长春宽城区2018-2019学年初中数学相交线与平行线单元测试题(精选合集)

时间:2019-05-14 15:48:17下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《长春宽城区2018-2019学年初中数学相交线与平行线单元测试题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《长春宽城区2018-2019学年初中数学相交线与平行线单元测试题》。

第一篇:长春宽城区2018-2019学年初中数学相交线与平行线单元测试题

长春宽城区2018-2019学年初中数学相交线与平行线单元测

试题

数学 2018.7

本试卷共6页,120分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。

一、选择题 共8小题,每小题3分,共24分。在每小题列出的四个选项中,选出符合题目要求的一项。

1.下列命题中,真命题是()

A. 圆周角等于圆心角的一半

B. 等弧所对的圆周角相等

C. 垂直于半径的直线是圆的切线

D. 过弦的中点的直线必经过圆心

2.三角形A′B′C′是由三角形ABC平移得到的,点A(-1,4)的对应点为A′(1,7),点B(1,1)的对应点为B′(3,4),则点C(-4,-1)的对应点C′的坐标为()

A.(-6,2)

B.(-6,-4)

C.(-2,2)

D.(-2,-4)

3.观察下列几个命题:①相等的角是对顶角;②同位角都相等;③三个角相等的三角形是等边三角形;④两直线平行,内错角相等;⑤若a2=b2,则a=b.其中真命题的个数有()

A. 0个

B. 1个

C. 2个

D. 3个

4.如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()

A.(﹣2,3)

B.(3,﹣1)

C.(﹣3,1)

D.(﹣5,2)5.现有甲、乙、丙、丁、戊五个同学,他们分别来自一中、二中、三中.已知:①每所学校至少有他们中的一名学生;②在二中联欢会上,甲、乙、戊作为被邀请的客人演奏了小提琴;③乙过去曾在三中学习,后来转学了,现在同丁在同一个班学习;④丁、戊是同一所学校的三好学生.根据以上叙述可以断定甲所在的学校为()

试卷第1页,总6页 A. 三中

B. 二中

C. 一中

D. 不能确定

6.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A. a=-

3B. a=-

1C. a=1

D. a=3

7.已知在△ABC中,∠A,∠B的外角分别是120º,150º,则∠C等于()A. 60º

B. 90º

C. 120º

D. 150º 8.如图,已知AB∥CD,能得到∠1=∠2的依据是()

A. 两直线平行,同位角相等

B. 同位角相等,两直线平行 C. 两直线平行,内错角相等

D. 内错角相等,两直线平行

二、填空题 共6小题,每小题3分,共18分。

9.下列几个命题:①若两个实数相等,则它们的平方相等;②若三角形的三边长a,b,c满足(a-b)(a+b)+c2=0;则这个三角形是直角三角形;③有两边和一角分别相等的两个三角形全等.其中是假命题的有_________(填序号).10.如图,已知直线a∥b,小杜把直角三角尺的直角顶点放在直线b上,若∠1=18°,则∠3的度数为______.11.如图所示,添加一个条件____,可使AC∥DE.12.猜谜语(打书本中两个几何名称).剩下十分钱_____;两牛相斗_____. 13.趣味猜谜:“两牛打架”,打一数学名词,谜底是_____.

14.如果两个三角形的两边及其中一边的对角对应相等,那么这两个三角形全等,其逆

试卷第2页,总6页 命题是_______________________,这个逆命题是________命题.

三、解答题 共10小题,15-18题6分,19题7分,20、21题8分,22题9分,23题10分,24题12分,共78分。解答应写出文字说明、演算步骤或证明过程。15.如图所示,在△ABC中,AB=AC,∠A=60°,BD⊥AC于点D,DG∥AB,DG交BC于点G,点E在BC的延长线上,且CE=CD.(1)求∠ABD和∠BDE的度数;

(2)写出图中的等腰三角形(写出3个即可).

16.如图,在平面直角坐标系中,A(a,0),D(6,4),将线段AD平移得到BC,使B(0,b),且a,b满足|a﹣2|+

=0,延长BC交x轴于点E.

(1)填空:点A(,),点B(,),∠DAE=

;(2)求点C和点E的坐标;

(3)设点P是x轴上的一动点(不与点A、E重合),且PA>AE,探究∠APC与∠PCB的数量关系?写出你的结论并证明.

17.在平面直角坐标系xOy中,点M的坐标为(3,﹣2),线段AB的位置如图所示,其中点A的坐标为(7,3),点B的坐标为(1,4).

(1)将线段AB平移可以得到线段MN,其中点A的对应点为M(3,﹣2),点B的对应点为N,则点N的坐标为

(2)在(1)的条件下,若点C的坐标为(4,0),请在图中描出点N并顺次连接BC,CM,MN,NB,然后求出四边形BCMN的面积S.

试卷第3页,总6页

18.如图,在平面直角坐标系中,四边形ABCD各顶点的坐标分别是A(0,0),B(7,0),C(9,5),D(2,7).(1)在坐标系中,画出此四边形;(2)求此四边形的面积.

19.在平面直角坐标系中,已知A(﹣1,1),B(3,4),C(3,8).(1)建立平面直角坐标系,描出A、B、C三点,求出三角形ABC的面积;(2)求出三角形ABO(若O是你所建立的坐标系的原点)的面积.

20.如图所示,在△ABC中,AB=AC,∠A=60°,BD⊥AC于点D,DG∥AB,DG交BC于点G,点E在BC的延长线上,且CE=CD.(1)求∠ABD和∠BDE的度数;

(2)写出图中的等腰三角形(写出3个即可).

21.已知C为线段AB的中点,E为线段AB上的点,点D为线段AE的中点.(1)若线段AB=a,CE=b,|a﹣15|+(b﹣4.5)2=0|a﹣15|+(b﹣4.5)2=0,求a,b的值;

试卷第4页,总6页(2)如图1,在(1)的条件下,求线段DE的长;(3)如图2,若AB=15,AD=2BE,求线段CE的长.22.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′,利用网格点画图:(1)补全△A′B′C′;

(2)画出△ABC的中线CD与高线AE;(3)△A′B′C′的面积为.23.如图,在平面直角坐标系中,A(a,0),D(6,4),将线段AD平移得到BC,使B(0,b),且a,b满足|a﹣2|+

=0,延长BC交x轴于点E.

(1)填空:点A(,),点B(,),∠DAE=

;(2)求点C和点E的坐标;

(3)设点P是x轴上的一动点(不与点A、E重合),且PA>AE,探究∠APC与∠PCB的数量关系?写出你的结论并证明.

24.在平面直角坐标系xOy中,点M的坐标为(3,﹣2),线段AB的位置如图所示,其中点A的坐标为(7,3),点B的坐标为(1,4).

(1)将线段AB平移可以得到线段MN,其中点A的对应点为M(3,﹣2),点B的对应点为N,则点N的坐标为

(2)在(1)的条件下,若点C的坐标为(4,0),请在图中描出点N并顺次连接BC,CM,MN,NB,然后求出四边形BCMN的面积S.

试卷第5页,总6页

试卷第6页,总6页

参考答案

1.B 【解析】 【分析】

分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案. 【详解】

A、成立的前提条件是同圆或等圆,不正确; B、正确;

C、垂直于半径的直线有可能是圆的割线,不正确; D、垂直于弦的中点的直线必经过圆心,不正确. 故选B. 【点睛】

要注意同圆或等圆是有关于圆的问题中一个很重要的前提. 2.C 【解析】 【分析】

直接利用平移中点的变化规律求解即可. 【详解】

由点A(-1,4)的对应点为A′(1,7)知平移方式为向右平移2个单位、向上平移3个单位,∴点C(-4,-1)的对应点C′的坐标为(-2,2).故选:C.【点睛】

考查了平移中点的变化规律,横坐标右移加,左移减;纵坐标上移加,下移减.左右移动改变点的横坐标,上下移动改变点的纵坐标. 3.C 【解析】 【分析】

逐个分析各项,利用排除法得出答案. 【详解】

答案第1页,总15页

①相等的角不一定是对顶角,是假命题; ②同位角相等,只有在两线平行时,是假命题; ③三个角相等的三角形是等边三角形,是真命题; ④两直线平行,内错角相等,是真命题; ⑤若a2=b2,则a=±b,是假命题. 故选C. 【点睛】

主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理. 4.C 【解析】 【分析】

根据点的平移的规律:向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y),据此求解可得. 【详解】

∵点B的坐标为(3,1),∴向左平移6个单位后,点B1的坐标(﹣3,1),故选:C.

【点睛】

本题考查了坐标与图形的变化﹣平移,解题的关键是掌握点的坐标的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减. 5.A 【解析】 【分析】

先根据每个已知条件单独判断,最后结合①综合判断即可.【详解】

由②可知:甲、乙、戊不是二中的学生,是一中或三中的学生,由③可知:乙、丁在同一所学校学习,且他们都不是三中的学生,在一中或二中,进而可知乙在一中.由③④可知:乙、丁、戊都在同一所学校,且都在一中,由①②可知甲在三中,丙在二中,故选A.

答案第2页,总15页

【点睛】

本题考查用排除法解决问题,熟练掌握相关知识是解题的关键.6.A 【解析】 【分析】

根据举例法证明是假命题即可.【详解】 若a=-3则 = =9,9>1,但-3<1,符合题意,若a=-1则 =1,不符合题意,若a=1,则=1,不符合题意,若a=3,则 =9,9>1,a>1,但不是反例,不符合题意,故选A.【点睛】

此题主要考查了利用举例法证明一个命题错误,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法.7.B 【解析】 【分析】

根据邻补角定义及三角形内角和定理进行求解即可.【详解】

∵∠BAC的外角为120°,∠ABC的外角为150°,∴∠BAC=60°,∠ABC=30° ∴∠C=180°-60°-30°=90°,故选B.【点睛】

本题考查了补角定义及三角形内角和定理,熟练掌握相关知识是解题的关键 8.C 【解析】

答案第3页,总15页

【分析】

根据两直线平行,内错角相等进行判断即可.【详解】 ∵AB//CD

∴∠1=∠2(两直线平行,内错角相等)故选C.【点睛】

本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.9.③ 【解析】 【分析】

根据已知条件逐一判断,命题真假即可.【详解】

若两个实数相等,则它们的平方相等,正确,是真命题,不符合题意,若三角形的三边长a,b,c满(a-b)(a+b)+c2=0;则这个三角形是直角三角形,满足 ,此时b为斜边,是直角三角形,是真命题,不符合题意,有两边和一角分别相等的两个三角形全等,因为两边和两边的夹角分别相等的两个三角形全等,此命题不能确定角的位置,所以为假命题,符合题意,故答案为:③.【点睛】

本题主要考查真命题与假命题,运用了平方差公式及全等三角形的判定,熟练掌握相关知识是解题关键.10.72° 【解析】 【分析】

根据平行线的性质,判定∠2=∠3,再由三角尺的直角与∠1的度数即可求解.【详解】

∵直角三角尺的直角顶点在直线上,∠1=18°,∴∠2=180°-90°-18°=72°,答案第4页,总15页

∵a//b,∴∠3=∠2=72°,故答案为:72°.【点睛】

本题主要考查平行线判定定理,熟练掌握并灵活运用平行线判定定理是解题关键.11..答案不唯一,如∠A=∠BDE 【解析】 【分析】

根据平行线的判定定理进行添加即可.【详解】

添加∠A=∠BDE,∵∠A=∠BDE

∴AC//DE(同位角相等,两直线平行),故答案为:∠A=∠BDE(答案不唯一).【点睛】

本题主要考查平行线的判定定理,熟练掌握相关知识是解题关键.12.余角,对顶角 【解析】 【分析】

剩下十分钱--余角(余下一角钱即十分钱);两牛相斗--对顶角(相互顶牛角). 【详解】

剩下十分钱余角;两牛相斗对顶角. 故答案为:余角, 对顶角 【点睛】

本题主要是激发学生的数学兴趣和学生对数学概念的理解和灵活运用,解答时可联系生活实际去解. 13.对顶角 【解析】 【分析】

根据牛打架用“角”互相顶,可猜测为:对顶角.

答案第5页,总15页

【详解】

“两牛打架”,打一数学名词,谜底是对顶角. 故答案为:对顶角 【点睛】

本题考查了数学常识,主要是激发学生的数学兴趣和学生对数学概念的理解和灵活运用,解答时可联系生活实际去解.

14.若两个三角形全等,那么这两个三角形的两边及其中一边的对角对应相等;真 【解析】 【分析】

根据逆命题的定义,写出逆命题,再根据全等三角形的性质进行判断.【详解】

如果两个三角形的两边及其中一边的对角对应相等,那么这两个三角形全等,其逆命题是如果两个三角形全等,那么这两个三角形的两边及其中一边的对角对应相等;这个逆命题是真命题.

故答案为:若两个三角形全等,那么这两个三角形的两边及其中一边的对角对应相等;真.【点睛】

本题考核知识点:全等三角形的性质.解题关键点:熟记全等三角形的性质.15.(1)∠CDE=30° ∠BDE=120°(2)△ABC是等腰三角形,△CDG为等腰三角形,△CDE是等腰三角形 【解析】 【分析】

(1)△ABC是等边三角形,所以△ABD是直角三角形,可求∠ABD,再利用线段相等,角的转化,求出∠BDE;

(2)只要两边相等或者两个角相等,就是等腰三角形,在图形中找相等的角即可. 【详解】

(1)∵AB=AC,∠A=60°,∴△ABC是等边三角形,∵BD⊥AC,∴∠ABD=30°,∵CD=CE,∠ACB=60°

答案第6页,总15页

∴∠CDE=30° ∴∠BDE=120°.(2)∵AB=AC,∴△ABC是等腰三角形 ∵DG∥AB,∴∠DGC=∠ABC,∴△CDG为等腰三角形. ∵CD=CE,∴△CDE是等腰三角形. 【点睛】

本题考查了等腰三角形的性质和判定以及平行线的性质,找到相等的角是正确解答本题的关键.

16.(1)2,0,0,﹣5,45°;(2)C(4,﹣1),E(5,0)(3)45°或135°

【解析】 【分析】

(1)根据非负数的性质求出A、B两点的坐标,根据tan∠DAE=1,得出∠DAE=45°;(2)利用平移的性质求出C点坐标,根据待定系数法求出直线BC的解析式,进而得到点E的坐标;(3)分两种情况讨论求解即可解决问题. 【详解】

(1)∵a,b满足|a﹣2|+∴a﹣2=0,b+5=0,∴a=2,b=﹣5,∴A(2,0),B(0,﹣5);

=0,∵tan∠DAE=∴∠DAE=45°,=1,故答案为2,0,0,﹣5,45°;

答案第7页,总15页

(2)∵AD∥BC,AD=BC,∴点B先向右平移4个单位再向上平移4个单位得到点C,∵B(0,﹣5),∴C(4,﹣1).

∴直线BC的解析式为y=x﹣5,∴E(5,0).

(3)①当点P在点A的左侧时,如图1,连接PC. ∵OE=OB,∴∠PEC=45°,∵∠PCB=∠APC+∠PEC,∴∠PCB﹣∠APC=45°;

②当P在直线BC与x轴交点的右侧时,如图2,连接PC. ∵∠PCB=∠PEC+∠APC,∴∠PCB﹣∠APC=135°.

【点睛】

本题考查了坐标与图形变化﹣平移,平移的性质,非负数的性质,三角形的外角的性质等知识,正确的画出图形是解题的关键. 17.(1)(﹣3,﹣1)(2)22 【解析】 【分析】

(1)由点M及其对应点A的坐标得出平移方向和距离,据此可得点N的坐标;(2)根据题意画出图形,利用割补法求解可得. 【详解】

(1)由点A(7,3)的对应点是M(3,﹣2)知,由A先向左平移4个单位、再向下平移5个单位,可得到点M,答案第8页,总15页

∴点B(1,4)的对应点N的坐标为(﹣3,﹣1),故答案为:(﹣3,﹣1).

(2)如图,描出点N并画出四边形BCMN,S=×4×5+×6×1+×1×2+2×1+×3×4 =10+3+1+2+6 =22. 【点睛】

本题考查了坐标与图形的变化﹣平移,解题的关键是掌握:点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减. 18.(1)见解析(2)44 【解析】 【分析】

(1)根据题意先补充成网格平面直角坐标系,然后确定出点B、C、D的位置,再与点A顺次连接即可;(2)利用四边形所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解. 【详解】

(1)四边形ABCD如图所示;

(2)四边形的面积=9×7﹣×2×7﹣×2×5﹣×2×7,=63﹣7﹣5﹣7,=63﹣19,答案第9页,总15页

=44.

【点睛】

本题考查了坐标与图形性质,三角形的面积,解题的关键是根据题意补充成网格平面直角坐标系进而确定点的位置.

19.(1)8(2)【解析】 【分析】

(1)由题意可先描点,如图,然后根据点的坐标特征和三角形面积公式求解;(2)利用面积的和差计算三角形ABO的面积即可.【详解】(1)如图,S△ABC=×(3+1)(8﹣4)=8;

(2)S△ABO=4×4﹣×3×4﹣×4×3﹣×1×1=.

【点睛】

本题考查了坐标与图形性质:利用点的坐标计算出相应的线段的长和判断线段与坐标轴的位置关系.

20.(1)∠CDE=30° ∠BDE=120°(2)△ABC是等腰三角形,△CDG为等腰三角形,△CDE

答案第10页,总15页

是等腰三角形 【解析】 【分析】

(1)△ABC是等边三角形,所以△ABD是直角三角形,可求∠ABD,再利用线段相等,角的转化,求出∠BDE;

(2)只要两边相等或者两个角相等,就是等腰三角形,在图形中找相等的角即可. 【详解】

(1)∵AB=AC,∠A=60°,∴△ABC是等边三角形,∵BD⊥AC,∴∠ABD=30°,∵CD=CE,∠ACB=60° ∴∠CDE=30° ∴∠BDE=120°.(2)∵AB=AC,∴△ABC是等腰三角形 ∵DG∥AB,∴∠DGC=∠ABC,∴△CDG为等腰三角形. ∵CD=CE,∴△CDE是等腰三角形. 【点睛】

本题考查了等腰三角形的性质和判定以及平行线的性质,找到相等的角是正确解答本题的关键.

21.(1)a=15,b=4.5;(2)6;(3)4.5 【解析】 【分析】

(1)由|a-15|+(b-4.5)2=0,根据非负数的性质即可推出a、b的值;

(2)根据(1)所推出的结论,即可推出AB和CE的长度,根据图形即可推出AC=7.5,然后由AE=AC+CE,即可推出AE的长度,由D为AE的中点,即可推出DE的长度;

答案第11页,总15页

(3)首先设EB=x,根据线段中点的性质推出AD、DE关于x的表达式,即AD=DE=2x,由图形推出AD+DE+BE=15,即可得方程:x+2x+2x=15,通过解方程推出x=3,即BE=3,最后由BC=7.5,即可求出CE的长度. 【详解】

解:(1)∵|a﹣15|+(b﹣4.5)2=0,∴|a﹣15|=0,(b﹣4.5)2=0,∵a.b均为非负数,∴a=15,b=4.5,(2)∵点C为线段AB的中点,AB=15,CE=4.5,∴AC=AB=7.5,∴AE=AC+CE=12,∵点D为线段AE的中点,∴DE=AE=6,(3)设EB=x,则AD=2BE=2x,∵点D为线段AE的中点,∴AD=DE=2x,∵AB=15,∴AD+DE+BE=15,∴x+2x+2x=15,解方程得:x=3,即BE=3,∵AB=15,C为AB中点,∴BC=AB=7.5,∴CE=BC﹣BE=7.5﹣3=4.5.【点睛】

本题主要考查线段中点的性质,关键在于正确的进行计算,熟练运用数形结合的思想推出相关线段之间的数量关系.

22.(1)详见解析;(2)详见解析;(3)8 【解析】 【分析】

(1)根据平移的条件画出图象即可;

(2)根据中线,高线的定义画出中线CD与高线AE即可;

(3)根据平移前后图形面积不变可得S△A′B′C′=S△ABC=×AE×BC,然后计算得出答案.【详解】(1)(2)如图,答案第12页,总15页

(3)S△A′B′C′=S△ABC=×AE×BC=×4×4=8.故答案为8.【点睛】

本题主要考查了作平移图形和三角形的面积公式.作平移图的一般步骤:(1)确定平移的方向和平移的距离;

(2)确定图形的关键点;如三角形,四边形等图形的顶点,圆的圆心等;(3)通过关键点作出平移后的图形.23.(1)2,0,0,﹣5,45°;(2)C(4,﹣1),E(5,0)(3)45°或135°

【解析】 【分析】

(1)根据非负数的性质求出A、B两点的坐标,根据tan∠DAE=1,得出∠DAE=45°;(2)利用平移的性质求出C点坐标,根据待定系数法求出直线BC的解析式,进而得到点E的坐标;(3)分两种情况讨论求解即可解决问题. 【详解】

(1)∵a,b满足|a﹣2|+∴a﹣2=0,b+5=0,∴a=2,b=﹣5,∴A(2,0),B(0,﹣5);

=0,∵tan∠DAE=∴∠DAE=45°,=1,答案第13页,总15页

故答案为2,0,0,﹣5,45°;(2)∵AD∥BC,AD=BC,∴点B先向右平移4个单位再向上平移4个单位得到点C,∵B(0,﹣5),∴C(4,﹣1).

∴直线BC的解析式为y=x﹣5,∴E(5,0).

(3)①当点P在点A的左侧时,如图1,连接PC. ∵OE=OB,∴∠PEC=45°,∵∠PCB=∠APC+∠PEC,∴∠PCB﹣∠APC=45°;

②当P在直线BC与x轴交点的右侧时,如图2,连接PC. ∵∠PCB=∠PEC+∠APC,∴∠PCB﹣∠APC=135°.

【点睛】

本题考查了坐标与图形变化﹣平移,平移的性质,非负数的性质,三角形的外角的性质等知识,正确的画出图形是解题的关键. 24.(1)(﹣3,﹣1)(2)22 【解析】 【分析】

(1)由点M及其对应点A的坐标得出平移方向和距离,据此可得点N的坐标;(2)根据题意画出图形,利用割补法求解可得. 【详解】

(1)由点A(7,3)的对应点是M(3,﹣2)知,由A先向左平移4个单位、再向下平移5

答案第14页,总15页

个单位,可得到点M,∴点B(1,4)的对应点N的坐标为(﹣3,﹣1),故答案为:(﹣3,﹣1).

(2)如图,描出点N并画出四边形BCMN,S=×4×5+×6×1+×1×2+2×1+×3×4 =10+3+1+2+6 =22. 【点睛】

本题考查了坐标与图形的变化﹣平移,解题的关键是掌握:点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.

答案第15页,总15页

第二篇:《相交线与平行线》单元测试题

七年级数学下册《相交线与平行线》单元测试题

班级:

姓名:

得分:

一、填空题(1-12每题2分、13题3分、14题5分,共计32分)

1.两条直线相交,有_____对对顶角,三条直线两两相交,有_____对对顶角.2.如图1,直线AB、CD相交于点O,OB平分∠DOE,若∠DOE=60°,则∠AOC的度数是_____.3.已知∠AOB=40°,OC平分∠AOB,则∠AOC的补角等于_____.4.如图2,若l1∥l2,∠1=45°,则∠2=_____.图1

图2

图3 5.如图3,已知直线a∥b,c∥d,∠1=115°,则∠2=_____,∠3=_____.6.一个角的余角比这个角的补角小_____.7.如图4,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=_____.图4

图5 8.如图5,∠1=82°,∠2=98°,∠3=80°,则∠4的度数为_____.9.如图6,AD∥BC,AC与BD相交于O,则图中相等的角有_____对.图6 图7 10.如图7,已知AB∥CD,∠1=100°,∠2=120°,则∠α=_____.11.如图8,DAE是一条直线,DE∥BC,则∠BAC=_____.12.如图9,AB∥CD,AD∥BC,则图中与∠A相等的角有_____个.图8

图9

图10 13.如图10,标有角号的7个角中共有_____对内错角,_____对同位角,_____对同旁内角.14.如图11,(1)∵∠A=_____(已知),∴AC∥ED()(2)∵∠2=_____(已知),∴AC∥ED()(3)∵∠A+_____=180°(已知),∴AB∥FD()(4)∵AB∥_____(已知),∴∠2+∠AED=180°()(5)∵AC∥_____(已知),∴∠C=∠1()图11

二、选择题(每题2分,共计14分)15.下列语句错误的是()A.锐角的补角一定是钝角

B.一个锐角和一个钝角一定互补 C.互补的两角不能都是钝角 D.互余且相等的两角都是45° 16.下列命题正确的是()A.内错角相等

B.相等的角是对顶角

C.三条直线相交,必产生同位角、内错角、同旁内角 D.同位角相等,两直线平行

17.两平行直线被第三条直线所截,同位角的平分线()A.互相重合 B.互相平行 C.互相垂直

D.相交 18.如果∠1与∠2互补,∠1与∠3互余,那么()A.∠2>∠3

B.∠2=∠3 C.∠2<∠3

D.∠2≥∠3 19.如图12,已知∠1=∠B,∠2=∠C,则下列结论不成立的是()

图12 A.AD∥BC

B.∠B=∠C C.∠2+∠B=180°

D.AB∥CD

20.如图13,直线AB、CD相交于点O,EF⊥AB于O,且∠COE=50°,则∠BOD等于()

A.40° B.45° C.55°

图13 D.65°

21.如图14,若AB∥CD,则∠A、∠E、∠D之间的关系是()

图14

A.∠A+∠E+∠D=180° B.∠A-∠E+∠D=180° C.∠A+∠E-∠D=180° D.∠A+∠E+∠D=270°

三、解答题(共计74分)

22.如图15,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.(5分)

图15 23.如图16,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.(5分)

图16 24.如图17,∠1=

1∠2,∠1+∠2=162°,求∠3与∠4的度数.(5分)2图17 25.如图18,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系,为什么?(8分)

图18

26.如图19,AB∥CD,HP平分∠DHF,若∠AGH=80°,求∠DHP的度数.(8分)

图19

27.根据下列证明过程填空:(11分)如图20,BD⊥AC,EF⊥AC,D、F分别为垂足,且∠1=∠4,求证:∠ADG=∠C

图20

证明:∵BD⊥AC,EF⊥AC()∴∠2=∠3=90°

∴BD∥EF()∴∠4=_____()∵∠1=∠4()∴∠1=_____()∴DG∥BC()∴∠ADG=∠C()28.阅读下面的证明过程,指出其错误.(11分)

图21 已知△ABC

求证:∠A+∠B+∠C=180°

证明:过A作DE∥BC,且使∠1=∠C ∵DE∥BC(画图)∴∠2=∠B(两直线平行,内错角相等)∵∠1=∠C(画图)∴∠B+∠C+∠3=∠2+∠1+∠3=180° 即∠BAC+∠B+∠C=180°

*29.已知:如图22,CB⊥AB,CE平分∠BCD,DE平分∠CDA, ∠1+∠2=90°,求证:DA⊥AB.(11分)

第三篇:相交线与平行线精选测试题

测试题(一)

一、选择题

1.在同一平面内,如果两条直线不重合,那么它们().(A)平行(B)相交(C)相交、垂直(D)平行或相交 2.如果两条平行线被第三条直线所截,那么其中一组同位角的角平分线().(A)垂直(B)相交(C)平行(D)不能确定 3.已知:OA⊥OC,∠AOB∶∠AOC=2∶3,则∠BOC的度数为().(A)30°(B)60°(C)150°(D)30°或150° 4.如图,已知∠1=∠2=∠3=55°,则∠4的度数是().

(A)110°

(B)115°(C)120°

(D)125°

5.将一直角三角板与两边平行的纸条如图所示放置,下列结论:

(1)∠1=∠2;(2)∠3=∠4;

(3)∠2+∠4=90°;(4)∠4+∠5=180° 其中正确的个数是(A)1(B)2(C)3(D)4 6.下列说法中,正确的是().(A)不相交的两条直线是平行线.

(B)过一点有且只有一条直线与已知直线平行.

(C)从直线外一点作这条直线的垂线段叫做点到这条直线的距离.

(D)在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直. 7.∠1和∠2是两条直线l1,l2被第三条直线l3所截的同旁内角,如果l1∥l2,那么必有().(A)∠1=∠2(B)∠1+∠2=90°(C)111290o 22(D)∠1是钝角,∠2是锐角

8.如下图,AB∥DE,那么∠BCD=().

1(A)∠2-∠1(B)∠1+∠2(C)180°+∠1-∠2(D)180°+∠2-2∠1

9.如图,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠ABC=∠ADC且∠3=∠4;④∠BAD+∠ABC=180°,能判定AB∥CD的有().

(A)3个

(B)2个(C)1个

(D)0个

10.在5×5的方格纸中,将图1中的图形N平移后的位置如图2中所示,那么正确的平移方法是()

图1 图2

(A)先向下移动1格,再向左移动1格(B)先向下移动1格,再向左移动2格(C)先向下移动2格,再向左移动1格(D)先向下移动2格,再向左移动2格

二、填空题

11.如图,已知直线AB、CD相交于O,OE⊥AB,∠1=25°,则∠2=______°,∠3=______°,∠4=______°.12.如图,已知直线AB、CD相交于O,如果∠AOC=2x°,∠BOC=(x+y+9)°,∠BOD=(y+4)°,则∠AOD的度数为______.

13.如图直线l1∥l2,AB⊥CD,∠1=34°,那么∠2的度数是______.

14.如图,若AB∥CD,EF与AB、CD分别相交于点E、F,EP与∠EFD的平分线相交于点P,且∠EFD=60°,EP⊥FP,则∠BEP=______度.

15.王强从A处沿北偏东60°的方向到达B处,又从B处沿南偏西25°的方向到达C处,则王强两次行进路线的夹角为______度.

16.如图,在平面内,两条直线上l1、l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1、l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有______个,在图中画出这些点的位置的示意图.

17.把“同角的补角相等”改写成“如果„„,那么„„”的形式:

______________________________________________________________________.三、解答题:

18.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.

19.已知:如图,AE⊥BC于E,∠1=∠2.求证:DC⊥BC.

20.已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD.

四、作图题:

21.已知:∠AOB.

求作:①画出∠AOB的平分线.

②在OC上截取OP=4cm.

③过点P作PE⊥OA于点E,PF⊥OB于点F.

④用刻度尺量得PE=______cm,PF=______cm.(精确到1cm). ⑤请问你发现了什么?

五、(选做题)问题探究:

22.已知:如图,∠ABC和∠ACB的平分线交于点O,EF经过点O且平行于BC,分别与AB、AC交于点E、F.

(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;

(2)若∠ABC=,∠ACB=,用、的代数式表示∠BOC的度数.

(3)在第(2)问的条件下,若∠ABC和∠ACB邻补角的平分线交于点O,其它条件不变,请画出相应图形,并用、的代数式表示∠BOC的度数.

测试题(二)

一、选择题

1.如图,AB∥CD,若∠2是∠1的4倍,则∠2的度数是().

(A)144°

(B)135°(C)126°

(D)108°

2.如图,AB∥CD,EF⊥CD,若∠1=50°,则∠2的度数是().

(A)50°

(B)40°(C)60°

(D)30°

3.如图,直线l1、l2被l3所截得的同旁内角为、,要使l1∥l2,只要使().(A)+=90°

(B)=(C)0°<≤90°,90°≤<180°

(D)131360

4.下列命题中,结论不成立的是().

(A)一个角的补角可能是锐角

(B)两条平行线上的任意一点到另一条平行线的距离是这两条平行线间的距离(C)平面内,过一点有且只有一条直线与已知直线垂直(D)平面内,过一点有且只有一条直线与已知直线平行

5.如图,AB∥CD,∠1=∠2,∠3=130°,则∠2等于().

(A)25°(B)30°(C)35°(D)40° 6.如图,AB∥CD,FG⊥CD于N,∠EMB=,则∠EFG等于().

(A)180°-

(B)90°+(C)180°+

(D)270°- 7.以下五个条件中,能得到互相垂直关系的有(). ①对顶角的平分线 ②邻补角的平分线

③平行线截得的一组同位角的平分线 ④平行线截得的一组内错角的平分线 ⑤平行线截得的一组同旁内角的平分线(A)1个(B)2个(C)3个

8.在下列四个图中,∠1与∠2是同位角的图是().

(4)4个

图① 图② 图③ 图④(A)①、②(B)①、③(C)②、③(D)③、④

9.如图,AB∥CD,若EM平分∠BEF,FM平分∠EFD,EN平分∠AEF,则与∠BEM互余的角有().

(A)6个(B)5个(C)4个(D)3个

10.把一张对边互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有().

(1)∠C′EF=32°

(2)∠AEC=148°(3)∠BGE=64°

(4)∠BFD=116°(A)1个(B)2个(C)3个(D)4个

二、填空题

11.如图,AB与CD相交于O点,若∠AOC=47°,则∠BOD的余角=______.6

(第11题)12.如图,AB∥CD,BC∥ED,则∠B+∠D=______.

(第12题)13.如图,DC∥EF∥AB,EH∥DB,则图中与∠AHE相等的角有__________________.(第13题)14.如图,BA⊥FC于A点,过A点作DE∥BC,若∠EAF=125°,则∠B=______.(第14题)

o15.若角与互补,且20,则较小角的余角为______度.

3三、作图

16.如图是某次跳远测验中某同学跳远记录示意图.这个同学的成绩应如何测量,请你画出示意图.

四、解答题

17.已知:如图,∠B=∠C,AE∥BC,求证:AE平分∠CAD.

证明:

18.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.

19.已知:如图,∠FED=∠AHD,∠HAQ=15°,∠ACB=70°,∠CAQ=55.求证:BD∥GE∥AH.

20.已知:如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.求证:AF∥EC.

21.已知:如图,CD⊥AB于D,DE∥BC,∠1=∠2.求证:FG⊥AB.

22.已知:如图,AB∥CD,∠1=∠B,∠2=∠D.判断BE与DE的位置关系并说明理由.

23.已知:如图,△ABC.求证:∠A+∠B+∠C=180°.

五、探究题:夹在平行线间的折线问题

24.已知:如图,AC∥BD,折线AMB夹在两条平行线间.

图1 图2

(1)判断∠M,∠A,∠B的关系;

(2)请你尝试改变问题中的某些条件,探索相应的结论。建议:①折线中折线段数量增加到n条(n=3,4„„)②可如图1,图2,或M点在平行线外侧.

第四篇:初一数学《相交线与平行线》测试题

相交线与平行线测试题(2012.3.21)(满分100分,时间 45分钟)姓名班级

一、相信你的选择

1、在同一平面内,两条直线的位置关系可能是()。

A、相交或平行B、相交或垂直C、平行或垂直D、不能确定

2、如图,下列说法错误的是()。

A、∠A与∠C是同旁内角B、∠1与∠3是同位角

C、∠2与∠3是内错角D、∠3与∠B是同旁内角

第2题图第3题图第4题图

3、如图,∠1=20°,AO⊥CO,点B、O、D在同一直线上,则∠2的度数为()。

A、70°B、20°C、110°D、160°

4、在方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是()。

A.先向下移动1格,再向左移动1格;B.先向下移动1格,再向左移动2格

C.先向下移动2格,再向左移动1格;D.先向下移动2格,再向左移动2格

5、下列图形中,由A,能得到的是()B∥CD1

2A A B B1 D D DA. B C. D.

6、如图,AB∥DE,∠1=∠2,则AE与DC的位置关系是()。

A、相交B、平行C、垂直D、不能确定

C 第6题图

第8题图 D7、如图,直线

L

1∥L2 ,则∠().0 000A.150B.140C.130D.1208、如图,AB∥CD,那么∠BAE+∠AEC+∠ECD =()

A.1800B.2700C.3600D.5400

二、填空题

9、如图,若m∥n,∠1=105 o,则∠2=

10、如图,直线AB、CD相交于点E ,DF∥AB,若∠AEC=1000,则∠D的度数等于.C DCBAE

DAF

第9题图第10题图第11题图 B11、如图,AB∥CD,AC平分∠DAB,∠2=25°,则∠D=。

12、把命题“对顶角相等”写成“如果„„,那么„„”的形式为:

13、下面生活中的物体的运动情况可以看成平移的是

(1)摆动的钟摆(2)在笔直的公路上行驶的汽车(3)随风摆动的旗帜(4)摇动的大绳(5)汽车玻璃上雨刷的运动(6)从楼顶自由落下的球(球不旋转)E

D AD 6cm O㎝㎝CB4cm

第16题图 第14题图第15题图

14、如图,这个图形的周长为多少。

15、如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38 o,则∠AOC=,∠COB=。

16、如图,把长方形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于.三、解答题

17、如图,平移所给图形,使点A移动到点A1,先画出平移后的新图形,再把它们

画成立体图形.18、仔细想一想,完成下面的推理过程(每空1分,共6分)如图EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD。

解:∵EF∥AD,∴∠2=

又∵∠1=∠2,∴∠1=∠3,∴AB∥()

∴∠BAC+=180 o()∵∠BAC=70 o,∴∠AGD=。

19、如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE的理由。

20.如图,AB∥CD,直线EF交AB、CD于点G、H.如果GM平分∠BGF,HN平分∠CHE,那么,GM与HN平行吗?为什么?

EA B

C

H F

附加题:已知,大正方形的边长为4厘米,小正方形的边长为2厘米,状态如图所示。大正方形固定不动,把小正方形以1厘米 ∕ 秒的速度向大正方形的内部沿直线平移,设平移的时间为t秒,两个正方形重叠部分的面积为S厘米2,完成下列问题:

(1)平移到1.5秒时,重叠部分的面积为厘米2.(2)当S =3.6厘米2

(3)当2<t≤4时,

第五篇:平行线与相交线测试题及答案

一、选择题

1、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐

弯的角度是()

A.第一次右拐50°,第二次左拐130°

C.第一次左拐50°,第二次左拐130°B.第一次左拐50°,第二次右拐50°D.第一次右拐50°,第二次右拐50°

2、如图3,AB∥CD,那么∠A,∠P,∠C的数量关系是()

A.∠A+∠P+∠C=90°B.∠A+∠P+∠C=180°

C.∠A+∠P+∠C=360°D.∠P+∠C=∠A3、一个人从点A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC等于()

A.75°B.105°C.45°D.135°

ABAB

BACFEDCCD图

3D图4 图

54、如图5所示,已知∠3=∠4,若要使∠1=∠2,则需()

A.∠1=∠3B.∠2=∠3C.∠1=∠4D.AB∥CD5、下列说法正确的个数是()

①同位角相等; ②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;;④三条直线两两相交,总有三个交点;

⑤若a∥b,b∥c,则a∥c.A.1个B.2个C.3个D.4个

6、如图6,O是正六边形ABCDEF的中心,下列图形:△OCD,△ODE,△OEF,△OAF,•△OAB,其中可由△OBC平移得到的有()

A.1个B.2个C.3个D.4个

二、填空题

7、命题“垂直于同一直线的两直线平行”的题设是

是.8、三条直线两两相交,有个交点.ED

BDA

C43BAD

CACB

图7图8图99、如图8,已知AB∥CD,∠1=70°则∠2=_______,∠3=______,∠4=_______.10、如图10所示,直线AB与直线CD相交于点O,EO⊥AB,∠EOD=25°,则

∠BOD=______,∠AOC=_______,∠BOC=________.11、如图11所示,四边形ABCD中,∠1=∠2,∠D=72°,则∠BCD=_______.12、如果一个角的两边与另一个角的两边分别平行,那么这两个角的关系是_________,那么这两个角分别是度.三、作图题

13、如图,(1)画AE⊥BC于E,AF⊥DC于F.(2)画DG∥AC交BC的延长线于G.(3)经过平移,将△ABC的AC边移到DG,请作出平移后的△DGH.AD

四、解答题 BC14、已知:AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DEF的平分

线相交于点P.求∠P的度数

15、如图,E在直线DF上,B为直线AC上,若∠AGB=∠EHF,∠C=∠D,试判断∠A与∠F的关系,并说明理由.16、已知AD⊥BC,FG⊥BC,垂足分别为D、G,且∠1=∠2,猜想∠BDE与∠C有怎样的大

小关系?试说明理由

.参考答案:

一、1.B2.C3.C4.D5.B6.B

二、7.两条直线都和同一条直线垂直,这两条直线平行;

8.1,3;

9.70°,70°,110°;

10.65°,65°,115°;

11.108°;

12.相等或互补;

三、13.如下图:

F

AD

BE

14.如图,过点P作AB的平行线交EF于点G。

因为AB∥PG,所以∠BEP =∠EPG(两直线平行,内错角相等),又EP是∠BEF的平分线,所以∠BEP =∠PEG,所以

∠BEP =∠EPG=∠PEG;同理∠PFD =∠GFP=∠GPF。

又因为AB∥CD,所以∠BEF+∠DFE=180º(两直线平行,同旁内角互补),所以∠BEP+∠PFD=90º,故∠EPG+∠GPF=90º,即∠P=90º.15.解: ∠A=∠F.理由是:

因为∠AGB=∠DGF,∠AGB=∠EHF,所以∠DGF=∠EHF,所以BD//CE,所以∠C=∠ABD,又∠C=∠D,所以∠D=∠ABD,所以∠A=∠F.16.解:∠BDE=∠C.理由:因为AD⊥BC,FG⊥BC(已知),所以∠ADC=∠FGC=90°(垂直定义).所以AD ∥FG(同位角相等,两直线平行).所以∠1=∠3(两直线平行,同位角相等)

又因为∠1=∠2,(已知),所以∠3=∠2(等量代换).所以ED∥AC(内错角相等,两直线平行).所以∠BDE=∠C(两直线平行,同位角相等).G

下载长春宽城区2018-2019学年初中数学相交线与平行线单元测试题(精选合集)word格式文档
下载长春宽城区2018-2019学年初中数学相交线与平行线单元测试题(精选合集).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    相交线与平行线复习测试题

    相交线与平行线单元测试题一、选择题:(每小题3分,共30分.各小题只有唯一的正确答案,请将正确答案填在题后的括号内.) 1、两个角互为补角,那么这两个角A、都是锐角B、都是钝角C、一......

    长春宽城区2018-2019学年初中数学勾股定理单元测试题-专题

    长春宽城区2018-2019学年初中数学勾股定理单元测试题 数学 2018.7 本试卷共7页,120分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷......

    七年级数学下册 相交线与平行线测试题

    相交线与平行线测试题一、填空题1. 一个角的余角是30º,则这个角的补角是2. 一个角与它的补角之差是20º,则这个角的大小是3. 时钟指向3时30分时,这时时针与分针所成的锐角是4.......

    初一平行线和相交线测试题

    初一平行线和相交线测试题一、填空题1、如果∠A=35°18′,那么∠A的余角等于_____;2、如图①,直线a、b被直线c所截且a∥b,若∠1=118°,则∠2的度数=_____;3、如图2,用吸管吸易拉罐内的饮料时,∠1......

    《相交线、平行线》提高测试题(精)

    提高测试 (一判断题(每题2分,共10分 1.过线段外一点画线段的垂线,那么这条垂线一定是中垂线( 2.如果两个角互为补角,那么它们的角平分线一定互相垂直……………………( 3.两......

    平行线与相交线基础知识

    西安学知教育天才出于勤奋,学习要持之以恒 第二章平行线与相交线 一、余角与补角1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。......

    相交线与平行线知识点

    第五章相交线与平行线知识点小结● 相交线1.相交线:在同一平面内,相交的两条直线。-----特点:有一个交点2.对顶角----特点:(1)有一个公共定点(2)两边互为反向延长线-----性质:对顶角......

    相交线与平行线知识点归纳

    相交线与平行线知识点小结 一、相交线 1.相交线:两条直线相交,有且只有一个交点。(反之,若两条直线只有一个交点,则这两条直线相交。) 2.对顶角----特点:(1)有一个公共定点(2)两边互为......