:2018考研数学线性代数三大规律归纳
凯程考研辅导班,中国最权威的考研辅导机构
2018考研数学线性代数三大规律归纳
70%以上的学生认为线性代数试题难度低,容易取得高分,线性代数的得分率总体比高等数学和概率论高5%左右,而且线性代数侧重的是方法的考查,考点比较明确,系统性更强。下面就和大家分享一下线代的复习小技巧。
2018考研数学线性代数三大规律探究
▶考研数学线性代数相比较高等数学和概率论而言,呈现明显不同的学科特点——概念多、定理多、符号多、运算规律多、内容纵横交错以及知识点前后紧密联系。
如果说高等数学的知识点算“条”的话,那么概率论就应该算“块”,而线性代数就是“网”!具体来看,线性代数这整张网,又是由行列式、矩阵、向量、线性方程组、特征值与特征向量以及二次型这6张小网相互交叉联结而成。而其中向量和线性方程组这两张网又在其中起着承前启后、上下衔接的关键作用。
通过上面的分析,大家是不是发现——向量和线性方程组是线性代数的重难点内容,也是考研的重点和难点之一?这一点也可以从历年真题的出题规律上得到验证。
关于
凯程考研辅导班,中国最权威的考研辅导机构
组的线性相关性(无关性)的一些重要性质和定理结合反证法来做。同时会考虑用向量组的线性相关性(无关性)与齐次线性方程组有非零解(只有零解)之间的联系和用矩阵的秩与向量组的秩之间的联系来做。
▶线性方程组——解的结构和(不)含参量线性方程组的求解
要解决线性方程组解的结构和求法的问题,首先应考虑线性方程组的基础解系,然后再利用基础解系的线性无关性、与矩阵的秩之间的联系等一些重要性质来解决线性方程组解的结构和含参量的线性方程组解的讨论问题,同时用线性方程组解结构的几个重要性质求解(不)含参量线性方程组的解。
即使是多么令童鞋闻风丧胆的数学,其实都有一定的规律可循。通过考试来分析整体情况,这样有重点复习,相信同学们一定会抓住数学,决胜数学!2 页 共 2 页
第五篇:线性代数知识点总结汇总
线性代数知识点总结
行列式
(一)行列式概念和性质
1、逆序数:所有的逆序的总数
2、行列式定义:不同行不同列元素乘积代数和
3、行列式性质:(用于化简行列式)
(1)行列互换(转置),行列式的值不变
(2)两行(列)互换,行列式变号
(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式
(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
(5)一行(列)乘k加到另一行(列),行列式的值不变。
(6)两行成比例,行列式的值为0。
(二)重要行列式
4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积
5、副对角线行列式的值等于副对角线元素的乘积乘
6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则
7、n阶(n≥2)范德蒙德行列式
数学归纳法证明
★8、对角线的元素为a,其余元素为b的行列式的值:
(三)按行(列)展开
9、按行展开定理:
(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值
(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0
(四)行列式公式
10、行列式七大公式:
(1)|kA|=kn|A|
(2)|AB|=|A|·|B|
(3)|AT|=|A|
(4)|A-1|=|A|-1
(5)|A*|=|A|n-1
(6)若A的特征值λ1、λ2、……λn,则
(7)若A与B相似,则|A|=|B|
(五)克莱姆法则
11、克莱姆法则:
(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解
(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0
(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。
矩阵
(一)矩阵的运算
1、矩阵乘法注意事项:
(1)矩阵乘法要求前列后行一致;
(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)
(3)AB=O不能推出A=O或B=O。
2、转置的性质(5条)
(1)(A+B)T=AT+BT
(2)(kA)T=kAT
(3)(AB)T=BTAT
(4)|A|T=|A|
(5)(AT)T=A
(二)矩阵的逆
3、逆的定义:
AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1
注:A可逆的充要条件是|A|≠04、逆的性质:(5条)
(1)(kA)-1=1/k·A-1
(k≠0)
(2)(AB)-1=B-1·A-1
(3)|A-1|=|A|-1
(4)(AT)-1=(A-1)T
(5)(A-1)-1=A5、逆的求法:
(1)A为抽象矩阵:由定义或性质求解
(2)A为数字矩阵:(A|E)→初等行变换→(E|A-1)
(三)矩阵的初等变换
6、初等行(列)变换定义:
(1)两行(列)互换;
(2)一行(列)乘非零常数c
(3)一行(列)乘k加到另一行(列)
7、初等矩阵:单位矩阵E经过一次初等变换得到的矩阵。
8、初等变换与初等矩阵的性质:
(1)初等行(列)变换相当于左(右)乘相应的初等矩阵
(2)初等矩阵均为可逆矩阵,且Eij-1=Eij(i,j两行互换);
Ei-1(c)=Ei(1/c)(第i行(列)乘c)
Eij-1(k)=Eij(-k)(第i行乘k加到j)
★(四)矩阵的秩
9、秩的定义:非零子式的最高阶数
注:(1)r(A)=0意味着所有元素为0,即A=O
(2)r(An×n)=n(满秩)←→
|A|≠0
←→A可逆;
r(A)<n←→|A|=0←→A不可逆;
(3)r(A)=r(r=1、2、…、n-1)←→r阶子式非零且所有r+1子式均为0。
10、秩的性质:(7条)
(1)A为m×n阶矩阵,则r(A)≤min(m,n)
(2)r(A±B)≤r(A)±(B)
(3)r(AB)≤min{r(A),r(B)}
(4)r(kA)=r(A)(k≠0)
(5)r(A)=r(AC)(C是一个可逆矩阵)
(6)r(A)=r(AT)=r(ATA)=r(AAT)
(7)设A是m×n阶矩阵,B是n×s矩阵,AB=O,则r(A)+r(B)≤n11、秩的求法:
(1)A为抽象矩阵:由定义或性质求解;
(2)A为数字矩阵:A→初等行变换→阶梯型(每行第一个非零元素下面的元素均为0),则r(A)=非零行的行数
(五)伴随矩阵
12、伴随矩阵的性质:(8条)
(1)AA*=A*A=|A|E
→
★A*=|A|A-1
(2)(kA)*=kn-1A*
(3)(AB)*=B*A*
(4)|A*|=|A|n-1
(5)(AT)*=(A*)T
(6)(A-1)*=(A*)-1=A|A|-1
(7)(A*)*=|A|
n-2·A
★(8)r(A*)=n
(r(A)=n);
r(A*)=1
(r(A)=n-1);
r(A*)=0
(r(A)<n-1)
(六)分块矩阵
13、分块矩阵的乘法:要求前列后行分法相同。
14、分块矩阵求逆:
向量
(一)向量的概念及运算
1、向量的内积:(α,β)=αTβ=βTα
2、长度定义:
||α||=
3、正交定义:(α,β)=αTβ=βTα=a1b1+a2b2+…+anbn=04、正交矩阵的定义:A为n阶矩阵,AAT=E
←→
A-1=AT
←→
ATA=E
→
|A|=±1
(二)线性组合和线性表示
5、线性表示的充要条件:
非零列向量β可由α1,α2,…,αs线性表示
(1)←→非齐次线性方程组(α1,α2,…,αs)(x1,x2,…,xs)T=β有解。
★(2)←→r(α1,α2,…,αs)=r(α1,α2,…,αs,β)(系数矩阵的秩等于增广矩阵的秩,用于大题第一步的检验)
6、线性表示的充分条件:(了解即可)
若α1,α2,…,αs线性无关,α1,α2,…,αs,β线性相关,则β可由α1,α2,…,αs线性表示。
7、线性表示的求法:(大题第二步)
设α1,α2,…,αs线性无关,β可由其线性表示。
(α1,α2,…,αs|β)→初等行变换→(行最简形|系数)
行最简形:每行第一个非0的数为1,其余元素均为0
(三)线性相关和线性无关
8、线性相关注意事项:
(1)α线性相关←→α=0
(2)α1,α2线性相关←→α1,α2成比例
9、线性相关的充要条件:
向量组α1,α2,…,αs线性相关
(1)←→有个向量可由其余向量线性表示;
(2)←→齐次方程(α1,α2,…,αs)(x1,x2,…,xs)T=0有非零解;
★(3)←→r(α1,α2,…,αs)<s
即秩小于个数
特别地,n个n维列向量α1,α2,…,αn线性相关
(1)←→
r(α1,α2,…,αn)<n
(2)←→|α1,α2,…,αn
|=0
(3)←→(α1,α2,…,αn)不可逆
10、线性相关的充分条件:
(1)向量组含有零向量或成比例的向量必相关
(2)部分相关,则整体相关
(3)高维相关,则低维相关
(4)以少表多,多必相关
★推论:n+1个n维向量一定线性相关
11、线性无关的充要条件
向量组α1,α2,…,αs
线性无关
(1)←→任意向量均不能由其余向量线性表示;
(2)←→齐次方程(α1,α2,…,αs)(x1,x2,…,xs)T=0只有零解
(3)←→r(α1,α2,…,αs)=s
特别地,n个n维向量α1,α2,…,αn
线性无关
←→r(α1,α2,…,αn)=n
←→|α1,α2,…,αn
|≠0
←→矩阵可逆
12、线性无关的充分条件:
(1)整体无关,部分无关
(2)低维无关,高维无关
(3)正交的非零向量组线性无关
(4)不同特征值的特征向量无关
13、线性相关、线性无关判定
(1)定义法
★(2)秩:若小于阶数,线性相关;若等于阶数,线性无关
【专业知识补充】
(1)在矩阵左边乘列满秩矩阵(秩=列数),矩阵的秩不变;在矩阵右边乘行满秩矩阵,矩阵的秩不变。
(2)若n维列向量α1,α2,α3
线性无关,β1,β2,β3
可以由其线性表示,即(β1,β2,β3)=(α1,α2,α3)C,则r(β1,β2,β3)=r(C),从而线性无关。
←→r(β1,β2,β3)=3
←→
r(C)=3
←→
|C|≠0
(四)极大线性无关组与向量组的秩
14、极大线性无关组不唯一
15、向量组的秩:极大无关组中向量的个数成为向量组的秩
对比:矩阵的秩:非零子式的最高阶数
★注:向量组α1,α2,…,αs的秩与矩阵A=(α1,α2,…,αs)的秩相等
★16、极大线性无关组的求法
(1)α1,α2,…,αs
为抽象的:定义法
(2)α1,α2,…,αs
为数字的:
(α1,α2,…,αs)→初等行变换→阶梯型矩阵
则每行第一个非零的数对应的列向量构成极大无关组
(五)向量空间
17、基(就是极大线性无关组)变换公式:
若α1,α2,…,αn
与β1,β2,…,βn
是n维向量空间V的两组基,则基变换公式为(β1,β2,…,βn)=(α1,α2,…,αn)Cn×n
其中,C是从基α1,α2,…,αn
到β1,β2,…,βn的过渡矩阵。
C=(α1,α2,…,αn)-1(β1,β2,…,βn)
18、坐标变换公式:
向量γ在基α1,α2,…,αn与基β1,β2,…,βn的坐标分别为x=(x1,x2,…,xn)T,y=(y1,y2,…,yn)T,即γ=x1α1
+
x2α2
+
…
+xnαn
=y1β1
+
y2β2
+
…
+ynβn,则坐标变换公式为x=Cy或y=C-1x。其中,C是从基α1,α2,…,αn
到β1,β2,…,βn的过渡矩阵。C=(α1,α2,…,αn)-1(β1,β2,…,βn)
(六)Schmidt正交化
19、Schmidt正交化
设α1,α2,α3
线性无关
(1)正交化
令β1=α1
(2)单位化
线性方程组
(一)方程组的表达形与解向量
1、解的形式:
(1)一般形式
(2)矩阵形式:Ax=b;
(3)向量形式:A=(α1,α2,…,αn)
2、解的定义:
若η=(c1,c2,…,cn)T满足方程组Ax=b,即Aη=b,称η是Ax=b的一个解(向量)
(二)解的判定与性质
3、齐次方程组:
(1)只有零解←→r(A)=n(n为A的列数或是未知数x的个数)
(2)有非零解←→r(A)<n4、非齐次方程组:
(1)无解←→r(A)<r(A|b)←→r(A)=r(A)-1
(2)唯一解←→r(A)=r(A|b)=n
(3)无穷多解←→r(A)=r(A|b)<n5、解的性质:
(1)若ξ1,ξ2是Ax=0的解,则k1ξ1+k2ξ2是Ax=0的解
(2)若ξ是Ax=0的解,η是Ax=b的解,则ξ+η是Ax=b的解
(3)若η1,η2是Ax=b的解,则η1-η2是Ax=0的解
【推广】
(1)设η1,η2,…,ηs是Ax=b的解,则k1η1+k2η2+…+ksηs为
Ax=b的解
(当Σki=1)
Ax=0的解
(当Σki=0)
(2)设η1,η2,…,ηs是Ax=b的s个线性无关的解,则η2-η1,η3-η1,…,ηs-η1为Ax=0的s-1个线性无关的解。
变式:①η1-η2,η3-η2,…,ηs-η2
②η2-η1,η3-η2,…,ηs-ηs-1
(三)基础解系
6、基础解系定义:
(1)ξ1,ξ2,…,ξs
是Ax=0的解
(2)ξ1,ξ2,…,ξs
线性相关
(3)Ax=0的所有解均可由其线性表示
→基础解系即所有解的极大无关组
注:基础解系不唯一。
任意n-r(A)个线性无关的解均可作为基础解系。
★7、重要结论:(证明也很重要)
设A施m×n阶矩阵,B是n×s阶矩阵,AB=O
(1)B的列向量均为方程Ax=0的解
(2)r(A)+r(B)≤n(第2章,秩)
8、总结:基础解系的求法
(1)A为抽象的:由定义或性质凑n-r(A)个线性无关的解
(2)A为数字的:A→初等行变换→阶梯型
自由未知量分别取1,0,0;0,1,0;0,0,1;代入解得非自由未知量得到基础解系
(四)解的结构(通解)
9、齐次线性方程组的通解(所有解)
设r(A)=r,ξ1,ξ2,…,ξn-r
为Ax=0的基础解系,则Ax=0的通解为k1η1+k2η2+…+kn-rηn-r
(其中k1,k2,…,kn-r为任意常数)
10、非齐次线性方程组的通解
设r(A)=r,ξ1,ξ2,…,ξn-r
为Ax=0的基础解系,η为Ax=b的特解,则Ax=b的通解为η+
k1η1+k2η2+…+kn-rηn-r
(其中k1,k2,…,kn-r为任意常数)
(五)公共解与同解
11、公共解定义:
如果α既是方程组Ax=0的解,又是方程组Bx=0的解,则称α为其公共解
12、非零公共解的充要条件:
方程组Ax=0与Bx=0有非零公共解
←→
有非零解←→
13、重要结论(需要掌握证明)
(1)设A是m×n阶矩阵,则齐次方程ATAx=0与Ax=0同解,r(ATA)=r(A)
(2)设A是m×n阶矩阵,r(A)=n,B是n×s阶矩阵,则齐次方程ABx=0与Bx=0同解,r(AB)=r(B)
特征值与特征向量
(一)矩阵的特征值与特征向量
1、特征值、特征向量的定义:
设A为n阶矩阵,如果存在数λ及非零列向量α,使得Aα=λα,称α是矩阵A属于特征值λ的特征向量。
2、特征多项式、特征方程的定义:
|λE-A|称为矩阵A的特征多项式(λ的n次多项式)。
|λE-A
|=0称为矩阵A的特征方程(λ的n次方程)。
注:特征方程可以写为|A-λE|=03、重要结论:
(1)若α为齐次方程Ax=0的非零解,则Aα=0·α,即α为矩阵A特征值λ=0的特征向量
(2)A的各行元素和为k,则(1,1,…,1)T为特征值为k的特征向量。
(3)上(下)三角或主对角的矩阵的特征值为主对角线各元素。
△4、总结:特征值与特征向量的求法
(1)A为抽象的:由定义或性质凑
(2)A为数字的:由特征方程法求解
5、特征方程法:
(1)解特征方程|λE-A|=0,得矩阵A的n个特征值λ1,λ2,…,λn
注:n次方程必须有n个根(可有多重根,写作λ1=λ2=…=λs=实数,不能省略)
(2)解齐次方程(λiE-A)=0,得属于特征值λi的线性无关的特征向量,即其基础解系(共n-r(λiE-A)个解)
6、性质:
(1)不同特征值的特征向量线性无关
(2)k重特征值最多k个线性无关的特征向量
1≤n-r(λiE-A)≤ki
(3)设A的特征值为λ1,λ2,…,λn,则|A|=Πλi,Σλi=Σaii
(4)当r(A)=1,即A=αβT,其中α,β均为n维非零列向量,则A的特征值为λ1=Σaii=αTβ=βTα,λ2=…=λn=0
(5)设α是矩阵A属于特征值λ的特征向量,则
A
f(A)
AT
A-1
A*
P-1AP(相似)
λ
f(λ)
λ
λ-1
|A|λ-1
λ
α
α
/
α
α
P-1α
(二)相似矩阵
7、相似矩阵的定义:
设A、B均为n阶矩阵,如果存在可逆矩阵P使得B=P-1AP,称A与B相似,记作A~B8、相似矩阵的性质
(1)若A与B相似,则f(A)与f(B)相似
(2)若A与B相似,B与C相似,则A与C相似
(3)相似矩阵有相同的行列式、秩、特征多项式、特征方程、特征值、迹(即主对角线元素之和)
【推广】
(4)若A与B相似,则AB与BA相似,AT与BT相似,A-1与B-1相似,A*与B*也相似
(三)矩阵的相似对角化
9、相似对角化定义:
如果A与对角矩阵相似,即存在可逆矩阵P,使得P-1AP=Λ=,称A可相似对角化。
注:Aαi=λiαi(αi≠0,由于P可逆),故P的每一列均为矩阵A的特征值λi的特征向量
10、相似对角化的充要条件
(1)A有n个线性无关的特征向量
(2)A的k重特征值有k个线性无关的特征向量
11、相似对角化的充分条件:
(1)A有n个不同的特征值(不同特征值的特征向量线性无关)
(2)A为实对称矩阵
12、重要结论:
(1)若A可相似对角化,则r(A)为非零特征值的个数,n-r(A)为零特征值的个数
(2)若A不可相似对角化,r(A)不一定为非零特征值的个数
(四)实对称矩阵
13、性质
(1)特征值全为实数
(2)不同特征值的特征向量正交
(3)A可相似对角化,即存在可逆矩阵P使得P-1AP=Λ
(4)A可正交相似对角化,即存在正交矩阵Q,使得Q-1AQ=QTAQ=Λ
二次型
(一)二次型及其标准形
1、二次型:
(1)一般形式
(2)矩阵形式(常用)
2、标准形:
如果二次型只含平方项,即f(x1,x2,…,xn)=d1x12+d2x22+…+dnxn2
这样的二次型称为标准形(对角线)
3、二次型化为标准形的方法:
(1)配方法:
通过可逆线性变换x=Cy(C可逆),将二次型化为标准形。其中,可逆线性变换及标准形通过先配方再换元得到。
★(2)正交变换法:
通过正交变换x=Qy,将二次型化为标准形λ1y12+λ2y22+…+λnyn2
其中,λ1,λ2,…,λn
是A的n个特征值,Q为A的正交矩阵
注:正交矩阵Q不唯一,γi与λi
对应即可。
(二)惯性定理及规范形
4、定义:
正惯性指数:标准形中正平方项的个数称为正惯性指数,记为p;
负惯性指数:标准形中负平方项的个数称为负惯性指数,记为q;
规范形:f=z12+…zp2-zp+12-…-zp+q2称为二次型的规范形。
5、惯性定理:
二次型无论选取怎样的可逆线性变换为标准形,其正负惯性指数不变。
注:(1)由于正负惯性指数不变,所以规范形唯一。
(2)p=正特征值的个数,q=负特征值的个数,p+q=非零特征值的个数=r(A)
(三)合同矩阵
6、定义:
A、B均为n阶实对称矩阵,若存在可逆矩阵C,使得B=CTAC,称A与B合同
△7、总结:n阶实对称矩阵A、B的关系
(1)A、B相似(B=P-1AP)←→相同的特征值
(2)A、B合同(B=CTAC)←→相同的正负惯性指数←→相同的正负特征值的个数
(3)A、B等价(B=PAQ)←→r(A)=r(B)
注:实对称矩阵相似必合同,合同必等价
(四)正定二次型与正定矩阵
8、正定的定义
二次型xTAx,如果任意x≠0,恒有xTAx>0,则称二次型正定,并称实对称矩阵A是正定矩阵。
9、n元二次型xTAx正定充要条件:
(1)A的正惯性指数为n
(2)A与E合同,即存在可逆矩阵C,使得A=CTC或CTAC=E
(3)A的特征值均大于0
(4)A的顺序主子式均大于0(k阶顺序主子式为前k行前k列的行列式)
10、n元二次型xTAx正定必要条件:
(1)aii>0
(2)|A|>011、总结:二次型xTAx正定判定(大题)
(1)A为数字:顺序主子式均大于0
(2)A为抽象:①证A为实对称矩阵:AT=A;②再由定义或特征值判定
12、重要结论:
(1)若A是正定矩阵,则kA(k>0),Ak,AT,A-1,A*正定
(2)若A、B均为正定矩阵,则A+B正定