第一篇:初中数学:几何推理证明详解
初中数学:几何推理证明详解
几何推理的依据是定义、公理、定理,做这类题,首先就是要掌握基本公式的知识点,今天瑞德特刘老师就几何题的解题步骤进行详解。一、三个关键词:“条件”,“推出”,“结论”。
简单地讲,几何推理就是由条件推出结论,这与命题的结构(任何一个命题都由条件和结论两部分组成)是相一致的。推理的依据是命题,而命题就是在讲述什么条件可以推出什么结论。上个世纪的初中以及现在的高中推理不仅可以使用“∵”、“∴”,还可以使用推出符号“?”。了解推出符号“?”,可以更好地理解什么是几何推理。
二、学习几何推理,就从一步推理开始。
推理的依据是定义、公理、定理。那么每学一个定义、公理、定理,都要熟练掌握它的推理形式。
第二篇:浅谈初中几何的推理与证明
浅谈初中几何的推理与证明
什么是推理呢?推理是根据已知判断得出新判断的思维过程,推理由题设和结论两部分所组成,学习几何对培养学生逻辑思维及逻辑推理能力有特殊的作用,但面对许多而不同的证明题,往往很多学生都感到束手无策,无从下手,因此,帮助学生寻找证题方法,探求规律,是我们初中数学教师教学的一个重要教学任务,它对培养学生的证题能力,有较好的积极作用,下面就如何培养学生的推理证明能力,谈谈我在教学中的具体做法。
一、首先培养学生学会划分几何命题的“题设”和“结论”
1、任何一个命题都是由题设和结论两部分组成的,通常的形式为“如果……那么……”“若……则”等等,“如果”或“若”开头的部分就是题设,“那么”或“则”开始的部分就是结论,要求学生掌握这些重要的关联词语进行划分,有的命题,题设,结论较为明显,如:如果两条直线都与第三条直线平行(题设),那么这两条直线也互相平行(结论)。但也有的命题,题设与结论不太明显,例如“等角的补角相等”对这样的命题,最好要求将它改写成“如果……那么……”的形式,等角的补角相等“可改写为:如果两个角是等角的补角(题设),那么这两个角相等(结论)。
2、使学生正确划分命题的“题设”和结论,必须使学生理解每个命题,它都是一个完整的整体,是判断一件事情的语句,每个命题都由题设和结论两部分组成,一个命题中,题设就是已知条件,即被判断的对象,结论就是由已知条件判断出来的结果,也就是“求证”部分,在教学中,要在平时不断的训练中加强学生对几何命题的理解。
二、其次要培养学生将文字叙述的命题改写成数学式子并画出图形的能力。
1、按命题题意,画出相应的几何图形,并标注字母。
2、根据命题题意,结合相应图形,将题设与结论用数学符号或数学式子具体化,即具体地写出“已知”和“求证”。
3、对于初一刚学几何的学生,还要注意加强几何符号语言的培养与训练。例如:(人教版七年级下册P24,练习第8题)用式子表示下列语句。
因为∠1和∠2相等,根据“内错角相等,两直线平行”所以AB和EF平行。用式子表示为 ∵ ∠1=∠2(已知)
∴ AB//EF(内错角相等,两直线平行)
三、培养学生学会推理说明。
1几何证明的意义和要求
推理论证的过程要符合客观实际,论证要有充分的根据,不能主观猜想,证明中的每一步推理论证的根据就是命题中给出的题和已证事项,定义、公理和定理,这也就是说几何命题的证明,就是要把给出的结论用充分的根据,严密的逻辑推理加以说明。
2、加强分析训练,培养逻辑推理能力。
几何中命题复杂,类型繁多,要培养学生分析与综合的逻辑推理能力,特别要重视对问题的分析,在初中几何中常用的分析方法有:
(1)综合法:即由命题的题设至结论的定向思考方法,我们从已知条件出发进行推理,顺次逐步推向结论,达到目标的思考过程。
例如:求证:等腰梯形的对角线成相等已知:梯形ABCD为等腰梯形
求证:AC=BD
证明:∵梯形ABCD为等腰梯形
∴AB=CD
∠ABC=∠DCB(等腰梯形两底角相等)
又∵BC=CB(公共边)
∴△ABC≌△DCB(SAS)
∴AC=BD(全等三角形对应边相等)
(2)分析法:即由命题的结论至题设的定向思考方法,在探究证题途经时,我们不是从已知条件入手,而是从求证着手进行分析推理,要获得这个结果,需要什么条件,这个条件又由什么可获得,一步一步往前找,直至推究的条件与已知条件相合为止。
例如:如图□ABCD的对角成AC和BD相交于点O,点E、F是AC上的两点,并且AE=CF,求证:四边形BFDE是平行四边形。
分析:综合平行四边形的几种判定方法要证四边形BFDE是平行四边形,只需证BD与EF互相平分,即EO=FO,3、培养学生学会添辅助成分析
要使学生认识到在几何证明题中,辅助线引导恰当,可使较难证明题转化为较易证明题,但辅助线的引导要有一定目的,在一定分析基础上进行的,怎样引辅助成要根据具体的命题分析后再确定,但在平时的教学中教师要强调常用辅助线的和作法应用。例如:有直径出现,往往构造直径所对的圆周角是直角。过圆心作弦的垂线从而运用垂经定理,有中点出现常构造出三角形或梯形的中位线等等。
四、最后,要培养学生证题时养成规范的书写习惯。
对于初学几何的学生,可用填充形式来训练学生证题的书写格式和逻辑推理过程,使书写规范,推理有理有据,训练的时间久了,学生也就在潜移默化中转入了独立书写这样一个规范的过程当中。
求证AB//CD
证明:∵AD//BC()
∴∠1=()
又∵∠BAD=∠BCD()
∴∠BAD-∠1=∠BCD-∠2
即:∠3=∠4
∴AB//()
总之:几何推理证明的分析和书写是一个重要而学生又难以掌握的过程,它需要教师较长时间的引导和帮助,才能逐步形成学生自己的技能和技巧,但不管怎样,教师在教学中要反复强调这样一个模式:要证什么→需要什么→题目有了什么→还缺什么→需补什么,按照这种模式反复训练,学生是能够学好几何推理证明的。
第三篇:几何证明方法(初中数学)
初中数学几何证明题技巧,归类
一、证明两线段相等
1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。(三线合一)
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
*8.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
*10.垂径定理
二、证明两个角相等
1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.相似三角形的对应角相等。
7.圆的内接四边形的外角等于内对角。
三、证明两条直线互相垂直
1.等腰三角形的顶角平分线或底边的中线垂直于底边。
2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角(直角三角形
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
5.一条直线垂直于平行线中的一条,则必垂直于另一条。
7.利用到一线段两端的距离相等的点在线段的垂直平分线上。
8.利用勾股定理的逆定理。
9.利用菱形的对角线互相垂直。
*10.在圆中平分弦(或弧)的直径垂直于弦。垂径定理
*11.利用半圆上的圆周角是直角。
四、证明两直线平行
1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形 梯形的中位线平行于第三边,底边。
6.平行于同一直线的两直线平行。
五、证明线段的和差倍分
1.作两条线段的和,证明与第三条线段相等。
2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。
3.延长短线段为其二倍,再证明它与较长的线段相等。
4.取长线段的中点,再证其一半等于短线段。
5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。
六、证明比例式或等积式
1.利用相似三角形对应线段成比例。
2.利用内外角平分线定理。
3.平行线截线段成比例。
4.直角三角形中的比例中项定理即射影定理。
一个图,你看着哪好像差根线,你就用铅笔描一下,分析一下有了这根线哪线角相等,哪相角互补之类的.不可以只盯着原图看.另外,看已知条件里,把它们标注在图里,看人家给这个条件,你可以知道什么,这个条件有什么用,可以由此推出什么.从求证出发你就要想,这道题要求证这个,就要有.....这些条件,再看已知,有了这些条件了,噢,还差这个条件。然后就找条件来证明这个还差的条件,然后全部都搭配齐全了,就证出了题目了记住,做题要倒推走把已知的条件从笔在图上表示出来,方便分析而且你要牢牢记住一些定理,还有一些特殊角,特殊形状等等他们的关系当一些题实在证不出来时,你要注意了,可能要添辅助线,比如刚才我说的还差什么条件,你就可以画一个线段,平行线什么的来补充条件,你下子你就一目了然了,不过有些很难的看出的辅助线就要靠你的做题的作战经验了,你还要认真做题。把这些牢牢记住,在记住老师教你们的公里定理些,你就已经成功大半了。
有心学习就不怕没希望提高!课上要稍微做些笔记,特别是自己有疑问的地方,课后的练习不一定非得全部做完,浪费宝贵的时间资源,但一定要及时。对于自己比较容易犯错的地方或记忆不牢的建议用小小的随身便携纸记录下来,想看的时候随时都可以看。对于比较典型的而自己又没掌握的题型则把它抄录在专用本子上,详细的写出解题步骤,还可以从中挖掘出许多的知识点,然后再找些近似题目自己独自解答,看看差距在哪里,并想办法解决。久而久之当本子厚了以后复习,也就基本可以不用看书仅仅看本子就行了,达到事半功倍的效果,希望你早日获得快乐学习方法!
第四篇:初中数学-几何证明经典试题及答案
初中几何证明题
经典题(一)
1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.
求证:CD=GF.(初二)
A
F
G
C
E
B
O
D2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.
A
P
C
D
B
求证:△PBC是正三角形.(初二)
D2
C2
B2
A2
D1
C1
B1
C
B
D
A
A13、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.
求证:四边形A2B2C2D2是正方形.(初二)
A
N
F
E
C
D
M
B4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.
求证:∠DEN=∠F.
经典题(二)
1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.
·
A
D
H
E
M
C
B
O
(1)求证:AH=2OM;
(2)若∠BAC=600,求证:AH=AO.(初二)
·
G
A
O
D
B
E
C
Q
P
N
M2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.
求证:AP=AQ.(初二)
3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:
·
O
Q
P
B
D
E
C
N
M
·
A
设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.
求证:AP=AQ.(初二)
4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点.
P
C
G
F
B
Q
A
D
E
求证:点P到边AB的距离等于AB的一半.(初二)
经典题(三)
1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.
A
F
D
E
C
B
求证:CE=CF.(初二)
2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.
E
D
A
C
B
F
求证:AE=AF.(初二)
3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.
D
F
E
P
C
B
A
求证:PA=PF.(初二)
O
D
B
F
A
E
C
P4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.(初三)
经典题(四)
A
P
C
B1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.
求:∠APB的度数.(初二)
2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.
求证:∠PAB=∠PCB.(初二)
P
A
D
C
B3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三)
C
B
D
A4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且
AE=CF.求证:∠DPA=∠DPC.(初二)
F
P
D
E
C
B
A
A
P
C
B
经典难题(五)
1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:≤L<2.
A
C
B
P
D2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.
A
C
B
P
D3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.
E
D
C
B
A4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.
经典题(一)
1.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得==,又CO=EO,所以CD=GF得证。
2.如下图做△DGC使与△ADP全等,可得△PDG为等边△,从而可得
△DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150
所以∠DCP=300,从而得出△PBC是正三角形
3.如下图连接BC1和AB1分别找其中点F,E.连接C2F与A2E并延长相交于Q点,连接EB2并延长交C2Q于H点,连接FB2并延长交A2Q于G点,由A2E=A1B1=B1C1=
FB2,EB2=AB=BC=FC1,又∠GFQ+∠Q=900和
∠GEB2+∠Q=900,所以∠GEB2=∠GFQ又∠B2FC2=∠A2EB2,可得△B2FC2≌△A2EB2,所以A2B2=B2C2,又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2,从而可得∠A2B2
C2=900,同理可得其他边垂直且相等,从而得出四边形A2B2C2D2是正方形。
4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。
经典题(二)
1.(1)延长AD到F连BF,做OG⊥AF,又∠F=∠ACB=∠BHD,可得BH=BF,从而可得HD=DF,又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM
(2)连接OB,OC,既得∠BOC=1200,从而可得∠BOM=600,所以可得OB=2OM=AH=AO,得证。
3.作OF⊥CD,OG⊥BE,连接OP,OA,OF,AF,OG,AG,OQ。
由于,由此可得△ADF≌△ABG,从而可得∠AFC=∠AGE。
又因为PFOA与QGOA四点共圆,可得∠AFC=∠AOP和∠AGE=∠AOQ,∠AOP=∠AOQ,从而可得AP=AQ。
4.过E,C,F点分别作AB所在直线的高EG,CI,FH。可得PQ=。
由△EGA≌△AIC,可得EG=AI,由△BFH≌△CBI,可得FH=BI。
从而可得PQ=
=,从而得证。
经典题(三)
1.顺时针旋转△ADE,到△ABG,连接CG.由于∠ABG=∠ADE=900+450=1350
从而可得B,G,D在一条直线上,可得△AGB≌△CGB。
推出AE=AG=AC=GC,可得△AGC为等边三角形。
∠AGB=300,既得∠EAC=300,从而可得∠A
EC=750。
又∠EFC=∠DFA=450+300=750.可证:CE=CF。
2.连接BD作CH⊥DE,可得四边形CGDH是正方形。
由AC=CE=2GC=2CH,可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,又∠FAE=900+450+150=1500,从而可知道∠F=150,从而得出AE=AF。
3.作FG⊥CD,FE⊥BE,可以得出GFEC为正方形。
令AB=Y,BP=X,CE=Z,可得PC=Y-X。
tan∠BAP=tan∠EPF==,可得YZ=XY-X2+XZ,即Z(Y-X)=X(Y-X),既得X=Z,得出△ABP≌△PEF,得到PA=PF,得证。
经典难题(四)
1.顺时针旋转△ABP
600,连接PQ,则△PBQ是正三角形。
可得△PQC是直角三角形。
所以∠APB=1500。
2.作过P点平行于AD的直线,并选一点E,使AE∥DC,BE∥PC.可以得出∠ABP=∠ADP=∠AEP,可得:
AEBP共圆(一边所对两角相等)。
可得∠BAP=∠BEP=∠BCP,得证。
3.在BD取一点E,使∠BCE=∠ACD,既得△BEC∽△ADC,可得:
=,即AD•BC=BE•AC,①
又∠ACB=∠DCE,可得△ABC∽△DEC,既得
=,即AB•CD=DE•AC,②
由①+②可得:
AB•CD+AD•BC=AC(BE+DE)=
AC·BD,得证。
4.过D作AQ⊥AE,AG⊥CF,由==,可得:
=,由AE=FC。
可得DQ=DG,可得∠DPA=∠DPC(角平分线逆定理)。
经典题(五)
1.(1)顺时针旋转△BPC
600,可得△PBE为等边三角形。
既得PA+PB+PC=AP++PE+EF要使最小只要AP,PE,EF在一条直线上,即如下图:可得最小L=;
(2)过P点作BC的平行线交AB,AC与点D,F。
由于∠APD>∠ATP=∠ADP,推出AD>AP
①
又BP+DP>BP
②
和PF+FC>PC
③
又DF=AF
④
由①②③④可得:最大L<
2;
由(1)和(2)既得:≤L<2。
2.顺时针旋转△BPC
600,可得△PBE为等边三角形。
既得PA+PB+PC=AP+PE+EF要使最小只要AP,PE,EF在一条直线上,即如下图:可得最小PA+PB+PC=AF。
既得AF=
=
=
=
=
=。
3.顺时针旋转△ABP
900,可得如下图:
既得正方形边长L
=
=。
4.在AB上找一点F,使∠BCF=600,连接EF,DG,既得△BGC为等边三角形,可得∠DCF=100,∠FCE=200,推出△ABE≌△ACF,得到BE=CF,FG=GE。
推出
:
△FGE为等边三角形,可得∠AFE=800,既得:∠DFG=400
①
又BD=BC=BG,既得∠BGD=800,既得∠DGF=400
②
推得:DF=DG,得到:△DFE≌△DGE,从而推得:∠FED=∠BED=300。
第五篇:初一下专题6-几何推理-几何证明
专题6:几何推理-几何证明
1、已知:如图,CD⊥AD,DA⊥AB,∠1=∠2.求证:DF∥AE.C
D
E
AF
B2、已知:BF⊥AC于F,GD⊥AC于D,∠1=∠2.求证:EF∥BD.A
F
E
BDC
G3、已知:如图,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.试判断直线AB、CD是否平行,为什么?
A
BE
D
C4、如图,已知∠ABC=52°, ∠ACB=64°,∠ABC和∠ACB的平分线相交于M,DE过M且DE∥BC.(1)求∠BMC的度数;(2)过M作EC的平行线,交BC于F,求∠BMF的度数.A
M
FDBEC5、已知:如图,AB、CD被EF所截,且AB∥CD,GM∥HN.求证:(1)∠3=∠4;(2)∠1=∠2.E
A
BND
CF6、如果,直线AB.CD被EF所截,∠1 =∠2,∠CNF =∠BME.求证:MP∥NQ.
A C
F7、已知:如图,AD∥BC, DE,CF分别平分∠ADC,∠BCG.求证:DE∥CF.D
2E B P D
Q
C
4GF
E
B
A8、已知∠1=∠2,∠C=∠F.请问∠A与∠D存在怎样的关系?验证你的结论.FE
D
B
C9、如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,DE∥BF.求证:AB∥DC.DA10、A、B、C三点在同一直线上,∠1=∠2,∠3=∠D.试说明BD∥CE.F
CB
E
A
B
C11、如图,已知AB∥CD,试再添上一个条件,使∠1 =∠2成立.
(要求给出两个以上答案,并选择其中一个加以证明)
12、已知:如图,在△ABC中,FE⊥AB,CD⊥AB,G在AC边上,并且∠1=∠2.求证:∠AGD=∠ACB.F C
A
E
B
D
ADEB
G
F
C13、已知:DM⊥BC于M,AC⊥CB于C,EF⊥AB于E,∠1=∠2.试说明CD⊥AB的理由.AE
D
F
B
M
C14、如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF交CD于点G,∠1=50,求∠2的度数.15、已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.
16、已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.