第一篇:工业控制系统_自动化_中英文翻译_毕业论文
外文资料翻译
工业控制系统和协同控制系统
当今的控制系统被广泛运用于许多领域。从单纯的工业控制系统到协同控制系统(CCS),控制系统不停变化,不断升级,现在则趋向于家庭控制系统,而它则是这两者的变种。被应用的控制系统的种类取决于技术要求。而且,实践表明,经济和社会因素也对此很重要。任何决定都有它的优缺点。工业控制要求可靠性,完整的文献记载和技术支持。经济因素使决定趋向于协同工具。能够亲自接触源码并可以更快速地解决问题是家庭控制系统的要求。多年的操作经验表明哪个解决方法是最主要的不重要,重要的是哪个可行。由于异类系统的存在,针对不同协议的支持也是至关重要的。本文介绍工业控制系统,PlC controlled turn key系统,和CCS工具,以及它们之间的操作。引言:
80年代早期,随着为HERA(Hadron-Elektron-Ring-Anlage)加速器安装低温控制系统,德国电子同步加速器研究所普遍开始研究过程控制。这项新技术是必需的,因为但是现有的硬件没有能力来处理标准过程控制信号,如4至20毫安的电流输入和输出信号。而且软件无法在0.1秒的稳定重复率下运行PID控制回路。此外,在实现对复杂的低温冷藏系统的开闭过程中,频率项目显得尤为重要。
有必要增加接口解决总线问题并增加运算能力,以便于低温控制。因为已安装的D / 3系统[1] 只提供了与多总线板串行连接,以实现DMA与VME的连接并用其模拟多总线板的功能。温度转换器的计算功能来自一个摩托罗拉MVME 167 CPU和总线适配器,以及一个MVME 162 CPU。其操作系统是VxWorks,而应用程序是EPICS。
由于对它的应用相当成功,其还被运用于正在寻找一个通用的解决方案以监督他们的分布式PLC的公共事业管理。
德国电子同步加速器研究所对过程管理系统的筛选
集散控制系统(D/ 3):
市场调查表明:来自GSE的D / 3系统被HERA低温冷藏工厂选中。因为集散控制系统(D/ 3)的特性,所以这决定很不错。在展示端和I / O端扩展此系统的可能将有助于解决日益增加的
HERA试验控制的要求。制约系统的大小的因素不是I / O的总数,通信网络的畅通与否。而通信网络的畅通与否取决于不存档的数据总量,不取决于报警系统中配置的数据。
拥有DCS特点(Cube)的SCADA系统:
相对于Y2K问题促使我们寻找一个升级版或者代替版来代替现有的系统而言,以上提到的D / 3系统有一些硬编码的限制。由于急需给Orsi公司提供他们的产品,Cube开始起作用了[2]。该项目包括安装功能的完全更换。这包括D / 3,以及德国电子同步加速器研究所的集成总线SEDAC和VME的温度转换器。该项目很有前景。但是因为HERA试验原定时间是有限制的,所以技术问题和组织问题也迫使计划提前。在供应商网站上的最后验收测试又出现了戏剧性的性能问题。有两个因素引起了这些问题。第一个跟低估在1赫兹运行的6级温度转换
器的CPU负荷有关。第二个由现有D / 3系统复杂的功能造成的额外负荷引起的。每个数字和模拟输入和输出通道在D / 3系统里的自身报警限值也被低估了。所有的附加功能都必须添加进去。最后,所有网络负载的报警限值,尤其是SCADA系统,也促使网络生成了限制。
最后,与Orsi公司的合同被取消了。升级的D / 3系统是唯一可能的解决办法。在2003年3月,此系统最后被付诸实践。
现在,相比“纯粹”SCADA系统的异质环境,Cube有同质配置环境的优势。SCADA(PVSS-Ⅱ):
在HERA加速器上的H1实验中,实验人员为升级他们的低速控制系统,决定使用PVSS-Ⅱ。现有的系统是由H1合作组的几名成员开发的,而现在却难以维持了。在CERN由联合控制项目[4]进行的广泛调查促使他们做出使用PVSS作为代替品的决定。PVSS是一个“纯粹”的监控和数据采集系统(SCADA系统)。其核心元素叫做事件管理器。它收集的数据主要是由I/ O设备提供。它还提供附加的管理服务,如:控制经理,数据库管理,用户界面,API经理以及在建的HTTP服务器。该PVSS脚本库允许执行复杂的序列以及复杂的图形。相比其他SCADA系统PVSS带有一个基本特点:它提供了API给设备的数据。
SCADA系统的一个主要缺点是其中的两个数据库,一个为PLC’s服务,另一个为SCADA系统服务,这两个数据库必须维持。集成环境将努力克服这个限制。EPICS:
在德国电子同步加速器研究所,EPICS从问题解决系统演化成了全集成控制系统。从成为低温控制系统的数据收集器和数量控制器,EPICS成为了德国电子同步加速器研究所公用事业集团使用的核心系统。此外,通过 Industry Pack(IP)模块的手段,它还能运用于通过VME板卡的任何数据。EPICS通过其完整的功能,运用于没有由D / 3系统控制的低温冷藏系统。所有大约50个输入输出控制器运作大约25000业务处理记录。作为一个SCADA系统的EPICS:
该公共事业组(水,电,压缩空气,加热和调温)使用各种散布在整个德国电子同步加速器研究所网站上的PLC。IOC向客户提供接口并采集数据。此外,如通道归档和图形显示(dm2k)会被使用。默认名决议和目录服务器(域名服务器)用于连接 在TCP客户端和服务器应用程序。所有这些都是基本的SCADA功能。所有的配置文件(图形工具,报警处理程序和归档)提供了一种灵活的配置方案。德国电子同步加速器研究所公用事业集团已制定了一套工具来创建IOC数据库和配置文件。这样,控制组提供的服务保持EPICS工具,而用户可以精力集中在被控制的设备上了。作为一个DCS系统的EPICS:
作为SCADA系统的基本组成部分,EPICS还提供完整的输入输出控制器(IOC)。IOC提供所有功能DCS系统要求,如:实施每个记录的标准的属性;执行每个记录时的报警检查过程;控制记录,如PID。灵活的命名方案,默认的显示和每个记录的报警属性缓和了运作工具和IOC之间的连接。灵活的数据采集模式,支持调查模式以及发布订阅模式。后者大大降低了信息拥堵的情况。PLC’s:
PLC’s同样提供丰富的功能,因为以前它是独一无二的控制系统。此外,定期执行一个确定功能的基本特征也让他们通过以太网通信,包括内置的HTTP
服务器和不同集合的通讯方案。除了通信处理器,显示器能和PLC’s连接。智能I / O:
I / O设备上的新发展允许在更小的群体中集群I / O并把这些集群I / O渠道链接到控制系统。PLC’s对于分布式I / O已不再重要。PLC’s和智能I / O子系统的差别正在消失。
功能
持续不断的问题,如为什么控制系统的加速器和其他高度专业化的设备联合协同发展。但是,在极少数情况下,只通过商业的立场时难以回答的。在这里,我们试图总结不同控制方法的基本功能。
前端控制器:
对控制系统的核心要素之一,是前端控制器。PLC’s可用于实施控制功能的设备。它的缺点就是复杂,难以达到控制属性。例如确定通信协议和最后在显示、报警和归档方案,一个控件的所有属性像P,I和D参数,还有报警限制及其他附加的属性必须得到解决。另外,这些嵌入式属性修改是很难寻觅,因为其中涉及两个或两个以上轨道系统这可能是一个有力的论据是,为什么控制回路主要实施在IOC层面,而不是PLC’s层面。
I / O和控制回路
复杂的控制算法和控制回路和域名DCS控制系统一样。对显示和控件的属性的支持是必不可少的。
频率/国家计划
在控制系统中,频率程序可以运行任何处理器。运行时环境取决于相关代码。控制系统程序直接履行运行前端处理器的监控。为复杂的启动和关闭处理程序设立的频率程序也可以运行工作站。国家机器的基本功能在IEC 61131中得到了落实。编码发电机可以产生C代码。
硬件支持
对现场总线和起源于I / O的Ethernet的支持是为SCADA系统服务的一个基本功能。所有SCADA系统在市场商业运作中是可行的。配置特定驱动器和数据转换器的集成硬件在商业环境中是一个难点。开放API或脚本支持有时有助于整合用户的硬件。如果不向控制系统提供这些工具,就很难整合客户硬件。新的工业标准,如OPC,和OPC设施联系,还和控制系统之间互相联系。这种功能的基本条件是强调操作系统。在这种情况下,OPC更趋向于微软的DCOM标准。基于控制系统的UNIX很难互相连接。只有支持多平台的控制系统可以在异构环境中发挥主要作用。
由于为客户或专业硬件的支持有限,所以新的控制系统有理由得到发展。显示和操作
除了前后系统,操作接口在控制系统的兼容过程中有重要的作用。因为个人呢工具由不同的团队开发,所以协作实现的工具包可能变动。
1图形
天气显示是任何控制系统的广告招牌。商业天气显示也有着丰富的功能
和许多特色。开始使用所有这些特征,所有这些功能的使用人会发现,所有个别属性的图形对象要分别指定。一个输入通道不只由物业的价值决定的,而且更由包括像展出范围和报警值决定的。一再分辨所有性能可能是个非常乏味的工作。有些系统产生图形原型对象。这些原型图形或模板很复杂,但需要一个专家来生产。
DCS或自定义天气显示程序使用常见的I / O点属性集。这个预定义的命名方案填写标准的属性值,因此只需要进入记录,或设备名称进入配置工具。报警系统
警报可以很好的区分不同的控制系统架构。实现I / O对象的这些系统在前后端电脑提供警报检查。只能读懂I / O点的系统在I / O处理过程中添加了警报检查。I / O对象途径在前后端系统的本土项目语言安插了警报检测。,I / O点导向系统通常要在他们的脚文本语言中实现这种功能。这是通常效率较低且容易出错,因为所有属性必须被单独配置,这导致了一系列特性。不仅为每个I / O点的错误状态结束是个人的I / O点,但报警限值和每个报警的轻重,应当限制定义为I / O点,如果它希望能够改变运行值。
这种影响在SCADA和DCS系统之间也形成了影响。SCADA系统本就读不懂报警系统。DCS系统的优势在于管理人员既可以登记警报状态,从而提前得到信息,控制蔓延到在控制系统周围的变化。后一种情况是唯一可能的系统。趋势和归档
趋势已成为控制系统架构中的一个重要的业务。趋势是必要的跟踪误差条件。实现的数据存储有能力储存完整控制目标,大部分的趋势工具标量数据存档。附加特性如条件趋向或相关情节在个人实施起了影响。
4编程接口
关于开放编程接口,PLC’s和DCS系统有相同策略。他们运行可靠,因为他们没有办法整合 可定制的合作去干涉内部处理。因此,客户定制精品,这个极其昂贵的。
由于SCADA系统必须能够 与多种I / O子系统连接已经在API上建立了I / O子系统以整合 自定义功能。
协作系统尤其需要一定的开放性以实现各种发展组织的要求。所有级别的编程接口,例如前后端I / O,前后端处理过程和网络等,是强制性的。
5冗余
如果冗余是指管理所有国家,I / O所有值无缝道岔当前正在运行,它是一个域,只有少数集散系统。自定义或CCS实施不提供这种功能。也许是因为巨大努力和事实,它是只需要在罕见的事例。此外,处理器冗余,或多余的网络,或I / O子系统是为一定的商业集散控制系统指定的。
先进的安全要求是由多余的PLC子系统覆盖。这些安装在(核)电厂。个人保护系统(PPS)的要求有时候会由冗余的PLC’s来满足。在过程控制中,冗余的PLC’s只在少数情况下使用。
6命名空间
在供应链系统中,SCADA系统的单位名称空间形容成警报部分。有些SCADA系统(如PVSS – II)提供在少数情况下的控制对象或结构化数据。这些对象由一系列特性(包括I / O点)和一套方法(宏或函数)组成。这些途径的其一是UniNified工业控制系统(UNICOS)在欧洲核子研究中心[5]。
DCS系统和大多数习惯性/协作系统是有记录的,或是设备为主。不同之处是,通常一个记录被连接到一个单一I / O点,提供这样的执行记录,如个人工程单元,显示和警报限值。设备为本的方法允许连接几个I / O点。而(EPICS的)记录只服务于一组特定的内置功能。
命名等级不特定于实施类型。它们可用于一些系统。分层命名方案是肯定可取的。
实施策略
表现完各种可能的控制方法后,该是查看控制系统的完成情况了。
从I / O级开始,他们必须决定是否需要商业解决。特殊的I / O不总是需要定制解决方案。信号可以被转换成标准的信号,但是这并不适用于所有的信号。信号水平可能需要定制的发展,这必须纳入整体控制架构。信号不能被连接到标准I / O接口,也许有可能发展的I / O控制器的
允许实施现场总线接口,这能够整合商业控制系统。整合水平是不可能定制前端控制器,如VME,开始发挥作用了。
Turn Key 系统:
在工业中,有个明显的趋势就是产生了Turn Key 系统。它允许对整个系统进行模块化设计。个别元件分包给几个公司进行本地测试。一旦交付施工现场,验收测试就已经过去了,第二个阶段,整合融入全球控制系统的子系统开始。虽然控制回路的详细规格等,是现在子系统合同的一部分。客户必须明确多少信息子系统可以被使用。
大多数Turn Key系统与PLC一起交付使用。瑞士光源(SLS)的建立过程已显示,这也是基于I/ O系统运行的VME运行 CCS的,这样才可以成功启用[6]。
基于系统的PLC:
基于系统的PLC是Turn Key系统成果。下一个明显的方法看起来可能是除了商业PLC,就是商业SCADA系统。优势就是明显和PLC一样:没有稳定的软编程器,仅有配置,支持和良好的文件系统。在德国电子同步加速器研究所,我们成功地建立了控制组和公共事业组之间的关系。尽管是EPICS编码,但其最大的优势就是能调整双方的特殊要求。
工业解决方案:
一旦工业开始支持协作控制系统,CCS的解决方案和商业之间的差异将渐渐变小。在KEK,公司签订合同为KEK-B升级提供程序员。这些程序员进行了书面驱动程序和应用程序代码的EPICS培训。因此,KEK-B控制系统是工业用和民用升级软件的混合体。这是CCS实施中工业参与的另一个例子。
成本:
自从个人电脑出现后,“一台个人电脑的总成本是多少?”这样的问题一直使人忙碌。所有的答案不尽相同的极端。现在的问题什么是一个控制系统的TCO可能作出类似的结果。如果你进入商业领域,你要支付的初始证照费用,而通常这是由供应商或分包商支付的,你付钱进行的软件支持,可能或可能不会包括你更新证照的费用。
如果你去寻求合作方式,你可能与公司签合同或完成一切。而“时间与金钱说”在工业中同样成立。你亲自完成可能更自由灵活,但是有点难度。你 可以依靠合作,以提供新的功能和版本,或者你可以为自己作出贡献。主要的区别就是要为控制系统计入长期成本。
德国电子同步加速器研究所粗略估计,控制应用程序,如支持商业模式的D / 3,和支持协作模式的EPICS几乎是相同的。在该软件支持和升级证照的费用,相当于1.5倍的FTE’s。FTE’s是关于人力资源的内容,对于支持新的硬件和升级EPICS是必要的。
结论
根据控制项目不同的规模和要求,整合的商业解决方案和基于协作应用程序的解决方案在百分之零到一百都有可能。这适用于长远的技术支持。在安全问题上的特殊需要或人力资源的缺乏可能会扩大商机。接口专业硬件,掌控在手的谈判或商业解决方案的初始成本有可能促使大规模的合作。只要如EPICS的协作途径,保持最新并运行如商业方案一样稳定和强劲,它们就能在互补共生的控制世界中占有一席之地。
INDUSTRIAL AND COLLABORATIVE CONTROL SYSTEMS
-A COMPLEMENTARY SYMBIOSIS –
Looking at today‟s control system one can find a wide variety of implementations.From pure industrial to collaborative control system(CCS)tool kits to home grown systems and any variation in-between.Decisions on the type of implementation should be driven by technical arguments Reality shows that financial and sociological reasons form the complete picture.Any decision has it‟s advantages and it‟s drawbacks.Reliability, good documentation and support are arguments for industrial controls.Financial arguments drive decisions towards collaborative tools.Keeping the hands on the source code and being able to solve problems on your own and faster than industry are the argument for home grown solutions or open source solutions.The experience of many years of operations shows that which solution is the primary one does not matter, there are always areas where at least part of the other implementations exist.As a result heterogeneous systems have to be maintained.The support for different protocols is essential.This paper describes our experience with industrial control systems, PLC controlled turn key systems, the CCS tool kit EPICS and the operability between all of them.-
INTRODUCTION
th Process controls in general started at DESY in the early 80with the installation of the cryogenic control system for the accelerator HERA(Hadron-Elektron-Ring-Anlage).A new technology was necessary because the existing hardware was not capable to handle standard process controls signals like 4 to 20mA input and output signals and the software was not designed to run PID control loops at a stable repetition rate of 0.1 seconds.In addition sequence programs were necessary to implement startup and shutdown procedures for the complex cryogenic processes like cold boxes and compete compressor streets.Soon it was necessary to add interfaces to field buses and to add computing power to cryogenic controls.Since the installed D/3 system[1] only provided an documented serial connection on a multibus board, the decision was made to implement a DMA connection to VME and to emulate the multibus board‟s functionality.The necessary computing power for temperature conversions came from a Motorola MVME 167 CPU and the field bus adapter to the in house SEDAC field bus was running on an additional MVME 162.The operating system was VxWorks and the application was the EPICS toolkit.Since this implementation was successful it was also implemented for the utility controls which were looking for a generic solution to supervise their distributed PLC‟s.A SELECTION OF PROCESS CONTROL SYSTEMS AT DESY
DCS(D/3)
As a result of a market survey the D/3 system from GSE was selected for the HERA cryogenic plant.The decision was fortunate because of the DCS character of the D/3.The possibility to expand the system on the display-and on the I/O side helped to solve the increasing control demands for HERA.The limiting factor for the size of the system is not the total number of I/O but the traffic on the communication network.This traffic is determined by the total amount of archived data not by the data configured in the alarm system.The technical background of this limitation is the fact that archived data are polled from the display servers whereas the alarms are pushed to configured destinations like alarm-files,(printer)queues or displays.SCADA Systems with DCS Features(Cube)
The fact that the D/3 system mentioned above had some hard coded limitations with respect to the Y2K problem was forcing us to look for an upgrade or a replacement of the existing system.As a result of a call for tender the company Orsi with their product Cube came into play [2].The project included a complete replacement of the installed functionality.This included the D/3 as well as the integration of the DESY field bus SEDAC and the temperature conversion in VME.The project started promising.But soon technical and organizational problems were pushing the schedule to it‟s limits which were determined by the HERA shutdown scheduled at that time.The final acceptance test at the vendors site showed dramatic performance problems.Two factors could be identified as the cause of these problems.The first one was related to the under estimated CPU th load of the 6grade polynomial temperature conversion running at 1 Hz.The second one was the additional CPU load caused by the complex functionality of the existing D/3 system.Here it was underestimated that each digital and analog input and output channel had it‟s own alarm limits in the D/3 system.In a SCADA like system as Cube the base functionality of a channel is to read the value and make it available to the system.Any additional functionality must be added.Last not least the load on the network for polling all the alarm limits – typically for a SCADA system – was also driving the network to it‟s limits.Finally the contract with Orsi was cancelled and an upgrade of the D/3 system was the only possible solution.It was finally carried out in march 2003.In any case it should be mentioned that the Cube approach had the advantage of a homogeneous configuration environment(for the Cube front end controllers)– compared with heterogeneous environments for „pure‟ SCADA systems.SCADA(PVSS-II)The H1 experiment at the HERA accelerator decided to use PVSS-II for an upgrade of their slow control systems[3].The existing systems were developed by several members of the H1 collaboration and were difficult to maintain.The
decision to use PVSS as a replacement was driven by the results of an extensive survey carried out at CERN by the Joint Controls Project [4].PVSS is a „pure‟ Supervisory And Data Acquisition System(SCADA).It provides a set of drivers for several field buses and generic socket libraries to implement communication over TCP/IP.The core element is the so called event manager.It collects the data(mostly by polling)from the I/O devices and provides an event service to the attached management services like: control manager, database manager, user interface, API manager and the built in HTTP server.The PVSS scripting library allows to implement complex sequences as well as complex graphics.Compared with other SCADA systems PVSS comes with one basic feature: it provides a true object oriented API to the device‟s data.One major disadvantage of SCADA systems is the fact that two databases, the one for the PLC and the one for the SCADA system must be maintained.Integrated environments try to overcome this restriction.EPICS
EPICS has emerged at DESY from a problem solver to a fully integrated control system.Starting from the data collector and number cruncher for the cryogenic control system, EPICS made it‟s way to become the core application for the DESY utility group.In addition it is used wherever data is available through VME boards or by means of Industry Pack(IP)modules.For those cryogenic systems which are not controlled by the D/3 system EPICS is used with it‟s complete functionality.In total about 50 Input Output Controller(IOC)are operational processing about 25 thousand records.1 EPICS as a SCADA System
The utility group(water, electrical power, compressed air, heating and air conditioning)is using a variety of PLC‟s spread out over the whole DESY site.EPICS is used to collect the data from these PLC‟s over Profibus(FMS and DP)and over Ethernet(Siemens H1 and TCP).The IOC‟s provide the interfaces to the buses and collect the data.The built in alarm checking of the EPICS records is used to store and forward alarm states to the alarm handler(alh)of the EPICS toolkit.In addition tools like the channel archiver and the graphic display(dm2k)are used.The default name resolution(by UDP broadcast)and the directory server(name server)are used to connect client and server applications over TCP.All of these are basically SCADA functions.The textual representation of all configuration files(for the IOC, the graphic tool, the alarm handler and the archiver)provides a flexible configuration scheme.At DESY the utility group has developed a set of tools to create IOC databases and alarm configuration files from Oracle.This way the controls group provides the service to maintain the EPICS tools and the IOC‟s while the users can concentrate on the equipment being controlled.EPICS as a DCS System
Besides the basic components of a SCADA system EPICS also provides a full flavoured Input Output Controller(IOC).The IOC provides all of the function a DCS system requires, such as: a standard set of properties implemented in each record, built in alarm checking processed during the execution of each record;control records like PID etc.;configuration tools for the processing engine.The flexible naming scheme and the default display and alarm properties for each record ease the connection between the operator tools and the IOC‟s.The flexible data acquisition supports the poll mode as well as the publish subscribe mode.The latter reduces the traffic drastically.PLC‟s
PLC‟s provide nowadays the same rich functionality as it was known from stand alone control systems in the past.Besides the basic features like the periodic execution of a defined set of functions they also allow extensive communication over Ethernet including embedded http servers and different sets of communication programs.Besides the communication processors, display processors can be linked to PLC‟s to provide local displays which can be comprised as touch panels for operator intervention and value settings.These kind of PLC‟s are attractive for turn key systems which are commissioned at the vendors site and later integrated into the customers control system.Intelligent I/O
New developments in I/O devices allow to „cluster‟ I/O in even smaller groups and connect theses clustered I/O channels directly to the control system.PLC‟s are not any more necessary for distributed I/O.Simple communication processors for any kind of field buses or for Ethernet allow an easy integration into the existing controls infrastructure.Little local engines can run IEC 61131 programs.The differences between PLC‟s and intelligent I/O subsystems fade away.FUNCTIONALITY
The ever lasting question why control systems for accelerators and other highly specialized equipment are often home grown or at least developed in a collaboration but only in rare cases commercial shall not be answered here.We try to summarize here basic functionalities of different controls approaches.Front-end Controller
One of the core elements of a control system is the front-end controller.PLC‟s can be used to implement most of the functions to control the equipment.The disadvantage is the complicated access to the controls properties.For instance all of the properties of a control loop like the P, I and D parameter, but also the alarm limits and other additional properties must be addressed individually in order to identify them in the communication protocol and last not least in the display-, alarm-and archive programs.In addition any kind of modifications of these
embedded properties is difficult to track because two or more systems are involved.This might be one strong argument why control loops are mainly implemented on the IOC level rather than PLC‟s.1 I/O and Control Loops
Complex control algorithms and control loops are the domain of DCS alike control systems.The support for sets of predefined display and controls properties is essential.If not already available(like in DCS systems)such sets of generic properties are typically specified throughout a complete control system(see namespaces).2 Sequence/ State programs
Sequence programs can run on any processor in a control system.The runtime environment depends on the relevance of the code for the control system.Programs fulfilling watchdog functions have to run on the front-end processor directly.Sequence programs for complicated startup and shutdown procedures could be run on a workstation as well.The basic functionality of a state machine can be even implemented in IEC 61131.Code generators can produce „C‟ code which can be compiled for the runtime environment.3 Supported Hardware
The support for field buses and Ethernet based I/O is a basic functionality for SCADA type systems it is commercially available from any SCADA system on the market.The integration of specific hardware with specific drivers and data conversion is the hard part in a commercial environment.Open API‟s or scripting support sometimes help to integrate custom hardware.If these tools are not provided for the control system it is difficult – if not impossiblewhich are extremely expensive – or forget about it and use the system as a black box.Since SCADA systems by definition must be able to communicate with a variety of I/O subsystems they already have some built in API‟s which allow to integrate custom functionality.Specially collaborative systems need a certain openness to fulfill all the requirements from various development groups.Programming interfaces on all levels like font-end I/O, front-end processing, networking etc.are mandatory.A clear advantage for this type of system.Redundancy
If redundancy means the seamless switch which takes over all the states and all the values of the I/O and all states of all programs currently running, it is a domain of only a few DCS systems.Custom or CCS implementation do not provide this kind of functionality.Maybe because of the immense effort and the fact that it is only required in rare cases.Besides processor redundancy, redundant networks or I/O subsystems are available for certain commercial DCS systems.Again – a domain which is not covered by SCADA or CCS implementations.Advanced safety requirements may be covered by redundant PLC subsystems.These are for instance installed in(nuclear)power plants.Requirements for Personal Protection Systems(PPS)can sometimes only be fulfilled by redundant PLC‟s.In process controls redundant PLC‟s are only used in rare cases.6 Namespace
The flat namespace of SCADA systems has already been described in the alarm section.Some SCADA systems(like PVSS-II)provide the notion of control objects or structured data which is a rare case.In all other cases so called field objects must be specified.These are objects which consist of a list of properties(implemented as I/O points)and a set of methods(implemented asmacros or function calls).One of these approaches is the UniNified Industrial COntrol System(UNICOS)at CERN [5].DCS systems and most of the custom/ collaborative systems are record – or device oriented.The difference being that typically one record is connected to a
single I/O point and provides this way all sub features of a record implementation like individual engineering units, display-and alarm limits.The device oriented approach allows to connect several I/O points.The major difference being the fact that an object oriented device implementation provides methods and states for a device while(EPICS)records only serve a certain set of built in functions.Naming hierarchies are not specific to a type of implementation.They are available for some systems of any kind.For sure hierarchical naming schemes are desirable.IMPLEMENTATION STRATEGIES
After having shown all the possible controls approaches it is time to have a look at the implementation of control systems.Starting from the I/O level one has to decide whether commercial solution are required, feasible or wanted.Special I/O does not always require custom solution for the font-end controller.Signals can be converted into standard signals but this does not apply for all kinds of signals.Resolution, repetition rates and signal levels might require custom developments which must be integrated into the overall control architecture.Even if the signals can not be connected to standard I/O interfaces it might be possible to develop I/O controllers which implement a field bus interface which allow the integration with commercial control systems.Once this level of integration is not possible custom front-end controllers like VME crates come into play.Besides the decision whether special I/O requires dedicated custom solutions one has to decide who will do which part of the work? Does for instance the necessity of VME crates prohibit the delivery of a „turn key‟ system built by industry? Or does a PLC based front-end system require a commercial SCADA system for high level controls? Turn Key Systems
It is a clear trend in industry to deliver turn key systems.It allows a modular design of the whole system.Individual components can be subcontracted to several companies and tested locally.Once delivered to the construction site the primary acceptance tests have already been passed and the second phase, to integrate the subsystem into the global control system begins.While the detailed specification of control loops etc.is now part of the subsystems contract, the customer has to specify clearly how much information of the subsystem must be made available, what the data structures will look like and which connection(field bus/ Ethernet)will be used.Most turn key systems are delivered with PLC‟s.The construction of the Swiss Light Source(SLS)has shown that also a VME based I/O system running a CCS – in this case EPICS – can be successfully commissioned [6].PLC Based Systems
PLC based systems are a consequence of the turn key ansatz.The next obvious approach might be to look besides commercial PLC‟s also for commercial SCADA systems.The advantage is clearly the same like for the PLC: stable software, no programming – only configuration, support and good documentation.At DESY we have successfully established a relation between the controls group which provides a CCS service based on EPICS and the utility group which uses the EPICS configuration tools to set up their control environment.The big advantage though being that the EPICS code can be adjusted to the special requirements from both sides.Industrial Solutions
The difference between CCS solutions and commercial solutions is fading away as soon as industry starts to deliver and support collaborative control systems.At KEK a company was contracted to supply programmers for the KEK-B upgrade.These programmers were trained in writing drivers and application code for EPICS.As a result the KEK-B control system is a mixture of software developed partly by industry and partly in house.This is another example for an industrial involvement for a CCS implementation.COST
The question: “Was is the total cost of ownership(TCO)of a PC?” has kept people busy since PC‟s exist.The answers vary to all extremes.The question what is the TCO of a control system might give similar results.If you go commercial you have to pay for the initial licenses the implementation which is typically carried out by the supplier or by a subcontractor, and you pay for the on going software support which might or might not include the update license fee.If you go for a collaborative approach, you might contract a company or implement everything on your own.A question of „time and money‟ as industry says.You will have more freedom and flexibility for your implementations but also a steeper learning curve.You can rely on the collaboration to provide new features and versions or you can contribute yourself.A major difference calculating the long term costs for a control system.At DESY one can roughly estimate that the(controls application)-support for a commercial approach – here D/3is nearly the same.The software support and upgrade license fee is equivalent to one and a half FTE‟s – which is about the manpower necessary to support new hardware and to upgrade EPICS.CONCLUSIONS
Depending on the size and the requirements for a controls project the combination of commercial solutions and solutions based on a collaborative approach is possible in any rate between 0 and 100 percent.This applies for all levels from implementation to
long term support.Special requirements on safety issues or a lack of manpower might turn the scale commercial.The necessity to interface special hardware, special timing requirements, the „having the code in my hands‟ argument or the initial costs for commercial solutions will turn the scale collaborative.As long as collaborative approaches like EPICS stay up to date and run as stable and robust as commercial solutions, both will keep their position in the controls world in a complementary symbiosis.
第二篇:土木工程毕业论文中英文翻译
外文翻译
班级:xxx 学号:xxx 姓名:xxx
一、外文原文:
Structural Systems to resist lateral loads Commonly Used structural Systems With loads measured in tens of thousands kips, there is little room in the design of high-rise buildings for excessively complex thoughts.Indeed, the better high-rise buildings carry the universal traits of simplicity of thought and clarity of expression.It does not follow that there is no room for grand thoughts.Indeed, it is with such grand thoughts that the new family of high-rise buildings has evolved.Perhaps more important, the new concepts of but a few years ago have become commonplace in today’ s technology.Omitting some concepts that are related strictly to the materials of construction, the most commonly used structural systems used in high-rise buildings can be categorized as follows: 1.Moment-resisting frames.2.Braced frames, including eccentrically braced frames.3.Shear walls, including steel plate shear walls.4.Tube-in-tube structures.5.Core-interactive structures.6.Cellular or bundled-tube systems.Particularly with the recent trend toward more complex forms, but in response also to the need for increased stiffness to resist the forces from wind and earthquake, most high-rise buildings have structural systems built up of combinations of frames, braced bents, shear walls, and related systems.Further, for the taller buildings, the majorities are composed of interactive elements in three-dimensional arrays.The method of combining these elements is the very essence of the design process for high-rise buildings.These combinations need evolve in response to environmental, functional, and cost considerations so as to provide efficient structures that provoke the architectural development to new heights.This is not to say that imaginative structural design can create great architecture.To the contrary, many examples of fine architecture have been created with only moderate support from the structural engineer, while only fine structure, not great architecture, can be developed
without the genius and the leadership of a talented architect.In any event, the best of both is needed to formulate a truly extraordinary design of a high-rise building.While comprehensive discussions of these seven systems are generally available in the literature, further discussion is warranted here.The essence of the design process is distributed throughout the discussion.Moment-Resisting Frames Perhaps the most commonly used system in low-to medium-rise buildings, the moment-resisting frame, is characterized by linear horizontal and vertical members connected essentially rigidly at their joints.Such frames are used as a stand-alone system or in combination with other systems so as to provide the needed resistance to horizontal loads.In the taller of high-rise buildings, the system is likely to be found inappropriate for a stand-alone system, this because of the difficulty in mobilizing sufficient stiffness under lateral forces.Analysis can be accomplished by STRESS, STRUDL, or a host of other appropriate computer programs;analysis by the so-called portal method of the cantilever method has no place in today’s technology.Because of the intrinsic flexibility of the column/girder intersection, and because preliminary designs should aim to highlight weaknesses of systems, it is not unusual to use center-to-center dimensions for the frame in the preliminary analysis.Of course, in the latter phases of design, a realistic appraisal in-joint deformation is essential.Braced Frames The braced frame, intrinsically stiffer than the moment –resisting frame, finds also greater application to higher-rise buildings.The system is characterized by linear horizontal, vertical, and diagonal members, connected simply or rigidly at their joints.It is used commonly in conjunction with other systems for taller buildings and as a stand-alone system in low-to medium-rise buildings.While the use of structural steel in braced frames is common, concrete frames are more likely to be of the larger-scale variety.Of special interest in areas of high seismicity is the use of the eccentric braced frame.Again, analysis can be by STRESS, STRUDL, or any one of a series of two –or three dimensional analysis computer programs.And again, center-to-center dimensions are used commonly in the preliminary analysis.Shear walls The shear wall is yet another step forward along a progression of ever-stiffer structural systems.The system is characterized by relatively thin, generally(but not always)concrete elements that provide both structural strength and separation between building functions.In high-rise buildings, shear wall systems tend to have a relatively high aspect ratio, that is, their height tends to be large compared to their width.Lacking tension in the foundation system, any structural element is limited in its ability to resist overturning moment by the width of the system and by the gravity load supported by the element.Limited to a narrow overturning, One obvious use of the system, which does have the needed width, is in the exterior walls of building, where the requirement for windows is kept small.Structural steel shear walls, generally stiffened against buckling by a concrete overlay, have found application where shear loads are high.The system, intrinsically more economical than steel bracing, is particularly effective in carrying shear loads down through the taller floors in the areas immediately above grade.The system has the further advantage of having high ductility a feature of particular importance in areas of high seismicity.The analysis of shear wall systems is made complex because of the inevitable presence of large openings through these walls.Preliminary analysis can be by truss-analogy, by the finite element method, or by making use of a proprietary computer program designed to consider the interaction, or coupling, of shear walls.Framed or Braced Tubes The concept of the framed or braced or braced tube erupted into the technology with the IBM Building in Pittsburgh, but was followed immediately with the twin 110-story towers of the World Trade Center, New York and a number of other buildings.The system is characterized by three –dimensional frames, braced frames, or shear walls, forming a closed surface more or less cylindrical in nature, but of nearly any plan configuration.Because those columns that resist
lateral forces are placed as far as possible from the cancroids of the system, the overall moment of inertia is increased and stiffness is very high.The analysis of tubular structures is done using three-dimensional concepts, or by two-dimensional analogy, where possible, whichever method is used, it must be capable of accounting for the effects of shear lag.The presence of shear lag, detected first in aircraft structures, is a serious limitation in the stiffness of framed tubes.The concept has limited recent applications of framed tubes to the shear of 60 stories.Designers have developed various techniques for reducing the effects of shear lag, most noticeably the use of belt trusses.This system finds application in buildings perhaps 40stories and higher.However, except for possible aesthetic considerations, belt trusses interfere with nearly every building function associated with the outside wall;the trusses are placed often at mechanical floors, mush to the disapproval of the designers of the mechanical systems.Nevertheless, as a cost-effective structural system, the belt truss works well and will likely find continued approval from designers.Numerous studies have sought to optimize the location of these trusses, with the optimum location very dependent on the number of trusses provided.Experience would indicate, however, that the location of these trusses is provided by the optimization of mechanical systems and by aesthetic considerations, as the economics of the structural system is not highly sensitive to belt truss location.Tube-in-Tube Structures The tubular framing system mobilizes every column in the exterior wall in resisting over-turning and shearing forces.The term‘tube-in-tube’is largely self-explanatory in that a second ring of columns, the ring surrounding the central service core of the building, is used as an inner framed or braced tube.The purpose of the second tube is to increase resistance to over turning and to increase lateral stiffness.The tubes need not be of the same character;that is, one tube could be framed, while the other could be braced.In considering this system, is important to understand clearly the difference between the shear and the flexural components of deflection, the terms being taken from beam analogy.In a framed tube, the shear component of deflection is associated with the bending deformation of columns and girders(i.e, the webs of the framed tube)while the flexural component is associated with the axial shortening and lengthening of columns(i.e, the flanges of the framed tube).In a
braced tube, the shear component of deflection is associated with the axial deformation of diagonals while the flexural component of deflection is associated with the axial shortening and lengthening of columns.Following beam analogy, if plane surfaces remain plane(i.e, the floor slabs),then axial stresses in the columns of the outer tube, being farther form the neutral axis, will be substantially larger than the axial stresses in the inner tube.However, in the tube-in-tube design, when optimized, the axial stresses in the inner ring of columns may be as high, or even higher, than the axial stresses in the outer ring.This seeming anomaly is associated with differences in the shearing component of stiffness between the two systems.This is easiest to under-stand where the inner tube is conceived as a braced(i.e, shear-stiff)tube while the outer tube is conceived as a framed(i.e, shear-flexible)tube.Core Interactive Structures Core interactive structures are a special case of a tube-in-tube wherein the two tubes are coupled together with some form of three-dimensional space frame.Indeed, the system is used often wherein the shear stiffness of the outer tube is zero.The United States Steel Building, Pittsburgh, illustrates the system very well.Here, the inner tube is a braced frame, the outer tube has no shear stiffness, and the two systems are coupled if they were considered as systems passing in a straight line from the “hat” structure.Note that the exterior columns would be improperly modeled if they were considered as systems passing in a straight line from the “hat” to the foundations;these columns are perhaps 15% stiffer as they follow the elastic curve of the braced core.Note also that the axial forces associated with the lateral forces in the inner columns change from tension to compression over the height of the tube, with the inflection point at about
5/8 of the height of the tube.The outer columns, of course, carry the same axial force under lateral load for the full height of the columns because the columns because the shear stiffness of the system is close to zero.The space structures of outrigger girders or trusses, that connect the inner tube to the outer tube, are located often at several levels in the building.The AT&T headquarters is an example of an astonishing array of interactive elements: 1.The structural system is 94 ft(28.6m)wide, 196ft(59.7m)long, and 601ft(183.3m)high.2.Two inner tubes are provided, each 31ft(9.4m)by 40 ft(12.2m), centered 90 ft(27.4m)apart in the long direction of the building.3.The inner tubes are braced in the short direction, but with zero shear stiffness in the long direction.4.A single outer tube is supplied, which encircles the building perimeter.5.The outer tube is a moment-resisting frame, but with zero shear stiffness for the center50ft(15.2m)of each of the long sides.6.A space-truss hat structure is provided at the top of the building.7.A similar space truss is located near the bottom of the building 8.The entire assembly is laterally supported at the base on twin steel-plate tubes, because the shear stiffness of the outer tube goes to zero at the base of the building.Cellular structures A classic example of a cellular structure is the Sears Tower, Chicago, a bundled tube structure of nine separate tubes.While the Sears Tower contains nine nearly identical tubes, the basic structural system has special application for buildings of irregular shape, as the several tubes need not be similar in plan shape, It is not uncommon that some of the individual tubes one of the strengths and one of the weaknesses of the system.This special weakness of this system, particularly in framed tubes, has to do with the concept of differential column shortening.The shortening of a column under load is given by the expression
△=ΣfL/E For buildings of 12 ft(3.66m)floor-to-floor distances and an average compressive stress of 15 ksi(138MPa), the shortening of a column under load is 15(12)(12)/29,000 or 0.074in(1.9mm)per story.At 50 stories, the column will have shortened to 3.7 in.(94mm)less than its unstressed length.Where one cell of a bundled tube system is, say, 50stories high and an adjacent cell is, say, 100stories high, those columns near the boundary between.the two systems need to have this differential deflection reconciled.Major structural work has been found to be needed at such locations.In at least one building, the Rialto Project, Melbourne, the structural engineer found it necessary to vertically pre-stress
the lower height columns so as to reconcile the differential deflections of columns in close proximity with the post-tensioning of the shorter column simulating the weight to be added on to adjacent, higher columns.二、原文翻译:
抗侧向荷载的结构体系
常用的结构体系
若已测出荷载量达数千万磅重,那么在高层建筑设计中就没有多少可以进行极其复杂的构思余地了。确实,较好的高层建筑普遍具有构思简单、表现明晰的特点。
这并不是说没有进行宏观构思的余地。实际上,正是因为有了这种宏观的构思,新奇的高层建筑体系才得以发展,可能更重要的是:几年以前才出现的一些新概念在今天的技术中已经变得平常了。
如果忽略一些与建筑材料密切相关的概念不谈,高层建筑里最为常用的结构体系便可分为如下几类:
1. 抗弯矩框架。
2. 支撑框架,包括偏心支撑框架。3. 剪力墙,包括钢板剪力墙。4. 筒中框架。5. 筒中筒结构。6. 核心交互结构。
7. 框格体系或束筒体系。
特别是由于最近趋向于更复杂的建筑形式,同时也需要增加刚度以抵抗几力和地震力,大多数高层建筑都具有由框架、支撑构架、剪力墙和相关体系相结合而构成的体系。而且,就较高的建筑物而言,大多数都是由交互式构件组成三维陈列。
将这些构件结合起来的方法正是高层建筑设计方法的本质。其结合方式需要在考虑环境、功能和费用后再发展,以便提供促使建筑发展达到新高度的有效结构。这并不是说富于想象力的结构设计就能够创造出伟大建筑。正相反,有许多例优美的建筑仅得到结构工程师适当的支持就被创造出来了,然而,如果没有天赋甚厚的建筑师的创造力的指导,那么,得以发展的就只能是好的结构,并非是伟大的建筑。无论如何,要想创造出高层建筑真正非凡的设计,两者都需要最好的。
虽然在文献中通常可以见到有关这七种体系的全面性讨论,但是在这里还值得进一步讨论。设计方法的本质贯穿于整个讨论。设计方法的本质贯穿于整个讨论中。
抗弯矩框架
抗弯矩框架也许是低,中高度的建筑中常用的体系,它具有线性水平构件和垂直构件在接头处基本刚接之特点。这种框架用作独立的体系,或者和其他体系结合起来使用,以便提供所需要水平荷载抵抗力。对于较高的高层建筑,可能会发现该本系不宜作为独立体系,这是因为在侧向力的作用下难以调动足够的刚度。
我们可以利用STRESS,STRUDL 或者其他大量合适的计算机程序进行结构分析。所谓的门架法分析或悬臂法分析在当今的技术中无一席之地,由于柱梁节点固有柔性,并且由于初步设计应该力求突出体系的弱点,所以在初析中使用框架的中心距尺寸设计是司空惯的。当然,在设计的后期阶段,实际地评价结点的变形很有必要。
支撑框架
支撑框架实际上刚度比抗弯矩框架强,在高层建筑中也得到更广泛的应用。这种体系以其结点处铰接或则接的线性水平构件、垂直构件和斜撑构件而具特色,它通常与其他体系共同用于较高的建筑,并且作为一种独立的体系用在低、中高度的建筑中。
尤其引人关注的是,在强震区使用偏心支撑框架。
此外,可以利用STRESS,STRUDL,或一系列二维或三维计算机分析程序中的任何一种进行结构分析。另外,初步分析中常用中心距尺寸。
剪力墙
剪力墙在加强结构体系刚性的发展过程中又前进了一步。该体系的特点是具有相当薄的,通常是(而不总是)混凝土的构件,这种构件既可提供结构强度,又可提供建筑物功能上的分隔。
在高层建筑中,剪力墙体系趋向于具有相对大的高宽经,即与宽度相比,其高度偏大。由于基础体系缺少应力,任何一种结构构件抗倾覆弯矩的能力都受到体系的宽度和构件承受的重力荷载的限制。由于剪力墙宽度狭狭窄受限,所以需要以某种方式加以扩大,以便提从所需的抗倾覆能力。在窗户需要量小的建筑物外墙中明显地使用了这种确有所需要宽度的体系。
钢结构剪力墙通常由混凝土覆盖层来加强以抵抗失稳,这在剪切荷载大的地方已得到应用。这种体系实际上比钢支撑经济,对于使剪切荷载由位于地面正上方区域内比较高的楼层向下移特别有效。这种体系还具有高延性之优点,这种特性在强震区特别重要。
由于这些墙内必然出同一些大孔,使得剪力墙体系分析变得错综复杂。可以通过桁架模似法、有限元法,或者通过利用为考虑剪力墙的交互作用或扭转功能设计的专门计处机程序进行初步分析
框架或支撑式筒体结构:
框架或支撑式筒体最先应用于IBM公司在Pittsburgh的一幢办公楼,随后立即被应用于纽约双子座的110层世界贸易中心摩天大楼和其他的建筑中。这种系统有以下几个显著的特征:三维结构、支撑式结构、或由剪力墙形成的一个性质上差不多是圆柱体的闭合曲面,但又有任意的平面构成。由于这些抵抗侧向荷载的柱子差不多都被设置在整个系统的中心,所以整体的惯性得到提高,刚度也是很大的。
在可能的情况下,通过三维概念的应用、二维的类比,我们可以进行筒体结构的分析。不管应用那种方法,都必须考虑剪力滞后的影响。
这种最先在航天器结构中研究的剪力滞后出现后,对筒体结构的刚度是一个很大的限制。这种观念已经影响了筒体结构在60层以上建筑中的应用。设计者已经开发出了很多的技术,用以减小剪力滞后的影响,这其中最有名的是桁架的应用。框架或支撑式筒体在40层或稍高的建筑中找到了自己的用武之地。除了一些美观的考虑外,桁架几乎很少涉及与外
墙联系的每个建筑功能,而悬索一般设置在机械的地板上,这就令机械体系设计师们很不赞成。但是,作为一个性价比较好的结构体系,桁架能充分发挥它的性能,所以它会得到设计师们持续的支持。由于其最佳位置正取决于所提供的桁架的数量,因此很多研究已经试图完善这些构件的位置。实验表明:由于这种结构体系的经济性并不十分受桁架位置的影响,所以这些桁架的位置主要取决于机械系统的完善,审美的要求,筒中筒结构:
筒体结构系统能使外墙中的柱具有灵活性,用以抵抗颠覆和剪切力。“筒中筒”这个名字顾名思义就是在建筑物的核心承重部分又被包围了第二层的一系列柱子,它们被当作是框架和支撑筒来使用。配置第二层柱的目的是增强抗颠覆能力和增大侧移刚度。这些筒体不是同样的功能,也就是说,有些筒体是结构的,而有些筒体是用来支撑的。
在考虑这种筒体时,清楚的认识和区别变形的剪切和弯曲分量是很重要的,这源于对梁的对比分析。在结构筒中,剪切构件的偏角和柱、纵梁(例如:结构筒中的网等)的弯曲有关,同时,弯曲构件的偏角取决于柱子的轴心压缩和延伸(例如:结构筒的边缘等)。在支撑筒中,剪切构件的偏角和对角线的轴心变形有关,而弯曲构件的偏角则与柱子的轴心压缩和延伸有关。
根据梁的对比分析,如果平面保持原形(例如:厚楼板),那么外层筒中柱的轴心压力就会与中心筒柱的轴心压力相差甚远,而且稳定的大于中心筒。但是在筒中筒结构的设计中,当发展到极限时,内部轴心压力会很高的,甚至远远大于外部的柱子。这种反常的现象是由于两种体系中的剪切构件的刚度不同。这很容易去理解,内筒可以看成是一个支撑(或者说是剪切刚性的)筒,而外筒可以看成是一个结构(或者说是剪切弹性的)筒。
核心交互式结构:
核心交互式结构属于两个筒与某些形式的三维空间框架相配合的筒中筒特殊情况。事实上,这种体系常用于那种外筒剪切刚度为零的结构。位于Pittsburgh的美国钢铁大楼证实了这种体系是能很好的工作的。在核心交互式结构中,内筒是一个支撑结构,外筒没有任何剪切刚度,而且两种结构体系能通过一个空间结构或“帽”式结构共同起作用。需要指出的是,如果把外部的柱子看成是一种从“帽”到基础的直线体系,这将是不合适的;根据支撑核心的弹性曲线,这些柱子只发挥了刚度的15%。同样需要指出的是,内柱中与侧向力有关的轴向力沿筒高度由拉力变为压力,同时变化点位于筒高度的约5/8处。当然,外柱也传
递相同的轴向力,这种轴向力低于作用在整个柱子高度的侧向荷载,因为这个体系的剪切刚度接近于零。
把内外筒相连接的空间结构、悬臂梁或桁架经常遵照一些规范来布置。美国电话电报总局就是一个布置交互式构件的生动例子。
1、结构体系长59.7米,宽28.6米,高183.3米。
2、布置了两个筒,每个筒的尺寸是9.4米×12.2米,在长方向上有27.4米的间隔。
3、在短方向上内筒被支撑起来,但是在长方向上没有剪切刚度。
4、环绕着建筑物布置了一个外筒。
5、外筒是一个瞬时抵抗结构,但是在每个长方向的中心15.2米都没有剪切刚度。
6、在建筑的顶部布置了一个空间桁架构成的“帽式”结构。
7、在建筑的底部布置了一个相似的空间桁架结构。
8、由于外筒的剪切刚度在建筑的底部接近零,整个建筑基本上由两个钢板筒来支持。
框格体系或束筒体系结构:
位于美国芝加哥的西尔斯大厦是箱式结构的经典之作,它由九个相互独立的筒组成的一个集中筒。由于西尔斯大厦包括九个几乎垂直的筒,而且筒在平面上无须相似,基本的结构体系在不规则形状的建筑中得到特别的应用。一些单个的筒高于建筑一点或很多是很常见的。事实上,这种体系的重要特征就在于它既有坚固的一面,也有脆弱的一面。
这种体系的脆弱,特别是在结构筒中,与柱子的压缩变形有很大的关系,柱子的压缩变形有下式计算:
△=ΣfL/E 对于那些层高为3.66米左右和平均压力为138MPa的建筑,在荷载作用下每层柱子的压缩变形为15(12)/29000或1.9毫米。在第50层柱子会压缩94毫米,小于它未受压的长度。这些柱子在50层的时候和100层的时候的变形是不一样的,位于这两种体系之间接近于边缘的那些柱需要使这种不均匀的变形得以调解。
主要的结构工作都集中在布置中。在Melbourne的Rialto项目中,结构工程师发现至少有一幢建筑,很有必要垂直预压低高度的柱子,以便使柱不均匀的变形差得以调解,调解的方法近似于后拉伸法,即较短的柱转移重量到较高的邻柱上。
第三篇:中英文翻译--工业机器人-精品
Industrial robots There are variety of definitions of the term robot.Depending on the definition used, the number of robot installations worldwide varies widely.Numerous single-purpose machines are used in manufacturing plants that might appear to be robots.These machines are hardwried to perform a single function and cannot be reprogrammed to preform a different function.Such single-purpose machines do not fit the definition for industrial robots that is becoming widely accepted.this definition was developed by the Robot Institute of America.A robot is a reprogrammable multifunctional mainipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks.Note that this definition contains the words reprogrammable and multifunctional.It is these two characteristics that separate the ture industrial robot from the various single-purpose machines used in modern manufacturing firms.The term “reprogrammable” implies two things: The robot operates according to a written program, and this program can be rewritten to accommodate a variety of manufactureing tasks.The term “multifunctional” means that the robot can, through reprogramming and the use of different end-effectors, perform a number of different manufacturing tasks.Definitions written around these two critical characteristics are becoming the accpted definitions among manufacturing professionals.The first articulated arm came about in 1951 and was used by the U.S.Atomic Energy Commission.In 1954, the first programmable robot was designed by George Devol.It was based on two important technologies:(1)Numerical control(NC)technology.(2)Romote manipulator technology.Numerical contorl technology provided a form of machine control ideally suited to robots.It allowed for the control of motion by stored programs.These programs contain date points to which the sequentially moves, timing signals initiate action and to stop movement, and logic staements to allow for decision making.Remote manipulator technology allowed a machine to be more than just another NC machine.It allowed such machines to become robots that can perform a variety of manufacturing tasks in both inaccessible and unsafe environments.By merging these two technologies, Devol developed the first industrial robot, an unsophisticated programmable materials handling machine.The first commerically produced robot was developed in 1959.In 1962, General Motors Corporation.This robot was produced by Unimation.A major step forword in robot control occurred in 1973 with the development of the T-3 industrial robot by Cincinnati Milacron.The T-3 robot was the first commercially produced industrial robot controlled by a minicomputer.Numerical control and remote manipulator technology prompted the wide-scale development and use of industrial robots.But major technological developments do not take place simply because of such new capabilities.Something must provide the impetus for taking advantage of these capabilities.In the case of industrial robots, the impetus was economics.The rapid inflation of wages experienced in the 1970s tremendously increased the personnel costs of manufacturing firms.At the same time, foreign competition became a serious problem for U.S.manufacturers.Foreign manufacturers who had undertaken automation on a wide-scale basis, such as those in Japan, began to gain an increasingly large share of the U.S.and world market for manufactured goods, particularly automobiles.Through a variety of automation techniques including robots, Japanese manufacturers, beginning in the 1970s, were able to produce better automobiles more cheaply than nonautomated U.S.manufacturers.Consequently, in order to survive, U.S.manufacturers were forced to consider any technological developments that could help improve productivity.It became imperative to produce better products at lower costs in order to be competitive with foreign manufacturers.Other factors such as the need to find better ways of performing dangerous manufacturing tasks contributed to the development of industial robots.However, the principal rationale has always been, and is still, improved productivity.One of the principal advantages of robots is that they can be used in settings that are dangerous to humans.Welding and parting are examples of applications where robots can be used more safely than humans.Even though robots are closely associated with safety in the workplace, they can, in themselves, be dangerous.Robots and robot cells must be carefully designed and configured so that they do not endanger human workers and other machines.Robot work envelops should be accurately calculated and a danger zone surrounding the envelope clearly marked off.Red flooring strips and barries can be used to keep human workers out of a robot’s work envelope.Even with such precautions it is a good idea to have an automatic shutdown system in situations where robots are used.Such a system should have the capacity to sense the need for an automatic shutdown of operations.Fault-tolerant computers and redundant systems can be installed to ensure proper shutdown of robotics systems to ensure a safe enviroment.About componets of a robot system, the componets of a robot system could be discussed either from a systems point of view.Physically, we could divide the system, and controller(computer).Likewise, the robot itself could be partitioned anthropomorphically into base, shoulder, elbow, wrist, gripper, and tool.Most of these terms require little explanation.Consequently, we will describe the components of a robot system from the point of view of information transfer.That is, what information or signal enters the component;what logical or arithmetic operation does the component perform;and what information or signal does the component produce? It is important to note that the same physical component may performs many different information processing operations(e.g., a central computer performs many different calculations on different data).Likewise, two physically separate components many perform identical informations(e.g., the shoulder and elbow actuators both convert signals to motion in very similar ways).中文:
工业机器人
有许多关于机器人这个术语的定义。采用不同的定义,全世界各地机器人的数量就会发生很大的改变。在制造工厂中使用的许多但用途机器可能会看起来像机器人。这些机器是硬连线的,用来完成单一的工作,不能通过重新编程的方法去完成不同的工作。这种单用途的机器不能满足被人们日益广泛接受的关于工业机器人的定义。这个定义是由美国机器人协会提出的: 机器人是一个可以改编程序的多功能操作器,被设计用来按预先编制的,能够完成多种作业的运动程序运送材料,零件,工具或者专用设备。
注意在这个定义中包含有“可以改编程序”和“多功能”这两个词。正是这两个词将真正的机器人与现代制造工厂中使用的单一用途的机器区分开来。“可以改编程序”这个术语意味着两件事:机器人根据编写的程序工作,以及可以通过重新编程来适应不同种类的制造工作的需要。
“多功能”这个词意味着机器人能通过编程和使用不同的末端执行机构,来完成不同的制造工作。围绕着两个关键特征所撰写的定义正在变成为制造业的专业人员接受的定义。
第一个带有活动关节的手臂于1951年被研制出来,由美国原子能委员会使用。在1954年,第一个可以编程的机器人由乔治·狄弗设计出来。他基于下面来两项重要技术:
(1)数字控制(NC)技术。(2)远程操作器技术。
数字控制技术提供了一种非常适合机器人的机器控制技术。它可以通过存储的程序对运动进行控制。这些程序包含机器人进行顺序运动的数据,开始运动和停止运动的时间控制信号,以及作出决定所需要的逻辑语句。
远程操作器技术使得一台机器的性能超出一台数控机器。它可以使这种机器能够在不容易进入和不安全的环境中完成各种制造任务。通过融合了上述两种技术,狄弗研制出第一个机器人,它是一个不复杂的,可以编程的物料运送机器人。
第一台商业化生产的机器人在1959年研制成功。通用汽车公司在1962年安装了第一台用于生产线上的工业机器人,它是尤尼梅森公司生产的。在1973年,辛辛提那·米兰克朗公司研制出T-3工业机器人,在机器人的控制方面取得了较大的进展。T-3机器人是第一台商业化生产的采用计算机控制的机器人。
数字控制技术和远程操作器技术推动了大范围的机器人研制和应用。但是主要的技术进步并不仅仅是由于这些新的应用能力而产生的,而是必须有利用这些能力所得到的效益来提供动力。就工业机器人而言,这个动力是经济性。
在20世纪70年代中,工资的快速增长大大增加了制造业的企业中的人工费用。与此同时,来自国外的竞争成为美国制造业所面临的严重考验。诸如日本等外国的制造厂家在广泛的应用了自动化技术之后,其工业产品,特别是汽车,在美国和世界市场中占据了日益增大的份额。
通过采用包括机器人在内的各种自动化技术,从70年代开始,日本的制造厂家能够比没有采用自动化技术的美国制造厂家生产更多的和更便宜的汽车。随后,为了生存,美国制造厂家进行竞争,必须以比较低的成本,生产出更好的产品。其他的因素,注入寻找能够更好的完成带有危险性的制造工作的方式也促进了工业机器人的发展。但是,主要的理由一直是,而且现在仍然是提高生产率。
机器人的一个优点是它们可以在相对于人类来说是危险的环境中工作。采用机器人进行焊接和切断工作室比由人工来完成这些工作更安全的例子。尽管机器人与工作地点的安全密切相关,它们本身也可能是危险的。
应该仔细的设计和配置机器人和机器人单元,使它们不会伤害人类和其他机器。应该精确的计算出机器人的工作范围,并且在这个范围的四周清晰地标出危险区域。可以采用在地上划出红颜色的线和设置障碍物以阻止工人进入机器人的工作范围。
即使有了这些预防措施,在使用机器人的场地中设置一个自动停止工作的系统仍然不失为一个好主意。机器人这个系统应该具有能够检测出是否有需要自动停止工作的要求的能力。为了保证能有一个安全的环境,应当安装容错计算机和冗余系统来保证在适当的时候停止机器人的工作。
关于机器人系统的组成部分,可以从物质的观点也可以从系统的观点来讨论机器人系统的组成部分。从物质上看,我们可以将机器人分为机器人,电源系统和控制器(计算机)。机器人本身可以像人一样被分为基座,肩,肘,腕,抓持器和工具。这些术语中的大部分不需要做任何解释。
因此,我们将根据信息传递的观点来描述机器人系统的组成部分。也就是,什么信息或者信号进入计算机的组成部分,这个组成部分进行何种逻辑或者算术运算,这个组成部分产生什么信息或者信号?应该认识到,同一个组成部分可以完成许多不同的信息处理工作(例如,中心计算机可以根据不同的数据进行许多不同种类的计算),这一点是很重要的。与之相似,在结构上分开的两个组成部分可以进行相同的信息操作(例如,肩部和肘部的执行机构用非常相似的方式将信息转换为运动)。
注:出自《机械工程专业英语》
第四篇:煤矿自动化控制系统
煤矿自动化控制系统 >> 主、副井提升自动控制系统
主、副井提升自动控制系统一、系统概述:
矿井提升机常被人们称为矿山的咽喉,是矿山最重要的关键设备,是地下矿井与外界的唯一通道,肩负着提升煤炭、矿石、下放材料、升降人员和设备等的重要运输责任,其电控技术的发展对促进矿井生产效率的提高和安全作业,无疑具有极其重大的影响。近年来,随着我国经济的快速发展和对矿山资源需求的高速增长,对矿山生产技术提出了越来越高的要求。因此为使用现代化信息技术,充分发挥煤矿管理信息网络和各生产控制系统应有的功效,实现监管控一体化的理想格局,并达到减员增效的目的;我公司特为现矿井提升机配置新型工业监控系统,组成原煤生产运输的集中监控系统,由地面计算机统一管理,对主副井提升电控系统进行自动化控制。
二、系统功能原理图:
(主井定量装载提升系统图)(副井操车提升系统图)
(定量装载流程图)
(箕斗提升及卸载流程图)
(箕斗定量装载上位机主画面图)
三、系统功能:
我国目前正在服务的矿井提升机的电控系统主要有以下四种方案:交直交变频调速系统、转子电路串电阻的交流调速系统、直流发电机与直流电动机组成的GM直流调速系统和晶闸管整流装置供电的V-M直流调速系统。公司本系统以安全、可靠、高效、经济为出发点,以可靠性原则为依据,使系统不仅适用于煤矿井下有瓦斯,煤尘爆炸危险的恶劣环境,也适用于地面恶劣环境,而且它可完成提升行程的测量和设定;本系统实现了对提升过程的程序控制,精度高,甚至可以取消爬行段;实现了速度、电流以及矢量的数字交换等,对提升机进行闭环调节;实现行程、速度等重要参数及提升状态的监视;具有良好的控制监视系统;实现了显示、记录和打印等有关数据的全部自动化,并能和全矿井监控系统联网运行。在配备一至二名巡检员之后,各点无需再配备专门人员,所有监控均由集控室来操作完成。因此该系统明显降低了设备故障率、简化了操作、减轻了工人劳动强度、提高了生产运行的安全可靠性、最大限度地缩减装卸载的时间,达到了提高产量,实现增效的目的。
四、系统组成与特点:
1、本集控系统由监控主站和上井口PLC(提升)、下井口PLC(定量或信号)的监控分站、视频监控子系统组成。
2、地面监控主站:监控主站由上位工控机、不间断电源、信号传输接口和集控软件、视频监控子系统等部分组成。该主站可单机监控各设备,并可通过以太网接口与全矿网络联接。主站设在地面集控室,为2台工业PC机。
上位机系统:上位机系统含工控机、大屏幕LCD、打印机、不间断电源等,2台工控机的配置完全相同,组成同时工作的冗余系统。平时,可1台作为操作员站工作于监控方式、另1台作为工程师站工作于管理方式,也可2台都工作于监控方式,均可实现对运输系统设备的监控和开、停各运输系统。
组态软件:上位机组态软件选用SIMENS公司WINCC6.0(正版)实时监控组态软件,工作于Window 2000平台,完成所需的图形监控、动态图形显示、历史数据采集、状态趋势图、自诊断、报警等诸多功能。集控系统的组网功能,上位PC机可通过以太网接口与全矿综合自动化网络连接,实现信息共享。
3、监控分站:在上井口和下井口分别设 KJD24Z 可编程控制机,实现各系统设备的监控及自动控制; 通过PROFIBUS总线接口与监控主站连接。此可编程控制机为本系统的核心主控单元,它采用高性能进口西门子PLC技术,从根本上提高了系统的工作可靠性及使用寿命。其多 CPU 并行处理技术、多重抗干扰技术、模块化结构和高防护等级设计,配以电源继电器箱、各种传感器保护装置、通信信号装置以及与驱动装置相应的控制设备构成适用于各种类型提升系统的高可靠性电控成套设备。并具备完善的保护和通信信号联络功能。
4、变频、高开通信软件:选用本公司开发的实时监控通信软件,工作于PC平台,通过RS485总线完成对高开柜的保护模块(PA150微机综合保护)及高压变频控制器的数据采集及控制任务,及时将所需的数据、历史数据记录、故障及动作记录参数融入WINCC组态系统中,实现实时在线式的远程监控功能。
5、高开柜、低压配电柜:高开室内安装多台高开柜,采用双回路供电,其中2台是进线柜,1台PT柜,电机启动柜(根据电机台数确定);高开柜内使用小车式高压BC开关,具有运行稳定,更换方面,维护简单等特点;高开柜的线路和设备保护选用PA150微机综合保护装置,具有检测精度高,保护动作反应快,数据处理记录功能强大等特点。在集控室配置多台GGD低压配电柜,采用双回路供电,低压配电柜主要为提升电控保护系统和盘型闸泵站电机提供电源,同时也为小型负荷提供电源。
6、提升系统保护及数据采集:采用智能数据采集技术、其通过采集模块以RS485总线与可编程控制机进行通信,实时在线不间断地采集现场保护数据;本系统保护不但动作灵敏度高、反应及时;而且在安装施工及维护中,大大节约电缆的使用量、减少施工工程进度和日常维护量。
7、提升系统故障保护: ⑴、立即安全制动故障。该类故障综合在硬软件安全电路中, 安全电路正常时吸合, 有紧急故障时释放, 一旦安全电路释放, 就会立即封锁变频器、跳制动油泵, 并控制油压系统电磁阀实施安全制动、抱安全闸。主要安全制动故障有: ① 转动系统故障。如主回路和控制回路电源故障, 主电机过热、堵转, 变频器故障等;②过卷故障;③超速故障。如等速、超速、减速段定点超速和连续超速等;④ 紧急故障;⑤ 液压制动系统故障。如制动油泵跳, 系统油压高等;⑥错向;⑦测速轴编码器断线;⑧松绳故障。
⑵、先电气制动、后安全制动故障。故障发生后, 转动系统会自动进行减速, 当速度降到爬行速度时会立即转为紧急制动。故障主要有事故停车和闸瓦磨损等。⑶、完成本次开车后, 不允许再次开车故障。开车前如出现这类故障, 则开不起车;如在运行过程中出现, 则允许本次开车完成, 但不允许下次开车, 除故障解除。故障主要有电机过热报警、液压站油温过高等。
8、视频监控子系统:在提升系统重要岗点安装防爆广角度红外摄像头,进行现场信息采集,以光纤为载体传入集控室主机柜,经视频分配器输出至各监视器和显示服务器,实现了各岗点设备运行状态和生产情况的24小时全天候监控,发现问题可以及时处理,有效降低了事故发生率,提高了生产效率。9.系统特点主要概括:
⑴、主、副井提升信号及自动装卸载各自具有集控、自动、手动三种工件方式,手动方式用于装卸载的调试和检修。信号在检修状态只有慢车信号。
⑵、自动装载定量、定容、定时保护及显示。
⑶、故障自动报警功能,及传感器的故障自诊断。
⑷、提升次数记忆功能和提升信号的断电记忆功能。
⑸、有工业光纤环网冗余通讯功能。
⑹、上、下井口信号间的闭锁功能、检测箕斗的装卸载位置异常功能。
⑺、防止二次装载保护功能。
⑻、主、副井提升信号及自动装卸载有上位机系统、能监测各个设备的运行状态、故障记忆查询、产量的累计及报表、空载、满载、超载的标定,及定量斗假余煤的校零功能。
⑼、与绞车控制回路的闭锁功能、及PROFIBUS-DP软件通讯回路闭锁。
⑽、有联络呼叫功能。⑾、有井上下煤仓煤位的连续实时监测功能。
⑿、有与全矿井综合自动化的以太网接口。
⒀、系统有供电电源的绝缘监测与电压监测功能。
⒁、箕斗的卸载状态监视功能,检测箕斗是否卸空。
⒂、有对装载皮带的温度、烟雾、跑偏、堆煤、断带及拉线急停等八大保护功能。
⒃、有对动力负荷的保护上位机监测功能,如缺相,短路,堵转,过载,相不平衡,漏电等故障进行监测保护。
⒄、整个系统的通过网络访问维护功能。
五、依据的标准及规范:
GB3836.1-2000爆炸性气体环境用电气设备 第1部分:通用要求 GB3836.2-2000爆炸性气体环境用电气设备 第1部分:隔爆型“d”
GB3836.4-2000爆炸性气体环境用电气设备 第1部分:本质安全型“i” GB4942.2 低压电器外壳防护等级
MT209 煤矿通信、检测、控制用电工电子产品通用技术要求 煤矿安全规程(2004)
第五篇:行政管理专业毕业论文中英文翻译
新公共管理的现状
欧文·E·休斯
(澳大利亚莫纳什大学管理系)
毫无疑问,世界上许多国家,无论是发达国家还是发展中国家,在20世纪80年代后期和90年代初期都开始了一场持续的公共部门管理变革运动。这场改革运动至今仍在很多方面继续对政府的组织和管理产生着影响。人们对于这些改革的看法众说纷纭,莫衷一是。批评家尤其是英国和美国的批评家们认为,新模式存在着各种各样的问题,而且也不具有国际普遍性的改革意义,公共管理不可能被称为范式。批评几乎涵盖了变化的各个方面。大多数批评都属于学术上的吹毛求疵。不同的思想流派讨论着细枝末节;学术期刊上的文章也越来越抽象,远离现实。同时,公共管理者在实践中不断推动和实施着这项变化和改革。正如我在其他文章中所认为的那样,在大多数国家,传统的公共行政模式已经为公共管理模式所取代。公共部门的变革回应了几个相互联系的重大现实问题,包括:职能公共部门提供公共服务的低效率;经济理论的变化;私营部门相关变化产生的影响,尤其是全球化作为一种经济力量的兴起;技术变化使得分权同时又能更好地控制全局成为可能。行政管理可以分为三个鲜明的发展阶段:前传统阶段、公共行政传统模式阶段和公共管理改革阶段。每个阶段都有自己的管理模式。从上一个阶段过渡到下一个阶段并非轻而易举,从传统的公共行政到公共管理的过渡至今尚未完成。但这只是时间的问题。因为新模式背后的理论基础非常强大。这场变革运动以“新公共管理”著称,尽管这个名称引起了争论,然而它不但在蓬勃发展着,而且是对大多数发达国家已经采取的管理模式的最佳表述。传统的行政模式相对于它所处的时代是一项伟大的改革,但是,那个时代已经过去了。
一、前传统模式
很显然,在19世纪末官僚体制理论尚未健全之前,已经存在着某种形式的行政管理。公共行政已经有很长的历史了,它与政府这一概念以及文明的兴起一样历史悠久。正如格拉登(Glad2den)指出的那样,行政的某种模式自从政府出现之后就一直存在着。首先是创始者或领导者赋予社会以可能,然后是组织者或行政者使之永恒。行政或事务管理是所有社会活动中的中间因素,虽然不是光彩夺目,但对社会的持续发展却是至关重要的。公认的行政体制在古埃及就已经存在了,其管辖范围从每年的尼罗河泛滥引起的灌溉事务到金字塔的建造。中国在汉朝就采用了儒家规范,认为政府应当是民选的,不是根据出身,而是根据品德和能力,政府的主要目标是谋取人民的福利。在欧洲,各种帝国——希腊、罗马、神圣罗马、西班牙等首先是行政帝国,它们由中央通过各种规则和程序进行管理。韦伯认为,中世纪“现代”国家的发展同时伴随着“官僚治理结构的发展”。尽管这些国家以不同的方式进行管理,但它们具有共同的特点,这可以称为前现代。也就是说,早期的行政体制本质上是人格化的,或者说是建立在韦伯所说的“裙带关系”的基础上,也就是说以效忠国王或大臣等某个特定的人为基础,而不是非人格化的;以效忠组织或国家为基础而不是以个人为基础。尽管存在着这么一种观点,即认为行政管理本身不为人赞许的特点仅仅来自于传统模式,但早期的做法常常导致谋求个人利益的贪污行为或滥用职权。在早期行政体制下,我们现在看来觉得很奇怪的做法曾是当时执政政府职能的普遍行为。那些一心走仕途的人往往依靠朋友或亲戚获取工作或买官,这就是说先以钱来收买海关官员或税收官员,然后再向客户伸手要钱,从而既回收了最初的买官投资成本,又可以大赚一笔。美国19世纪的“政党分肥制度”意味着在执政党发生了变化的同时,政府中的所有行政职位也发生了变化。前现代官僚体制是“个人的、传统的、扩散的、同类的和特殊的”,而按照韦伯的论证,现代官僚体制应当是“非人格化的、理性的、具体的、成就取向的和普遍的”。个人化政府往往是低效率的:裙带关系意味着无能的而不是能干的人被安排到领导岗位上;政党分肥制常常导致腐败,此外还存在着严重的低效率。传统行政模式的巨大成功使得早期做法看起来很奇怪。专业化、非政治化行政在我们看来是如此顺理成章,以至难以想象到会有别的制度存在。西方的行政制度即使简单到通过考试选拔官员的想法,也是直到1854年英国的诺思科特—屈维廉报告出台后才开始建立,尽管这种制度在中国早已通行很久了。
二、传统的公共行政模式
在19世纪末期,另外一种模式开始在全世界流行,这就是所谓的传统行政模式。它的主要理论基础来源于几个国家的学者,即,美国的伍德罗·威尔逊和德国的马克斯·韦伯,人们把他们和官僚制模式相联系;弗雷德里克·泰勒系统地阐述了科学管理理论,该理论也来源于对美国私营部门的运用,为公共行政提供了方 法。与其他理论家不同,泰勒没有着力关注公共部门,可是他的理论却在该领域具有广泛影响。这三位理论家是传统公共行政模式的主要影响者。对于其他国家来说,还要加上诺思科特和屈维廉,他们对美国之外的国家的行政尤其是威尔逊的行政体制产生了重要影响。在19世纪中期,诺思科特和屈维廉最先提出了通过考试和品德来任命官员的主张,并提出了无偏见和行政中立的观点。传统的行政模式有以下几个主要特点: 1.官僚制。政府应当根据等级、官僚原则进行组织。德国社会学家马克斯·韦伯对官僚制度有一个经典的、清晰的分析。虽然这种官僚制思想在商业组织和其他组织中采用过,但它在公共部门得到了更好和更长久的执行。
2.最好的工作方式和程序都在详尽全面的手册中加以规定,以供行政人员遵循。严格地遵守这些原则将会为组织运行提供最好的方式。
3.官僚服务。一旦政府涉足政策领域,它将成为通过官僚体制提供公共产品和服务的提供者。
4.在政治、行政二者的关系中,行政管理者一般认为政治与行政事务是可以分开的。行政就是贯彻执行指令,而任何事关政策或战略事务的决定都应当由政治领导者做出,这可以确保民主责任制。
5.公共利益被假定为公务员个人的惟一动机,为公众服务是无私的付出。6.职业化官僚制。公共行政被看作是一种特殊活动,因而要求公务员保持中立、默默无闻、终身雇用以及平等地服务于任何一个政治领导人。
7.行政任务的书面含义是执行他人的指令而不承担由此而致的个人责任。通过对比早期的行政模式,我们可以更好地理解韦伯体系的主要优点和不同点。韦伯制度和它以前的各种模式最重要的区别在于:以规则为基础的非人格化的制度取代了人格化的行政管理制度。一个组织及其规则要比组织中的任何个人都重要。官僚制度就其运作以及如何对客户做出反应方面必须是非人格化的。正如韦伯所论证的那样“:将现代公职管理归并为各种规定深深地触及了它的本质。现代公共行政理论认为,以法令形式来命令执行某些事务的权威已被合法地授予了公共机关。这并没有授予某机构具体情况下通过指令实施某种事务的权力。它只能是抽象地管制某种事务。与此形成鲜明对比的是,通过个人特权和赋予特许权管制所有事务。后者的情况完全是由世袭制支配的,至少就这些事务不是不可 3 被侵犯的传统而言是这种情况。”
这一点非常重要。早期的行政管理以人际关系为基础,个人要忠诚于亲戚、保护人、领导人或政党,而不是对体制负责。有时,早期行政管理在政治上是比较敏感的,因为行政机关的人员是任命的,他们更是政客的臂膀或主流阶级。但是,它也常常是专制的,专制的行政可能是不公平的,特别是对那些不能够或者不愿意投入个人政治游戏的人来说更是如此。一个以韦伯原则为基础的非人格化的制度可以完全消除专制——至少在理想情况下是如此。档案的存在、前例原则的参照和法律依据意味着在相同的环境中总是会做出相同的决策。在这种情况下不仅效率更高,而且公民和官僚等级制中的人员都知道自己所处的立场。
其他的差别均与此相联系。在各种规定和非人格化的基础上,会很自然地形成严格的等级制度。等级制度及其规定在个人离开组织后保持不变。虽然韦伯强调的是整个制度,但他也注意到了官僚制组织中的个人任期和条件。
传统行政模式获得了极大的成功,它为全世界各国政府所广泛采用。无论是从理论上还是从实践上看,它都显示出了优势。与以前腐败盛行的制度相比,它更具效率,而且职业化公务员的思想对个人以及业余服务都是一个巨大的进步。然而,该模式现在也暴露出了问题,这些问题表明该模式即使不能说已经过时了,也可以说即将过时。
公共行政的理论支柱已经难以描述政府现实了。政治控制理论已经问题重重。行政意味着遵从他人的指令,因此要求有一个秩序井然的收发方法。指令的发出者与实施者之间有一个明确的划分。但是这并不现实,并且随着公共服务规模和领域的扩大而愈加不可能。传统模式的另一理论支柱——官僚制理论也不再被认为是组织的特别有效形式。正式的官僚体制可能有它的优势,但人们也认为它往往培养墨守成规者而不是创新者;鼓励行政人员规避风险而不是勇于冒险,鼓励他们浪费稀缺资源而不是有效利用。韦伯曾把官僚制看成是“理想类型”,但现在这种理想类型却培养了惰性、丧失进取心、导致平庸和低效率,这些被认为是公共部门的特有病。它也由此遭受批评。实际上“,官僚”这个词在今天更多地被看成是低效率的同义词。
三、新公共管理模式
20世纪八九十年代,在公共部门出现了一种针对传统行政模式的缺陷的新 管理方法。这种方法可以缓解传统模式的某些问题,同时也意味着公共部门运转方面发生了引人注目的变化。这种新的管理方法有很多名称“:管理主义”、“新公共管理”“、以市场为基础的公共行政”“、后官僚制典范”或“企业型政府”。到90年代后期,人们越来越倾向于使用“新公共管理”的概念。
尽管新公共管理的名称众多,但对于公共部门管理发生的实际变化而言,人们还是有一种共识。第一,无论这种模式叫什么,它都代表着一种与传统公共行政不同的重大变化,它更为关注结果的实现和管理者的个人责任。第二,它明确表示要摆脱古典官僚制,从而使组织、人事、任期和条件更加灵活。第三,它明确规定了组织和人事目标,这就可以根据绩效指标测量工作任务的完成情况。同样,还可以对计划方案进行更为系统的评估,也可以比以前更为严格地确定政府计划是否实现了其预定目标。第四,高级行政管理人员更有可能带有政治色彩地致力于政府工作,而不是无党派或中立的。第五,政府更有可能受到市场的检验,将公共服务的购买者与提供者区分开,即将“掌舵者与划桨者区分开”。政府介入并不一定总是指政府通过官僚手段行事。第六,出现了通过民营化和市场检验、签订合同等方式减少政府职能的趋势。在某种情况下,这是根本性的。一旦发生了从过程向结果转化的重要变革,所有与此相连的连续性步骤就都是必要的。
霍姆斯(Holmes)和尚德(Shand)对这次改革的特点作了一个特别有用的概括。他们把新公共管理视作范式,这种好的管理方法具有以下特点:(1)这是一种更加富有战略性或结构导向型的决策方法(强调效率、结果和服务质量)。(2)分权式管理环境取代了高度集中的等级组织结构。这使资源分配和服务派送更加接近供应本身,由此可以得到更多相关的信息和来自客户及其他利益团体的反馈。(3)可以更为灵活地探索代替直接供应公共产品的方法,从而提供成本节约的政策结果。(4)关注权威与责任的对应,以此作为提高绩效的关键环节,这包括强调明确的绩效合同的机制。(5)在公共部门之间和内部创造一个竞争性的环境。(6)加强中央战略决策能力,使其能够迅速、灵活和低成本地驾驭政府对外部变化和多元利益做出反应。(7)通过要求提供有关结果和全面成本的报告来提高责任度和透明度。(8)宽泛的服务预算和管理制度支持和鼓励着这些变化的发生。
新公共管理并没有认为实现某结果有一条最好的途径。管理者在被赋予责任之前并没有被告知如何获得结果。决定工作方式是管理者的一个职责,如果没有 5 实现预定的目标,管理者对此应当承担责任。
四、结论
政府管理在过去的一百五十年里经历了三种模式。首先是人格化或前现代行政模式,当该模式日益暴露其缺陷以及出于提高效率的目的,它就被第二种模式即传统的官僚行政模式所取代。同样,当传统行政模式问题重重时,它就为第三种模式即新公共管理取代,从政府转向替代性市场。20世纪80年代以来,市场的主导地位就如同20世纪20年代到60年代官僚制度居主导地位一样。在任何一种政府制度中,官僚和市场都是共存的,只是在某个阶段一种形式占主导地位,而在另一阶段,另一种形式占主导地位。新公共管理时代是官僚制日益削弱而市场在公共行政领域占据统治地位的时期。
在现实中,市场和官僚体制相互需要,相互补充。新公共管理不可能完全代替官僚制,正如1989年以前的东欧,官僚制不可能代替市场一样。但新公共管理运动表明的是,早期传统官僚制的许多功能都可以而且现在经常由市场来执行。在一个官僚制作为组织原则日益削弱的环境下,市场解决方案就会被推出。当然不是所有的市场药方都能成功,但这不是问题的核心。政府将从新公共管理这一工具箱中探寻到解决方案。如果这些方案行之无效,政府就会从同一来源中寻找其他方案。政府管理背后的理论基础已经发生了变革,我们完全可以用“范式”这一术语来描述它。在公共行政学术界,有许多对新公共管理持否定态度的批评家。但是他们的批评对迅速开展的政府改革影响很小。在新公共管理模式之后,会出现另一种新的模式,但肯定不会回到传统的行政模式。The New Public Management Situation
Owen E.Hughes Monash University Management(Australia)
No doubt, many countries in the world, and both developed countries and developing countries, in the late 1980s and early 1990s began a continuous public sector management reform movement.The reform movement is still in many aspects government continue to the organization and management of the influence.People in these reforms view repudiating them.Critics especially in Britain and the United States, critics say the new mode of various problems exist, but also does not have the international prevailing reform of public management, could not be called paradigm.Criticism from almost every aspect of the change.Most of the academic criticism belong to the mouth.Different schools of thought in detail discussion, The academic journal articles and abstraction, from reality.At the same time, in the practice of public management and implementation of the reform and the change.As I in other articles in the thought, in most countries, the traditional public administrative mode for public management mode has been replaced.The reform of public department responded to the realities of several interrelated problems, including: the function of public sector provide public services of low efficiency, Economic theory of change, Private sector related changes impact of globalization, especially as a kind of economic power, Technology changes made decentralization and better control globally becomes possible.The administrative management can be divided into three stages: the development of distinct phases, and public administration before traditional pattern and public management reform stage.Each stage has its own management mode.From a stage of transition to the next stage is not easy, from the traditional public administration to public administration has not yet completed the transition.But it was only a matter of time.Because the new mode of theoretical basis is very strong.The new public management movement “, ”although this name, but it is not only a debate in the booming, and in most developed countries have taken the best management mode of expression.The traditional administrative mode than it's age is a great reform, but that time has passed.A traditional pattern Obviously, in the late 19th century bureaucracy system theory, not sound already exists some form of administrative management.Public administration has a long history, and it is the concept of a government and the rise of civilization as history.As the case Glad2den Osama bin laden(point), a model of administrative since the government appears has existed.First is endowed with founder or leader, then is the social or administrative person to organizers of eternity.Administration management or business is all in social activities, although not among factors, but the glow of social sustainable development is of vital importance.Recognized administrative system in ancient Egypt is already exists, its jurisdiction from the Nile flooding caused by the year to build the pyramids irrigation affairs.China is adopted in the han dynasty, Confucian norms that government should be elected, not according to the background, but according to the character and ability, the government's main goal is to seek the welfare of the people.In Europe, various empirebegan to establish in China, although the system has long passage.The traditional public administrative pattern In the late 19th century, additionally one kind of pattern on the world popular, this is the so-called traditional administrative pattern.Its main theoretical basis from several countries, namely, the American scholars and Germany Woodrow Wilson of Max Weber's, people put their associated with bureaucracy model, Frederick Tyler systematically elaborated the scientific management theory, the theory of the private sector from America, for public administration method was provided.And the other theorists, Taylor without focusing on public sector, but his theory was influential in this field.The three traditional public administration mode is theorist of main effect.In other countries, plus G..M.Trevelyan and North America, the state administration of administrative system, especially the Wilson has produced important influence.In the 19th century, the north G..M.Trevelyan and put forward through the examination and character, and appointed officials put forward bias and administrative neutral point of view.The traditional administrative pattern has the following features: 1.The bureaucracy.The government shall, according to the principle of bureaucratic rank and organization.The German sociologist Max Weber bureaucracy system of a classic, and analysis.Although the bureaucracy in business organizations and other tissues, but it is in the public sector got better and longer.2.The best way of working and procedures are in full manual detail codes, for administrative personnel to follow.Strictly abide by these principles will run for the organization provides the best way.3.Bureaucratic service.Once the government policy areas in, it will be through the bureaucracy to provide public products and service providers.4.In political and administrative two relations, political and administrative managers generally think of administrative affairs can be separated.Administration is the implement instruction, and any matter policy or strategic affairs shall be decided by the political leaders, which can ensure that the democratic system.5.Public interests are assumed to individual civil servants, the only motive for public service is selfless paying.6.Professional bureaucracy.Public administration is viewed as a kind of special activities, thus requirements, obscure, civil servants neutral equal employment and lifelong service to any political leaders.7.The administrative task is to carry out the meaning of the written instructions and not others assume the personal responsibility.Through the comparison of the early administrative pattern, we can better understand the main advantages and Webber system differences.Webber system and it is the most important mode of various before the difference: the rule-based impersonal system replaced the personification of administrative management system.An organization and its rules than any of the people are important organization.Bureaucracy is its operation and how to respond to customer must is personified.As Weber has demonstrated that the modern office management “, will be incorporated into various regulations deeply touched it.The modern public administration by law theory, to command certain affairs authority has been awarded the legitimate public authority.This does not grant an institution specific cases through some instructions.It only matters is abstractly control some issues.In contrast, through personal privileges and give concession regulation of all affairs.The latter is completely dominated by the hereditary system, at least these affairs is not the traditional infringement is this situation.” It is very important.Early administration based on personal relationships, be loyal to relatives, protect, leaders or political, rather than on the system.Sometimes, the early administration is politically sensitive, because of the administrative organs of the staff is appointed, they also politicians arms or mainstream class.However, it is often autocratic, autocratic administration may be unfair, especially for those who can't or unwilling to input personal and political game.One of the basic principles for with weber impersonal system to completely eliminate autocraticbureaucracy theory is no longer considered particularly effective form of organization.Formal bureaucracy could have its advantages, but people think it often training to routineer and innovators, Encourage executives rather than risk aversion risk-taking, encourage them to waste instead of effective use of scarce resources.Webb was the bureaucracy is regarded as an ideal type “, ”but now this ideal type is inert, cultivate the progressive, leads to low efficiency, these mediocrity and is believed to be the public sector of the special disease.It is also criticized.Actually, the word “bureaucracy in today's more likely as low efficiency of synonyms.The new public management mode In the 1980s, the public sector is a traditional administrative pattern of new management methods of defects.This method can alleviate some of the problems of traditional pattern, also means that the public sector operation aspects has changed significantly.The new management method has many names: management of ”individualism“, ”the new public administration“, based on the market of public administration ”, after the bureaucracy model “or” entrepreneurial government “.To the late 1990s, people tend to use ”and the concept of new public administration“.Although the new public management, but for many of the names of public management of department of actual changes happened, people still have a consensus.First, no matter what, it is called mode with traditional represents a significant change of public administration, different more attention and managers of the individual responsibility.Second, it is clear to get rid of the classical bureaucracy, thereby organization, personnel, term and conditions more flexible.Third, it stipulates the organization and personnel, and it can target according to the performance indicators measuring task completion.Also, to plan the assessment system for more than ever before, and also can be more strictly determine whether the government plans to achieve its objectives.Fourth, the senior executives are more likely to color with political government work, rather than independent or neutral.Fifth, the more likely the inspection by the market, buyers of public service provider and distinguish ”helmsman, with the rower to distinguish“.Government intervention is not always refers to the government by means of bureaucracy.Sixth, appeared through privatization and market means such as inspection, contract of government function reduce trend.In some cases, it is fundamental.Once happened during the transformation from the important changes to all connected with this, the continuity of the steps are necessary.Holmes and Shand as a useful characteristics of generalization.They put the new public management paradigm, the good as management method has the following features:(1)it is a more strategic or structure of decision-making method(around the efficiency, quality and service).(2)decentralization type management environment replaced concentration level structure.The resource allocation and service delivery closer to supply, we can get more itself from the customers and related information and other interest groups.(3)can be more flexible to replace the method of public products supply directly, so as to provide cost savings of the policy.(4)concerned with the responsibility, authority as the key link of improving performance, including emphasize clear performance contract mechanism.(5)in the public sector, and between internal to create a competitive environment.(6)strengthen the strategic decision-making ability, which can quickly, flexible and low cost to manage multiple interests outside change and the response.(7)by request relevant results and comprehensive cost reports to improve transparency and responsibility.(8)general service budget and management system to support and encourage the change.The new public management and realize a result that no one in the best way.Managers in endowed with responsibility and without being told to get results.Decision is a management job duties, if not for achieving goals, managers should assume responsibility.Conclusion The government management over the past 150 years experienced three modes.First is the personification of modern administrative mode, or when the pattern of its defects and increasingly exposed to improve efficiency, it is the second mode of traditional bureaucracy model is replaced.Similarly, when the traditional administrative mode problems, it is the third model is the new public management, from the government to alternative market.Since 1980s, the dominance of the market as the 1920s to 1960s dominant bureaucracy.In any kind of government, market and bureaucratic system are coexisting, just a form at some stage dominant, and in another stage of another kind of form, the dominant.The new public management is increasingly weakened and bureaucracy in the public administration field market dominant period.In reality, the market and bureaucracy, mutual complement each other.The new public management may not be completely replace the bureaucracy, as in 1989, the eastern Europe before bureaucracy could not instead of the market.But the new public management movement is early traditional bureaucracy, many functions can be and often by market now.In a bureaucracy system for organizational principle is weakened environment, market solutions will be launched.Of course not all market prescription can succeed, but this is not the issue.The government of new public management will be a toolbox dowsed solutions.If the scheme of the ineffective, the government will from the same source for other solutions.The theory behind the government management has already happened, we can use the term ”paradigm" to describe it.In public administration academia, many of the new public management denial of critics.But their criticism of the government reform quickly.In the new public management mode, another a kind of new mode, but certainly not returned to the traditional administrative pattern.