联考逻辑误区详解丨证明三段论(精选五篇)

时间:2019-05-14 15:37:42下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《联考逻辑误区详解丨证明三段论》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《联考逻辑误区详解丨证明三段论》。

第一篇:联考逻辑误区详解丨证明三段论

上次,友课菌跟大家讨论了直言三段论中易犯的错误,今天继续讨论在证明三段论中容易犯的错误。证明三段论

一个三段论要成为证明三段论,需要同时满足两个条件:前提真实;推理形式正确。否则,就会犯对应的联考逻辑错误。前提不真实

所谓前提真实指的是前提的具体内容必须符合客观实际。一个不真实的前提是无法推导出正确结论的。例:

鱼都生活在水里;木鱼也是鱼;所以,木鱼生活在水里。解析:

这一三段论中,大前提真实,但小前提就不是真实的。木鱼是和尚诵经时的一种敲打工具,它与鱼的概念是两回事,不是大前提所规定的鱼。这样的三段论,就会犯小前提不真实的错误,不是证明三段论。

推理形式无效

推理形式的正确是指推理的过程必须符合直言三段论的各项规则,否则就算前提是真实的,结论也是不正确的。

在直言三段论的256种推理式中,仅只有19种是正确、有效的形式,其他的形式都犯有推理形式无效的逻辑错误。例:

球队的队员都爱好打球;小林不是球队队员;所以,小林不爱好打球。解析:

此例前提真实,但推理形式不正确,大项(P)爱好打球在结论中是周延的,但在大前提中却并不周延,犯有大项不当周延的毛病,因此结论是不正确的。

第二篇:用三段论证明

用三段论证明

在三段论中,含有大项的前提叫大前提,如上例中的“知识分子都是应该受到尊重的”;含有小项的前提叫小前提,如上例中的“人民教师是知识分子”。三段论(syllogism)是传统逻辑中的一类主要推理。又称直言三段论。古希腊哲学家亚里士多德首先提出了关于三段论的系统理论。

形式逻辑间接推理的基本形式之一,由大前提和小前提推出结论。如‘凡金属都能导电’(大前提),‘铜是金属’(小前提),‘所以铜能导电’(结论)。这称为三段论法或三段论式。

三段论属于一种演绎逻辑,是不同于归纳逻辑的,具有较强的说服力。

小前提:函数x-1在[1,∞)上是增函数大前提:根号内的x在[0,∞)上是增函数结论:函数f(x)=根号x-1在[1,∞)上是增函数厉害吧哈哈

2(1)如果有一个前提是否定判断,则大前提为全称判断;(2)如果大前提是肯定判断,则小前提为全称判断;(3)如果小前提是肯定判断,则结论为特称判断;(4)任何一个前提都不能是特称否定判断;(5)结论不能是全称肯定判断;麻烦哪位大虾帮小弟证明下这五点可以吗

3四格规则:中项在大前提中作谓项,在小前提中作主项。

1、前提之一否定,大前提全称。

2、大前提肯定,则小前提全称。

3、小前提肯定,则结论特称。

4、前提中不得有特称否定判断。

5、结论不能是全称肯定判断。证明1:如果两个前提中有一个是否定的,结论也必然是否定的(前提之一否定,结论是否定的);结论否定,则大项周延(否定判断的谓项周延);大项在第四格中处于前提的主项,只有全称时主项周延;所以,大前提必须全称。证明2:如果大前提肯定,在大前提中中项不周延(肯定判断谓项不周延);只有小前提全称,中项才周延一次(全称判断主项周延);三段论要求中项至少周延一次;所以,大前提肯定,则小前提全称。证明3:如果小前提肯定,小项在前提中不周延(肯定判断谓项不周延);如果结论全称,则在结论中小项周延,违反了在前提中不周延的项在结论中也不得周延规则;所以:小前提肯定,则结论特称。证明4:如果大前提否定,结论必要否定(前提之一否定,结论是否定的);则大项在结论中周延(否定判断的谓项周延);如果大前提特称,大项在前提中不周延(特称判断的主项不周延);这样,就违反了在前提中不周延的项在结论中也不得周延规则;因此,大前提不能是特称否定。如果小前提否定,大前提必肯定(两个否定的前提推不出结论);则中项在大前提中不周延(肯定判断谓项不周延);小前提否定,中项在小前提中也不周延(特称判断的主项不周延);三段论规则要求中项在前提中至少周延一次;因此,小前提不能是特称否定。所以,前提中不得有特称否定判断。证明5:如果结论是全称肯定判断,则小项在结论中周延(全称判断主项周延);则大项在结论中不周延(肯定判断谓项不周延);则小前提必否定才使小项在前提中周延(在前提中不周延的项在结论中也不得周延);但如果小前提否定,结论必然否定(前提之一否定,结论是否定的)与结论为肯定判断矛盾;所以,结论不能是全称肯定判断。

在三段论中,含有大项的前提叫大前提,如上例中的“知识分子都是应该受到尊重的”;含有小项的前提叫小前提,如上例中的“人民教师是知识分子”。三段论(syllogism)是传统逻辑中的一类主要推理。又称直言三段论。古希腊哲学家亚里士多德首先提出了关于三段论的系统理论。

形式逻辑间接推理的基本形式之一,由大前提和小前提推出结论。如‘凡金属都能导电’(大前提),‘铜是金属’(小前提),‘所以铜能导电’(结论)。这称为三段论法或三段论式。

三段论属于一种演绎逻辑,是不同于归纳逻辑的,具有较强的说服力。

第三篇:三段论规则证明

项的周延性是指,在性质判断中对主项或谓项的外延数量的断定情况。在一个性质判断中,如果对判断的主项(或谓项)的全部外延作了断定,那么,该判断的主项(或谓项)就是周延的;反之,就是不周延的。全称判断的主项周延;否定判断的谓项周延。其它均不周延.规则6证明:两个前提都是特称判断推不出结论 两个前提都是特称的,有三种组合,即II、OO、IO(或OI),不论是其中的哪一种情况,都不能得出结论。

(1)假如两个前提都是特称肯定判断,即II,则在两个前提中没有一个周延的项。这样,则不论哪个项做中项,都不是周延的。按照中项至少周延一次的规则,不能得出必然的结论。

(2)假如两个前提都是特称否定判断,即OO,按照两个否定的前提不能得出必然的结论这条规则,也不能得出结论。

(3)假如两个前提一个是特称肯定,另一个是特称否定,即IO(或OI),则两个前提中只有一项周延(特称否定判断的谓项)这个周延的项如果做中项,则大项在前提中就是不周延的,但是,因为有一个前提是否定的,按照两个前提中有一个是否定判断结论必然是否定的这条规则,结论必然是否定的;而结论否定,则结论的大项周延,这样就犯了“大项扩大”的错误。假如前提中唯一周延的项做大项,则又犯了中项不周延的错误。或犯大项扩大的错误,或犯中项不周延的错误,二者必居其一。因此不能得出结论。

规则7证明:如果前提中有一个是特称判断,那么结论必须是特称判断

由于两个特称的前提不能得出结论,所以两个前提中有一个是特称判断,则另一个必然是全称判断。这样,两个前提的组合共有三种情况,即AI、AO或者EI、EO。在这三种情况下,假如能得出结论,也只能得出特称的结论。

(1)两个前提都是肯定的,即AI,只有全称判断的主项周延,而其他三个项都不周延。这个周延的项必须做中项,不然就不能得出结论。其余三个不周延的项中有一个做小项,这样小项在前提中不周延,在结论中也不周延,所以结论是特称的。

(2)两个前提一个是肯定的,一个是否定的,即AO或者EI,如此则全称判断的主项周延,否定判断的谓项周延。这两个周延的项,一个必须做中项(根据中项在前提中至少周延一次的规则),一个必须做大项(因为前提中有一个是否定的,结论必然是否定的,结论是否定的,而否定判断的谓项周延)。其余两个项不周延,在这两个不周延的项中必有一个做小项,小项在前提中不周延在结论中也不能周延,所以结论是特称的。

(3)两个前提都是否定的,即EO,根据两个否定的前提不能得出必然的结论这条规则,不能得出结论。

第四篇:三段论的证明

第一格的规则证明:

• ①小前提必须是肯定的。

• 假设小前提是否定的。如此,根据基本规则,大前提必为肯定命题。大前提肯定,则大前提的谓项不周延。而在第一格中,大项是大前提的谓项,所以,大项在大前提中不周延。同时,根据基本规则4,结论是否定的。结论否定,则结论的谓项即大项必是周延的。这样,根据基本规则2,则犯了“大项不当周延”的错误。这种错误是由于小前提否定造成的。所以,假设不成立,小前提必须是肯定的。

• ②大前提必须是全称的。

• 已证此格的小前提是肯定的,则小前提的谓项不周延。在此格中,小前提的谓项是中项,故中项在小前提中是不周延的。根据基本规则1,中项在大前提中必须周延。在此格中,中项是大前提的主项,主项要周延,则大前提必须是全称的。

三段论的第二格,中项在前提中均做谓项。

1、两个前提中必须有一个是否定命题:

由于中项在两个前提中都做谓项,根据三段论的基本规则“中项至少要周延一次”,而只有否定命题的谓项是周延的,所以,前提中必须有否定命题。但是根据三段论基本规则“两个否定的前提不能推出结论”,故两个前提中必须有一个是否定命题。

2、大前提必须为全称命题:

三段论第二格的特殊规则中的第一条已经确定,即“两个前提中必须有一个是否定命题”,那么,根据三段论的基本规则“前提中有一个是否定的,结论必然是否定的”,可以得出否定命题为结论。在结论中,大项作否定命题的谓项,是周延的。根据三段论基本规则“在前提中不周延的项,在结论中也不得周延”,要保证大项在前提中周延,只有大前提为全称命题。所以,大前提必须为全称命题。第三格规则:这一格中项都处于主项位置上。

1、小前提必须肯定。

2、结论须是特称的。

证明1:

如果小前提否定,则大前提必须肯定(两个否定的前提推不出结论); 大前提肯定,则大项不周延(肯定判断的谓项不周延);

因为前提之一否定,所以结论否定;

结论否定,则大项在结论中周延;

大项在前提中不周延,而在结论中周延,违反“前提中不周延的项在结论中不得周延”的规定,所以,小前提必须肯定。

证明2:

因为小前提是肯定的(证明1已证明),所以小项是不周延的,根据“前提中不周延的项在结论中不得周延”的规则,所以,结论只能是特称的(特称判断的主项不周延)。

第三格只能得出特称结论,常用来反驳全称判断,所以又称其为“反驳格” 第四格规则:中项在大前提中作谓项,在小前提中作主项。

1、前提之一否定,大前提全称。

2、大前提肯定,则小前提全称。

3、小前提肯定,则结论特称。

4、前提中不得有特称否定判断。

5、结论不能是全称肯定判断。

证明1:

如果两个前提中有一个是否定的,结论也必然是否定的(前提之一否定,结论是否定的);

结论否定,则大项周延(否定判断的谓项周延);

大项在第四格中处于前提的主项,只有全称时主项周延;

所以,大前提必须全称。

证明2:

如果大前提肯定,在大前提中中项不周延(肯定判断谓项不周延);只有小前提全称,中项才周延一次(全称判断主项周延);

三段论要求中项至少周延一次;

所以,大前提肯定,则小前提全称。

证明3:

如果小前提肯定,小项在前提中不周延(肯定判断谓项不周延);

如果结论全称,则在结论中小项周延,违反了在前提中不周延的项在结论中也不得周延规则;

所以:小前提肯定,则结论特称。

证明4:

如果大前提否定,结论必要否定(前提之一否定,结论是否定的);则大项在结论中周延(否定判断的谓项周延);

如果大前提特称,大项在前提中不周延(特称判断的主项不周延);

这样,就违反了在前提中不周延的项在结论中也不得周延规则;

因此,大前提不能是特称否定。

如果小前提否定,大前提必肯定(两个否定的前提推不出结论);

则中项在大前提中不周延(肯定判断谓项不周延);

小前提否定,中项在小前提中也不周延(特称判断的主项不周延);三段论规则要求中项在前提中至少周延一次;

因此,小前提不能是特称否定。

所以,前提中不得有特称否定判断。

证明5:

如果结论是全称肯定判断,则小项在结论中周延(全称判断主项周延);则大项在结论中不周延(肯定判断谓项不周延);

则小前提必否定才使小项在前提中周延(在前提中不周延的项在结论中也不得周延);

但如果小前提否定,结论必然否定(前提之一否定,结论是否定的)与结论为肯定判断矛盾;

所以,结论不能是全称肯定判断。

三段论的规则一:

中项在前提中至少要周延一次,违反这一规则,就会犯“中项不周延”的错误。

为什么?

如果中项在两个前提中都不周延,就可能出现这样的情况:小项与中项的一部分发生联系,大项与中项的另一部分发生联系。在这种情况下,中项就不能在大项和小项之间起到媒介作用,从而无法得出关于小项和大项联系的必然结论。

三段论的规则二:

前提中不周延的项,在结论中不得周延。违反这一规则,就会犯 “ 大项不当周延 ” 或 “ 小项不当周延 ” 的错误。

如果一个词项在前提中不周延而在结论中周延了,即前提只陈述一个词项的部分外延,结论却陈述了这一词项的全部外延,那么,结论的陈述就超出了前提所陈述的范围。这样,结论便不被前提蕴涵,不能保证从真前提必然推出真结论。

三段论的规则三:

两个否定前提不能得出结论。

• 如果两个前提都是否定命题,则它们所陈述的是小项与大项的外延分别和中项的外延之间部分地或全部地具有排斥关系。这样,中项就不能在大项和小项之间起媒介作用,从而无法确定大、小项之间的关系。因此,不能从两个否定前提得出结论。

• 三段论的规则四:

• 如果前提中有一个是否定的,则结论必是否定的•(如果结论否定,则前提有一否定)

• 否定的前提陈述中项和一个项在外延上排斥,肯定的前提陈述中项和另一个项在外延上相容。这样,通过中项的媒介作用、大、小项之间的关系必是互相排斥的,而不会是相容的。因此,结论必然是否定的。

• 根据规则3,如果两个前提中有一个是否定的,那么另一个必是肯定的。否定的前提陈述中项和一个项在外延上排斥,肯定的前提陈述中项和另一个项在外延上相容。这样,通过中项的媒介作用、大、小项之间的关系必是互相排斥的,而不会是相容的。因此,结论必然是否定的。

规则五:两个特称前提不能得结论

• 以两个特称命题做前提,其组合情况不外乎三种:两个前提都是I命题;两个前提都是O命题;两个前提中,一个是I命题,一个是O命题。在这三种情况下,都不能推出必然结论。因为:

• ①如果两个前提都是I命题,那么由于I命题的主、谓项都不周延,因此,两个前提中没有一个项是周延的,不能满足中项至少要周延一次的要求,违反了规则1,所以,不能得出必然结论。

• ②如果两个前提都是O命题,那么根据规则3,不能得出必然结论。• ③如果两个前提中,一个是I命题,一个是O命题,那么,两个前提中只有一个项是周延的,即O命题的谓项。根据规则1,这个唯一周延的项应为中项,否则会犯“中项不周延”的错误。这样,大、小项在前提中都不周延。又根据规则4,结论是否定的,而否定命题的谓项是周延的,即大项在结论中周延;但大项在前提中是不周延的,这就违反规则2,犯了“大项不当周延”的错误。而如果避免“大项不当周延”的错误,用前提中唯一周延的项作为大项,中项又会一次不周延,从而会犯“中项不周延”的错误。因而,以I命题和O命题为前提,也不能必然得出结论。

• 综上所述,两个特称命题前提不能推出必然结论

• 规则六:如果前提中有一个是特称的,那么结论必是特称的• 根据规则5,如果两个前提中有一个特称的,那么另一个必是全称的。因此,包括一个特称命题的两个前提,其组合情况不外乎这样四种:分别是A命题和I命题,A命题和O命题,E命题和I命题,E命题和O命题的在组合。由于第四种情况,即E命题和O命题的组合明显违反规则3,无效,所以,可以排除这种情况。

• 现在看其它三种情况。

• ①如果两个前提分别是A命题和I命题,则前提中只有一个周延的项,即A命题的主项。根据规则1,这个唯一周延的项应当做中项,否则会犯“中项不周延”的错误。这样,小项在前提中不周延,根据规则2,小项在结论中也不得周延,所以结论只能是特称的。

• ②如果两上前提分别是A命题和O命题,则前提中有两个周延的项,即A

命题的主项和O命题的谓项。根据规则1,这两个周延的项其中一个要充当中项,否则会犯“中项不周延”的错误。另一个项应当充当大项,因为:根据规则4,这两个前提中有一个是否定的,结论必是否定的;结论否定,作为结论谓项的大项必是周延的,根据规则2,大项在前提中必须周延,否则会犯“大项不当周延”的错误。这样,其余两个不周延的项中必有一个是小项,根据规则2,前提中小项不周延,在结论中也不得周延,所以,结论是特称的。

• ③如果两个前提分别是E命题和I命题,那么,只能大前提是E命题,小前提是I命题,而不能是大前提是I命题,小前提是E命题。因为:如果大前提是I命题,是大项在前提中必不周延,而由于小前提是E命题,结论必否定;如此,若得结论,则必违反规则2,犯“大项不当周延”的错误。所以,应当排除“大前提是I命题,小前提是E命题”这一情况。而如果大前提是E命题,小前提是I命题,那么小项在前提中必不周延;根据规则2,小项在结论中也不得周延,否则,会犯“小项不当周延”的错误。因而,结论只能是特称的。

• 综上所述,前提中有一特称命题,所得出的有效结论必然是特称的。

第一格:AAA、(AAI)、AII、EAE、(EAO)、EIO

第二格:AEE、(AEO)、AOO、EAE、(EAO)、EIO

第三格:AAI、AII、EAO、EIO、IAI、OAO

第四格:AAI、AEE、(AEO)、EAO、EIO、IAI

由上可知,四格当中只有24个有效式,其中5个带括号的称为弱式。弱式是本应得出全称结论,但却得出了特称结论的式。弱式可以看做是派生的有效式,一般不把它们列入有效式中,这样,正确的有效式就是19个。

1、第一格的规则是:

(1)小前提必须是肯定命题。

(2)大前提必须是全称命题。

2、第二格的规则是:

(1)两个前提中必有一个是否定命题。

(2)大前提必须是全称命题。

3、第三格的规则是: • • • • •

(1)小前提必须是肯定命题。

(2)结论必须是特称命题。

4、第四格的规则是:

(1)如果前提中有一个否定命题,那么大前提必须是全称命题。

(2)如果大前提是肯定命题,那么小前提必须是全称命题。

(3)如果小前提是肯定命题,那么结论必须是特称命题。

负复合命题推理的五种基本形式:

(1)负合取命题推理:(pq)(pq)

(2)负析取命题推理:(pq)(pq)

(3)负蕴涵命题推理:(pq)(pq)

(4)负等值命题推理:(pq)(pq)(pq)

(5)双重负命题推理:pq

第五篇:用三段论方法证明

用三段论方法证明

小前提:函数x-1在[1,∞)上是增函数大前提:根号内的x在[0,∞)上是增函数结论:函数f(x)=根号x-1在[1,∞)上是增函数厉害吧哈哈

2(1)如果有一个前提是否定判断,则大前提为全称判断;(2)如果大前提是肯定判断,则小前提为全称判断;(3)如果小前提是肯定判断,则结论为特称判断;(4)任何一个前提都不能是特称否定判断;(5)结论不能是全称肯定判断;麻烦哪位大虾帮小弟证明下这五点可以吗

3四格规则:中项在大前提中作谓项,在小前提中作主项。

1、前提之一否定,大前提全称。

2、大前提肯定,则小前提全称。

3、小前提肯定,则结论特称。

4、前提中不得有特称否定判断。

5、结论不能是全称肯定判断。证明1:如果两个前提中有一个是否定的,结论也必然是否定的(前提之一否定,结论是否定的);结论否定,则大项周延(否定判断的谓项周延);大项在第四格中处于前提的主项,只有全称时主项周延;所以,大前提必须全称。证明2:如果大前提肯定,在大前提中中项不周延(肯定判断谓项不周延);只有小前提全称,中项才周延一次(全称判断主项周延);三段论要求中项至少周延一次;所以,大前提肯定,则小前提全称。证明3:如果小前提肯定,小项在前提中不周延(肯定判断谓项不周延);如果结论全称,则在结论中小项周延,违反了在前提中不周延的项在结论中也不得周延规则;所以:小前提肯定,则结论特称。证明4:如果大前提否定,结论必要否定(前提之一否定,结论是否定的);则大项在结论中周延(否定判断的谓项周延);如果大前提特称,大项在前提中不周延(特称判断的主项不周延);这样,就违反了在前提中不周延的项在结论中也不得周延规则;因此,大前提不能是特称否定。如果小前提否定,大前提必肯定(两个否定的前提推不出结论);则中项在大前提中不周延(肯定判断谓项不周延);小前提否定,中项在小前提中也不周延(特称判断的主项不周延);三段论规则要求中项在前提中至少周延一次;因此,小前提不能是特称否定。所以,前提中不得有特称否定判断。证明5:如果结论是全称肯定判断,则小项在结论中周延(全称判断主项周延);则大项在结论中不周延(肯定判断谓项不周延);则小前提必否定才使小项在前提中周延(在前提中不周延的项在结论中也不得周延);但如果小前提否定,结论必然否定(前提之一否定,结论是否定的)与结论为肯定判断矛盾;所以,结论不能是全称肯定判断。

在三段论中,含有大项的前提叫大前提,如上例中的“知识分子都是应该受到尊重的”;含有小项的前提叫小前提,如上例中的“人民教师是知识分子”。三段论(syllogism)是传统逻辑中的一类主要推理。又称直言三段论。古希腊哲学家亚里士多德首先提出了关于三段论的系统理论。

形式逻辑间接推理的基本形式之一,由大前提和小前提推出结论。如‘凡金属都能导电’(大前提),‘铜是金属’(小前提),‘所以铜能导电’(结论)。这称为三段论法或三段论式。

三段论属于一种演绎逻辑,是不同于归纳逻辑的,具有较强的说服力。

下载联考逻辑误区详解丨证明三段论(精选五篇)word格式文档
下载联考逻辑误区详解丨证明三段论(精选五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    三段论格的证明(五篇材料)

    前面在讲三段论推理的结构时,已讲到按照中项所处的4种不同位置,我们可以把三段论推理分成四种,这四种就是4个格。M—PP—MM—PP—MS—PS—PS—PS—P(第一格)(第二格)(第三格)(第四格......

    三段论中各格证明

    三段论中各格证明第一格规则:(1) 小前提必是肯定的假如小前提为否定命题,根据从两个否定的前提得不出必然的结论,大前提必为肯定命题,于是结论必为否定命题。这样,大项在前提中作为......

    三段论格的证明(大全5篇)

    A 第一格的特殊规则有两条: (1)小前提必须是肯定的。 如果小前提是否定的,那么结论必然是否定的;结论是否定的,则大项在结论中是周延的。 大项在结论中周延,则大前提必须是否定的,因......

    逻辑学三段论第四格规则证明

    逻辑学三段论第四格规则证明 第四格规则:中项在大前提中作谓项,在小前提中作主项。 1、前提之一否定,大前提全称。 2、大前提肯定,则小前提全称。 3、小前提肯定,则结论特称。 4......

    管理类联考逻辑真题最终版

    2011年1月管理类联考逻辑真题 2011-1-26. 巴斯德认为,空气中的微生物浓度与环境状况、气流运动和海拔高度有关。他在山上的不同高度分别打开装着煮过的培养液的瓶子,发现海拔......

    2018MPAcc联考逻辑如何梳理论证错题?(最终版)

    2018MPAcc联考逻辑如何梳理论证错题? MPAcc联考考试中论证题目共分为六种题型:加强支持、削弱质疑、相似比较、原因解释、概括结论以及论证评价。这六种题型中考察加强与削弱......

    联考逻辑写作提高 辩论七律有感

    辩论七律(转帖) 互联网拉近了人们的距离,但并没有同化人们的思想,网络辩论硝烟弥漫,热点话题层出不穷。但嘈杂背后的真相,却是情绪释放的帖子远多于冷静讲理的帖子,即使试图讲理的......

    2018考研联考综合逻辑具体题型分析

    2018考研联考综合逻辑具体题型分析 感谢凯程郑老师对本文做出的重要贡献 一拖三题型是逻辑考试中较为常见的题型,为帮助大家更好地复习备考,小编为大家整理了一拖三题型的相关......